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Pathogenesis of autoimmune disorders, including multiple sclerosis (MS), has been 
linked to an alteration of the resident microbial commensal community and of the inter-
play between the microbiota and the immune system. Dietary components such as 
fiber, acting on microbiota composition, could, in principle, result in immune modulation 
and, thus, could be used to obtain beneficial outcomes for patients. We verified this 
hypothesis in a pilot study involving two groups of clinically similar relapsing-remitting 
(RR) MS patients who had undergone either a high-vegetable/low-protein diet (HV/LP 
diet group; N = 10) or a “Western Diet” (WD group; N = 10) for at least 12 months. Gut 
microbiota composition, analyzed by 16 S V4 rRNA gene sequencing and immuno-
logical profiles, was examined after a minimum of 12 months of diet. Results showed 
that, in the HV/LP diet group compared to the WD group: (1) Lachnospiraceae family 
was significantly more abundant; (2) IL-17-producing T CD4+ lymphocytes (p = 0.04) 
and PD-1 expressing T CD4+ lymphocytes (p = 0.0004) were significantly decreased; 
and (3) PD-L1 expressing monocytes (p = 0.009) were significantly increased. In the 
HV/LP diet group, positive correlations between Lachnospiraceae and both CD14+/
IL-10+ and CD14+/TGFβ+monocytes (RSp  =  0.707, p  =  0.05, and RSp  =  0.73, 
p  =  0.04, respectively), as well as between Lachnospiraceae and CD4+/CD25+/
FoxP3+ T  lymphocytes (RSp = 0.68, p = 0.02) were observed. Evaluation of clinical 
parameters showed that in the HV/LP diet group alone the relapse rate during the 
12 months follow-up period and the Expanded Disability Status Scale score at the end 
of the study period were significantly reduced. Diet modulates dysbiosis and improves 
clinical parameters in MS patients by increasing anti-inflammatory circuits. Because 
Lachnospiraceae favor Treg differentiation as well as TGFβ and IL-10 production this 
effect could be associated with an increase of these bacteria in the microbiota.

Keywords: multiple sclerosis, diet, microbiome, cytokine, inflammation, dysbiosis, immunology

Abbreviations: MS, multiple sclerosis; CNS, central nervous system; EDSS, Expanded Disability Status Scale; IL, interleukin; 
OTU, operation taxonomic units; WD, Western Diet; HV/LP, high vegetal/low-protein DIET.
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inTrODUcTiOn

Multiple sclerosis (MS) is a chronic disease of the central 
nervous system (CNS) characterized by demyelination and 
mediated by an auto-reactive immune process directed against 
central neural tissues. Experimental autoimmune encephalitis 
(EAE) is a widely used animal model of MS induced by CNS-
restricted antigens (1). The ethiopathogenesis of MS is still 
only partly understood, but a number of recent publications 
suggested that alterations of the microbiota play a role in the 
pathogenesis of this disease (2–4). Thus, the use of a cocktail 
of antibiotics to alter the gut microbiota of mice prior to EAE 
induction was shown to result in a significant reduction of EAE 
severity. This effect was mediated by an increase of CD4+/
CD25+/FoxP3+ regulatory T cells (Treg) cells (5) and of regu-
latory CD5+/B cells (6). Even more recently, results indicated 
that EAE-resistant germ-free mice are rendered susceptible 
to the disease by the introduction of segmented filamentous 
bacteria into their gut microbiome. This phenomenon was 
the consequence of an increased differentiation of proinflam-
matory Th17 cells (7). Notably, dietary supplementation with 
probiotics was shown to modulate EAE secondarily to the 
regulation of pro- and anti-inflammatory cytokines (8–16), 
and engineered bacteria strains, such as Salmonella-CFA/I and 
Hsp65-producing Lactococcus lactis, were observed to prevent 
EAE via the production of TGFβ and IL-13 by Tregs (17–19). 
Finally, diet has been observed to influence EAE susceptibility 
and disease activity (2). Thus, a low-calorie diet was shown to 
have a beneficial effect in EAE (20), whereas a salt-rich diet 
resulted in an increased severity of EAE as a consequence of an 
upregulation of Th17 cell activity (21).

The analysis of gut microbiota in MS patients is still in the 
early stages (2). Recent data (22) showed that the human gut 
is colonized by Clostridium perfringens type B during disease 
relapse. Clostridium perfringens type B produces a toxin (ε toxin)  
that causes microangiopathy, resulting in the disruption of 
the blood–brain barrier (BBB) associated with neuronal and 
oligodendrocyte damage (23–26), possibly justifying its effect 
of disease activity. Additional data indicated that a mixture 
of Clostridium species enhances Treg cell populations in MS 
patients (27), suggesting that, besides the effect of a toxin, an 
imbalance within Clostridium species (phylum Firmicutes) 
might be present in the microbiota of these patients. Moreover, 
the archaeal Methanobrevibacteriaceae was described to be 
increased in MS patients, in whom the anti-inflammatory taxa 
Butyricimonas (phylum Bacteroidetes) and Lachnospiraceae 
(phylum Firmicutes) were decreased (28). Even more recently, 
Faecalibacterium prausnitzii, an important butyrate-producing 
organism, was observed to be reduced in MS patients in anal-
ogy to what is observed in inflammatory bowel disease, another 
autoimmune condition (29). Since butyrate upregulates Treg 
cell populations, these results suggest a mechanism by which 
gut microbiome alterations would predispose individuals to 
developing MS.

As diet plays an essential role in shaping the gut microbiome 
(30), and a high-fiber intake has been linked to health benefits 
as a consequence of the effect of fiber on the gut microbiota (31), 

possibly resulting in the modulation of the immune response, we 
hypothesized that MS disease activity could be affected by dietary 
patterns. In this pilot study, we verified this hypothesis by analyz-
ing immune indexes, clinical parameters and gut microbiota in 
two groups of MS patients who at the time of recruitment were 
already following two distinct dietary regimes: a “Western Diet” 
(WD) and a high-vegetable/low-protein diet (HV/LP diet).

MaTerials anD MeThODs

individuals enrolled in the study
Patients with a diagnosis of relapsing-remitting (RR) MS that 
are followed by the Multiple Sclerosis Rehabilitation Unit of the 
Don Carlo Gnocchi Foundation in Milan, Italy, were enrolled in 
this pilot trial on a voluntary basis between May and October 
of 2016. Notably, this unit offers dietary advices to patients that 
are provided by a staff of professional nutritionists. Inclusion 
criteria were age >18 years and disease stability for >6 months 
prior to enrollment. Main exclusion criteria were: (1) use of 
disease modifying treatment (DMD) for >6  months prior to 
enrollment; (2) use of immunosuppressants or teriflunomide in 
the clinical history; (3) presence of significant co-morbidities 
such as arterial hypertension, cerebrovascular disorders, heart 
or pulmonary diseases, diabetes, endocrine, gastrointestinal, or 
psychiatric diseases. Gender, disease duration, and disability 
level, as assessed by the Kurtzke Expanded Disability Status Scale 
score (EDSS), relapse rate and other neurological indices were 
not used as inclusion/exclusion criteria but were recorded during 
the initial neurological examination.

Twenty-nine patients were initially selected for the study; all 
the patients underwent a face-to-face interview with a team of 
professional nutritionists who assessed the dietary regimen that 
had been followed for at least a 12-months period. This period 
was selected because it was considered to be a valid way to assess 
the adoption of a stable dietary habit. Nine of the initially selected 
patients were not enrolled in the study because adherence to 
clear dietary patterns could not be unequivocally identified. Of 
the remaining 20 patients, 10 (7 females and 3 males; median 
age = 43, IQ = 40–44) had chosen to follow a diet characterized 
by the use of fresh fruits and vegetables, legumes, nuts, whole 
grains, and extra virgin olive oil and a very limited use of animal 
proteins, including fish (no more than twice a week), poultry (no 
more than once a week), eggs (no more than four eggs a week), 
and dairy products (no more than once a week), as well as a low 
intake of refined cereals, salt, sugar, fried food and the exclusion 
of alcohol, red meat, saturated fats of animal origin, and trans-fats 
(e.g., processed dressing). This diet was labeled as high vegetable/
low protein (HV/LP diet). The remaining 10 patients (8 females 
and 2 males; median age = 49, IQ = 45–52) were following a classi-
cal Western Diet (WD) characterized by the regular consumption 
of red meat, processed meat, refined grains, sweetened food, salt, 
and an overall high intake of saturated and omega-6 fatty acids 
(32). These 20 patients were enrolled in the study. Adherence to 
the two different dietary regimens was verified in a face-to-face 
interview with the professional nutritionists every 4 months. No 
use of any type of antibiotic or of pre- and probiotics was reported 
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during the study period. Blood and fecal samples were collected 
at enrollment, i.e., after at least 1 year of either WD or HV/LP diet; 
neurological examinations were performed at enrollment and at 
the 12 months follow-up point.

The study protocol was approved by the ethics committee of 
the Don Carlo Gnocchi Foundation and all the enrolled patients 
signed an informed consent.

Blood sample collection and  
cell separation
At enrollment whole blood (10 ml) was collected in vacutainer 
tubes containing ethylenediaminetetraacetic acid (EDTA) 
(Becton Dickinson & Co., Rutherford, NJ, USA). Peripheral 
blood mononuclear cells (PBMC) were separated on lympholyte 
separation medium (Cedarlane, Hornby, Ontario, CA, USA) and 
washed twice in PBS at 1500 RPM for 10 min; viable leukocytes 
were determined using a Scepter 2.0 Handheld Automated Cell 
Counter (Millipore, Billerica, MA, USA).

intracellular cytokine or Transcription 
Factor staining in PBMc
Lymphocyte and monocyte subsets were analyzed in freshly 
isolated PBMC that were incubated for 30 min at 4°C in the dark 
with Phycoerythrin-Cyanin-7 (PC7)-labeled anti-CD4 (clone 
SFCI12T4D11, mouseIgG1, Beckman-Coulter Brea, CA, USA), or 
PC7-labeled anti-CD14 (clone RMO52, mouse IgG2a, Beckman-
Coulter), Phycoerythrin-Texas Red (ECD)-labeled anti-CD25 
(clone B1.49.9, mouse IgG2a, Beckman-Coulter), Phycoerythrin 
(PE)-labeled anti-PD-1 (clone MIH4, mouse IgG1, eBioscience 
Cornerstone Court West, San Diego, CA, USA), PE-labeled anti-
PD-L1 (clone MIH1, mouse IgG1, eBioscience), or PE-labeled 
anti-human Tim-3 (clone 344823, rat IgG2A, R&D Systems, Inc., 
Minneapolis, MN, USA). After incubation, the cells were washed, 
treated with Cell Permeabilization kit (FIX & PERM kit, eBiosci-
ence) and incubated for 30 min at 4°C in the dark with the follow-
ing PE-labeled monoclonal antibodies: anti-IL-10 (clone JES9D7, 
mouse IgG1, R&D Systems), anti-TGFβ (clone 9016, mouse 
IgG1, R&D Systems), anti-IFNγ (clone 25723, mouse IgG2b, R&D 
Systems), anti-BDNF (clone 35909, mouse- IgG1, R&D Systems), 
anti-IL-25 (IL-17E, clone 182203, mouse IgG1, R&D Systems), 
anti-Gal-9 (clone 9M1-3, mouse IgG1k, Biolegend, San Diego, 
CA, USA), anti-RORCγ (clone AFKJS-9, rat IgG2a, eBioscience), 
anti-GATA-3 (cloneTWAY, rat IgG2B, eBioscience), anti-NFATc1 
(clone H-10, mouse IgG1, Santa Cruz Biotechnology, Santa Cruz, 
CA, USA), or the Fluorescein Isothiocyanate (FITC)-labeled- 
anti-NFkB (clone C-5, mouse IgG2a, Santa Cruz Biotechnology), 
the PC-5-labeled-anti-IL-17 (clone BL168, mouse IgG1k, 
Biolegend), or the Alexa Fluor 488-labeled-anti-FoxP3 (clone 
1054 C, rabbit IgG, R&D). Anti-Bat3 (clone 2B21, mouse IgMk, 
Abnova Taipei, Taiwan) was conjugated using the Lightning-
LinkTM R-Phycoerythrin conjugation kit (Innova Biosciences, 
Cambridge, UK).

Flow-cytometry analysis
Peripheral blood mononuclear cells were analyzed using a 
Beckman-Coulter GALLIOS flow cytometer equipped with a 

22 mW Blue Solid State Diode laser operating at 488 nm and with 
a 25 mW Red Solid State Diode laser operating at 638 nm, and 
interfaced with Kaluza analysis software. Two hundred thousand 
cells were acquired and gated on lymphocyte and monocyte FSC 
and SSC properties. Isotype control or single fluorochrome-
stained preparations were used for color compensation.

Microbiome analyses
At enrollment, participants were asked to collect their first morn-
ing stool at home using an adequate stool collection container 
(Biosigma, VE, ITALY). Samples were shipped, within 1 h, on ice 
packs to the Laboratory of the Don Carlo Gnocchi Foundation in 
Milan, where they were immediately stored at −80°C. Finally, the 
stored total stool samples were sent on dry ice by FedEx delivery 
to the processing facility (Second Genome Inc., San Francisco, 
CA, USA).

DNA isolation, library preparation, and sequencing as well 
as data analysis were performed by Second Genome Inc. Briefly, 
nucleic acid isolation with the MoBio PowerMag® Microbiome 
kit (Carlsbad, CA, USA) and quantified via the Qubit® Quant-iT 
dsDNA High Sensitivity Kit (Invitrogen, Life Technologies, Grand 
Island, NY). Samples enriched in bacterial 16 S V4 rDNA region 
and incorporating Illumina (San Diego, CA, USA) adapters and 
indexing barcodes, by PCR, were concentrated using a solid-
phase reversible immobilization method for the purification of 
PCR products, quantified by qPCR and sequenced with MiSeq® 
instrument. Amplicons were sequenced for 250 cycles with 
custom primers designed for paired-end sequencing. Operation 
taxonomic units (OTU) were selected using an in-house pipeline 
of analysis and sequences hitting a unique strain with an identity 
≥99% were assigned a strain OTU. To ensure specificity of the 
strain hits, a difference of > = 0.25% between the identity of the 
best hit and the second best hit was required (e.g., 99.75 vs. 99.5); a 
chimera filtering and discard was also used. Representative OTU 
sequences were assigned taxonomic classification via mothur’s 
Bayesian classifier, trained against the Greengenes reference 
database of 16 S rRNA gene sequences clustered at 99%.

As for alpha-diversity (within sample diversity), observed 
diversity (number of unique OTU) and Shannon Index (which 
utilizes the richness of a sample along with the relative abundance 
of the present OTUs to calculate a diversity index) were the met-
rics used.

Sample-to-sample dissimilarity (beta diversity) was also deter-
mined. All profiles are inter-compared in a pair-wise fashion to 
determine a dissimilarity score and store it in a distance dissimi-
larity matrix. Distance functions produce low dissimilarity scores 
when comparing similar samples. Abundance-weighted sample 
pair-wise differences were calculated using the Bray–Curtis dis-
similarity (ratio of the summed absolute differences in counts to 
the sum of abundances in the two samples) (33). The binary dis-
similarity values were calculated with the Jaccard index (metric 
comparing the number of mismatches, i.e., OTUs present in one 
but absent in the other, in two samples relative to the number of 
OTUs present in at least one of the samples) (34).

Whole Microbiome Significance Testing was performed with 
Permutational Analysis of Variance (PERMANOVA), utilized 
for finding significant differences among discrete categorical or 
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TaBle 1 | Demographic and clinical characteristics of patients with a diagnosis 
of multiple sclerosis who were following either a Western Diet (WD) or a high-
vegetable/low-protein (HV/LP) diet.

a WD hV/lP diet p-Value

Number 10 10
Gender (M:F) 2:8 3:7
Age years (range years) 49 (45–52) 43 (40–44) 0.1
Disease duration years  
(range years)

12.5 (4.3–17.8) 8.8 (4–15) 0.4

Expanded Disability Status  
Scale (range)

2.0 (1.6–1.9) 1.8 (1.3–2.0) 0.3

Relapse rate (relapse number/ 
disease years)

0.3 (0.3–0.8) 1 (0.0–1.0) 0.4

Results obtained at enrollment (i.e., after 1 year of either WD or HV/LP diet) are shown. 
Data are reported as medians and interquartile range. Statistical significance  
is presented (p < 0.05).

TaBle 2 | Median percent relative abundance and interquartile range of the 
most abundant taxa at the phylum level in patients with a diagnosis of multiple 
sclerosis who were following either a Western Diet (WD) or a high-vegetable/low-
protein (HV/LP) diet.

Phylum WD hV/lP diet p-Value chi-square

Firmicutes 76.8 (68.8–81.9) 73.5 (70.7–79.3) 0.9 2.7
Bacteroidetes 10.8 (8.9–13.7) 13.6 (11.8–17.6) 0.2 1.5
Actinobacteria 8.1 (3.6–10.2) 5.7 (1.6–9.9) 0.5 0.4
Proteobacteria 1.4 (0.5–3.0) 1.3 (0.4–2.3) 0.5 0.3
Verrucomicrobia 0.0 (0.0–0.04) 0.0 (0.0–0.3) 0.6 0.1
Euryarchaeota 0.04 (0.0–0.8) 0.0 (0.0–0.05) 0.03 4.3
Tenericutes 0.0 (0.0–0.4) 0.0 (0.0–0.5) 0.8 0.04
unclassified 0.1 (0.0–0.1) 0.05 (0.04–0.06) 0.8 0.03
Others 0.0 (0.0–0.1) 0.01 (0.0–0.03) 0.4 0.4

Results obtained at enrollment (i.e., after 1 year of either WD or HV/LP diet) are shown. 
Statistical significance is presented (p < 0.05).
The bold values are statistically significant p values.

4

Saresella et al. Effect of Diet on MS

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1391

continuous variables. To identify differentially abundant taxa, a 
Wilcoxon Rank Sum test was employed. p values were adjusted 
by Benjamini–Hochberg procedure to control for false discov-
ery rates from multiple testing. For additional information on 
laboratory methods and bioinformatic analyses please see Data 
Sheet S1 in Supplementary Material.

statistical analysis
Quantitative data were not normally distributed (Shapiro–Wilk 
test) and are, thus, summarized as median and interquartile 
range (IQR; 25° and 75° percentile). Comparisons between two 
MS groups were made using a two-tailed Mann–Whitney U 
test performed for independent samples. The statistical cor-
relations between immunological parameters and microbiota 
data were investigated by means of Spearman correlation 
coefficient and 95% confidence limits performed by Fisher’s Z 
transformation. The top 8 most abundant taxonomic families 
were compared by Kruskal–Wallis (KW) rank sum test. x2 test 
was used to patients relapse comparison. Statistical significance 
was set at a p-value <0.05. Data analysis was performed using 
the MedCalc statistical package (MedCalc Software bvba, 
Mariakerke, Belgium).

resUlTs

clinical characteristics of the individuals 
enrolled in the study
Demographic and clinical characteristics of the individuals 
enrolled in the study are summarized in Table 1. No differences 
were observed in gender, age, disease duration relapse rate, 
and EDSS score status when the two groups were compared at 
enrollment.

Diet-associated Modifications  
of the Microbiota
Microbiota analyses were performed in all the MS individuals 
included in this study at enrollment, i.e., after at least 1 year 
of either HV/LP diet or WD. Sequences per sample ranged 

between 138,072 and 405,385 filtered reads and were 
sequenced to sufficient depth to capture OTU richness (Image 
1). As a whole, 1,550 OTUs (combined filtered and strain level 
hits) were obtained from 8,852,375 combined sequences. All 
filtered reads were classified at the Kingdom level, 93.08% of 
reads were classified at the family level, 54.78% of reads were 
classified at the genus level, 22.7% of reads were classified at 
the species level and 23.87% of reads were classified at the 
strain level.

Firmicutes was the most abundant phylum (Table 2; Figure 1) 
and Ruminococcaceae and Lachnospiraceae were the most abun-
dant families in both groups of patients (Table  3; Figure  2). 
There was no difference in alpha-diversity when individuals 
following either one of the diets were compared (Figure 3), while 
Lachnospiraceae was significantly more abundant in the patients 
following HV/LP diet (Table 3) and phylum Euryarchaeota was 
significantly more abundant in WD patients (p = 0.03) (Table 2). 
No significantly different abundant OTUs between the two diets 
were observed at the time of sampling, even though 66 OTUs 
had an unadjusted p-value <0.05 and absolute log 2-fold change 
greater than 1 (data not shown). Moreover the taxa, namely 
Coprococcus eutactus (p = 0.3), Ruminococcus lactaris (p = 0.03) 
and a sequence of an as-yet unclassified Lachnospiraceae strain 
(p =  0.03), Roseburia intestinalis (p =  0.03), and a Hungatella-
related unknown Lachnospiraceae member (p = 0.04) appeared 
to be more abundant in HV/LP (Table S1 in Supplementary 
Material).

Notably, although being suggestive of a role for the different 
dietary regimens in the changes in the microbiota composition, as 
baseline samples were not collected, it is not possible to definitely 
state that such changes are the direct consequence of the dietary 
regimens.

immune Parameters
Immune parameters were analyzed in all the individuals at enroll-
ment, i.e., after at least 1 year of either HV/LP diet or WD. Results 
showed that three cell populations were significantly different 
when HV/LP diet and WD were compared. Thus, in HV/LP diet 
compared to WD: (1) IL-17+/CD4+ as well as CD4+/PD-1+ 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 3 | Median percent relative abundance and interquartile range of the 
most abundant taxa at the family level in patients with a diagnosis of multiple 
sclerosis who were following either a Western Diet (WD) or a  
high-vegetable/low-protein (HV/LP) diet.

Family WD hV/lP diet p-Value chi-square

Ruminococcaceae 31.5 (24.7–35.7) 29.7 (27.1–33.6) 0.83 0.04
Lachnospiraceae 21.8 (20.0–24.9) 29.5 (24.4–30.9) 0.04 4.1
Bacteroidaceae 6.0 (5.1–8.1) 7.7 (6.2–9.7) 0.36 0.8
Bifidobacteriaceae 6.2 (1.7–8.1) 3.5 (0.7–9.1) 0.67 0.1
Erysipelotrichaceae 4.8 (3.3–9.9) 1.6 (1.3–6.9) 0.32 0.9
Veillonellaceae 0.9 (0.5–4.3) 1.6 (0.6–2.2) 0.94 0.005
Coriobacteriaceae 1.9 (1.5–2.3) 1.0 (0.6–1.9) 0.11 2.6
Prevotellaceae 0.9 (0.0–1.4) 0.0 (0.0–0.1) 0.29 1.1
Others 16.6 (13.8–20.7) 16.1 (13.3–18.6) 0.48 0.4

Results obtained at enrollment (i.e., after 1 year of either WD or HV/LP diet) are shown. 
Statistical significance is presented (p < 0.05).
The bold values are statistically significant p values.

FigUre 1 | Firmicutes was the most abundant phylum in both groups (about 75%), followed by Bacteroidetes (15%), Actinobacteria (10%), and Proteobacteria 
(<2%). Plot showing the most abundant taxa at the Phylum level in multiple sclerosis (MS) patients who were following either a Western Diet (WD) or a high-
vegetable/low-protein (HV/LP) diet. Stool samples were collected at enrollment, i.e., after at least 1 year of either WD or HV/LP diet.
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T lymphocytes were reduced (p = 0.04 and p < 0.001, respec-
tively) and (2) CD14+/PD-L1+ monocytes were augmented 
(p = 0.009) (Table 4; Figure 4). Finally, although not reaching 
statistical significance, possibly because of the small number 
of enrolled patients, a clear prevalence of anti-inflammatory 

monocytes was seen in the HV/LP diet individuals, in whom 
higher percentages of CD14+/TGFβ+ monocytes were detected 
(p = 0.09) (Table 4).

correlation between Lachnospiraceae  
and anti-inflammatory immune cell
Lachnospiraceae, the family of bacteria whose abundance was 
observed to characterize the microbiota of MS diet patients, 
were recently described to be associated with the preferential 
generation of an anti-inflammatory milieu. Thus, this family 
of bacteria facilitates Treg differentiation and stimulates TGFβ 
and IL-10 production by immune cells. To verify whether the 
Lachnospiraceae abundance seen in the HV/LP diet patients could 
be linked to a modulation of such cells, we analyzed possible 
correlations between Lachnospiraceae abundance and immune 
parameters. Results showed in HV/LP diet  alone the presence 
of significantly positive correlations between Lachnospiraceae 
and both CD14+/IL-10+ and CD14+/TGFβ+ monocytes 
(RSp  =  0.77, p  =  0.008 and RSp  =  0.73, p  =  0.01; respectively), 
as well as between Lachnospiraceae and CD4+/CD25+/FoxP3+ 
T lymphocytes (RSp = 0.68, p = 0.02).
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FigUre 2 | Ruminococcaceae (~30%) and Lachnospiraceae (~27%) were the most abundant Families, both belong to Firmicutes phylum. Plot showing the most 
abundant taxa at the Family level in multiple sclerosis patients who were following either a Western Diet (WD) or a high-vegetable/low-protein (HV/LP) diet. Stool 
samples were collected at enrollment, i.e., after at least 1 year of either WD or HV/LP diet.
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Lachnospiraceae were negatively correlated with both CD14+/
IL-10+ and CD14+/TGFβ+ monocytes (RSp = −0.09, p = 0.8 and 
RSp = −0.48, p = 0.1, respectively) and positively correlated with 
CD4+/CD25+/FoxP3+ T lymphocytes (RSp = 0.02, p = 0.9) in 
WD; none of these correlations was statistically significant in 
this group of patients.

Modulation of Disease activity
Clinical parameters were evaluated during the 12 months fol-
low-up period as well as at the end of the protocol; interesting 
differences emerged. Thus, whereas the EDSS score improved 
in the HV/LP diet patients, this parameter declined in WD 
patients, with a significant difference being observed between 
the two groups (p  =  0.001). Notably, the overall number of 
disease relapses during the 12 months follow-up period was 
unmodified in the HV/LP diet patients, but increased signifi-
cantly in the WD patients (vs. enrollment p = 0.04). Clinical 
relapses were observed during the 12 months follow-up period 
in 9/10 WD patients but only in 3/10 of the HV/LP diet 
patients (p = 0.0005); the difference between the two groups 
in relapse rate at the 12 months follow-up visit was statistically 
significant (p = 0.03). These results are shown in Table 5.

DiscUssiOn

Diet plays an essential role in shaping the composition of the gut 
microbiome (35), and the gut microbiota modulates the status 
of the immune response (36). In MS, in particular, changes in 
the composition of the microbiota were suggested to influence 
disease activity, and in the EAE murine model of MS tampering 
with microbiota can trigger or prevent disease development. 
To better define whether in MS different dietary regimens 
can modify the microbiota, if this results in a modulation of 
immune profiles, and, ultimately, whether diet-associated 
changes in the composition of the microbiota influence disease 
activity, we analyzed these parameters in two groups of MS 
patients who were following different diets. In particular, we 
compared microbiota composition and immune profiles in MS 
patients that had followed either a HV/LP or a WD diet for at 
least 1  year; clinical parameters were analyzed in these same 
individuals during a 12  months follow-up period. Results of 
this pilot study show that a skewing of the composition of the 
microbiota characterized by the abundance of Lachnospiraceae 
family, a decrease of IL-17-producing T CD4+ lymphocytes 
and PD-1 expressing T CD4+ lymphocytes, and an increase of 
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FigUre 3 | Estimates of alpha-diversity no shown significant difference. Observed diversity (left panel) represents the number of operation taxonomic unit (OTU) 
present in each sample, while Shannon diversity index (right panel) takes in account of richness and evenness of OTUs within a sample. Stool samples were 
collected at enrollment, i.e., after at least 1 year of either Western Diet or high-vegetable/low-protein diet.

TaBle 4 | Immune parameters in patients with a diagnosis of multiple sclerosis 
who were following either a Western Diet (WD) or a high-vegetable/low-protein 
(HV/LP) diet.

WD hV/lP diet p-Value

CD4+CD25+FOXP3+ 2.6 (2.0–3.0) 3.1 (2.3–3.6) 0.5
CD4+TIM-3+ 0.8 (0.6–0.9) 1.0 (0.7–1.4) 0.3
CD4+GAL-9+ 1.4 (0.7–1.7) 1.2 (0.6–2.0) 0.8
CD4+BAT3+ 0.3 (0.2–0.3) 0.4 (0.3–0.4) 0.2
CD4+PD-1+ 0.4 (0.4–0.4) 0.2 (0.1–0.3) 0.0004
CD4+NFATc+ 0.2 (0.1–0.3) 0.1 (0.1–0.1) 0.07
CD4+NFkB+ 0.2 (0.2–0.4) 0.2 (0.1–0.3) 0.6
CD4+GATA-3+ 0.2 (0.1–0.4) 0.3 (0.2–0.4) 0.4
CD4+RORγ+ 0.2 (0.1–0.3) 0.2 (0.2–0.3) 0.5
CD4+IL-10+ 0.2 (0.1–0.2) 0.1 (0.1–0.2) 0.1
CD4+BDNF+ 0.2 (0.1–0.2) 0.3 (0.2–0.3) 0.2
CD4+IL-25+ 0.1 (0.0–0.2) 0.1 (0.0–0.2) 0.9
CD4+IL-17+ 0.6 (0.5–0.7) 0.2 (0.1–0.5) 0.02
CD4+IFNγ+ 0.5 (0.0–1.1) 0.4 (0.0–1.2) 0.7
CD14+IL-10+ 0.5 (0.3–0.8) 0.9 (0.4–1.3) 0.6
CD14+TGFβ+ 0.9 (0.7–1.2) 1.6 (0.9–1.9) 0.09
CD14+PD-L1+ 1.8 (1.4–3.2) 5.5 (3.9–9.8) 0.009

Results obtained at enrollment (i.e., after 1 year of either WD or HV/LP diet) are shown. 
Data are reported as medians and interquartile range. Statistical significances are 
presented (p < 0.05).
The bold values are statistically significant p values.
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PD-L1 expressing monocytes was observed in those individuals 
following a HV/LP diet. In these same patients, positive correla-
tions between Lachnospiraceae and anti-inflammatory IL-10- 
and TGFβ-producing CD14+ monocytes, as well as between 
Lachnospiraceae and CD4+/CD25+/FoxP3+ Treg lymphocytes 
were also observed. Notably, a significant reduction of the EDSS 
score and of the relapse rate was observed during follow-up in 
the HV/LP diet group alone.

Different dietary regimens have convincingly been shown to 
influence the composition of the intestinal microbiota (35, 37, 
38) and are suggested to modulate the clinical phenotype of a 
number of inflammatory and non-inflammatory conditions 
(39). Thus, whereas the microbiota was demonstrated to be 
different when breastfed and formula-fed neonates were com-
pared, in adults dietary changes result in modifications of the 
gut microbiota. Recent results, in particular, indicated that a diet 
based on a high consumption of vegetables leads to an increase 
in the population of Firmicutes (Roseburia, Ruminococcus bro
mii, and Eubacterium rectale), whereas a primarily meat-based 
diet results in an increase in the abundance of bile-tolerant 
microbes (Alistipes, Bilophila, and Bacteroides) (35). We observed 
that the use of a HV/LP diet in MS patients was linked to an 
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FigUre 4 | CD4+/IL-17+ and CD4+/PD-1+ T lymphocytes are decreased and CD14+/PD-L1+ cells are increased in multiple sclerosis (MS) patients following a 
high-vegetable/low-protein (HV/LP) diet. IL-17+/CD4+ T lymphocytes (a); PD-1+/CD4+T lymphocytes (B); and PD-L1+/CD14+ cells (c). Representative results 
obtained in unstimulated peripheral blood mononuclear cell of MS patients who were following either a Western Diet (WD) or a HV/LP diet are shown. Top right 
corners show the percentage of CD4+/IL-17+, CD4+/PD-1+ T cells and of CD14+/PD-L1+ cells. Summary results are shown in (D–F). The boxes stretch from the 
25th to the 75th percentile; the lines across the boxes indicate the median values; the lines stretching from the boxes indicate extreme values. Statistical significance 
is shown. Blood samples were collected at enrollment, i.e., at least after 1 year of either WD or either HV/LP diet.
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abun dance of Lachnospiraceae bacteria in the gut microbiota. 
The Lachnospiraceae family belongs to the Firmicutes phylum, 
which are butyrate producers. This observation is important 
from an immunologic viewpoint, as butyrate is endowed with 
the ability to stimulate Treg activity and differentiation and to 
induce the generation of anti-inflammatory cytokines, including 
IL-10, by Treg cells (27, 40). Notably, data herein indicate that 
the abundance in Lachnospiraceae seen in the HV/LP diet MS 
patients was significantly correlated with increased percentages 
of peripheral Treg and of IL-10 and TGFβ-producing monocytes. 
In animal models, butyrate-producing bacteria were also shown 
to restore the integrity of the intestinal as well as of the BBB (41, 
42), possibly reducing the translocation of peripheral blood 
inflammatory cells across the BBB.

We have previously shown that, whereas CD4+/Th17+ and 
CD4+/PD-1+ T  lymphocytes are increased in MS compared 
to HC (43), CD14+/PD-L1+ monocytes prevail during disease 
remission (44); this is the immune profile we observed in MS 
patients undergoing a HV/LP diet. Taken together, these results 
could explain the attenuation of disease activity observed in these 
individuals during follow-up. Previous analyses of the microbiota 
composition in MS patients showed that Methanobrevibacter, 
bacteria that have been associated with inflammatory and auto-
immune diseases (45), are increased in untreated MS (28) and this 
leads to a shorter relapse time (46). An increase of Akkermansia 
was also demonstrated in MS untreated patients (28, 47), in 
whom butyrate-producing Faecalibacterium, Lachnospiraceae, as 
well as Ruminococcaceae, Bacteroides fragilis, and Butyricimonas 
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TaBle 5 | Expanded Disability Status Scale (EDSS) scores, relapse rates, and 
number of patients in whom disease relapses were observed.

WD hV/lP diet P-Value

EDSS (range) at baseline 2.0 (1.6–2.9) 1.8 (1.3–2.0) 0.44
EDSS (range) at the end  
of the follow-up period

2.5 (2.1–3.0) 1.0 (1.0–1.0) 0.001

Relapse rate (relapse number/ 
disease years) at baseline

0.3 (0.3–0.8) 1.0 (0.0–1.0) 0.42

Relapse rate (relapse number/ 
disease years) during the 12 months  
follow-up period

1.0 (1.0–1.0) 0.0 (0.0–1.0) 0.03

EDSS baseline vs. follow-up 0.31 0.06
Relapse rate baseline vs. follow-up 0.04 0.6

WD hV/lP diet P-Value

Patients in whom disease  
relapses were observed during  
the 12 months follow-up period

9/10 3/10 0.0005

Two groups of multiple sclerosis patients following either a Western Diet (WD) or a high-
vegetable/low-protein (HV/LP) diet were analyzed. Results obtained at enrollment (i.e., 
after 1 year of either WD or HV/LP diet) as well as during a 12 months follow-up period 
are presented. Medians, interquartile ranges and statistical significances are shown 
(p < 0.05).
The bold values are statistically significant p values.
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