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Periodontitis is characterized by PMN infiltration and formation of neutrophil extracellu-
lar traps (NETs). However, their functional role for periodontal health remains complex 
and partially understood. The main function of NETs appears to be evacuation of dental 
plaque pathogen-associated molecular patterns. The inability to produce NETs is con-
comitant with aggressive periodontitis. But in cases with exaggerated NET production, 
NETs are unable to maintain periodontal health and bystander damages occur. This 
pathology can be also demonstrated in animal models using lipopolysaccharide as 
PMN activator. The progress of periodontitis appears to be a consequence of the 
formation of gingival pockets obstructing the evacuation of both pathogen-associated 
and damage-associated molecular patterns, which are responsible for the self-perpetu-
ation of inflammation. Thus, besides the pathogenic effects of the periodontal bacteria, 
the dysregulation of PMN activation appears to play a main role in the periodontal 
pathology. Consequently, modulation of PMN activation might be a useful approach to 
periodontal therapy.

Keywords: neutrophils, lipopolysaccharide, Papillon–Lefèvre syndrome, chronic granulomatous disease, 
bystander damages, neTosis

inTRODUCTiOn

As in other mucosal infections, the host response to the bacteria in periodontitis is characterised by 
the mucosal efflux of PMNs (1–3). The PMNs influx into the crevice appears to be the first line of 
defence against plaque bacteria (4). The crevicular PMNs barely phagocytise (5–8), but abundantly 
form neutrophil extracellular traps (NETs) (4, 8). NETs are an innate immunity defence mechanism 
chiefly responsible for preventing the bacterial dissemination (9). They are extracellular web-like 
fibres generated by activated PMNs and are largely composed of nuclear constituents that disarm 
and kill bacteria extracellularly. NETs have a DNA backbone, but also contain many bactericidal 
substances, such as histones, human neutrophil elastase (NE), lysozyme, bactericidal permeability-
increasing protein, human peptidoglycan-recognition protein S, and other PMN proteins (9–12). 
NETs bind Gram-positive as well as Gram-negative bacteria, immobilise them, and thus prevent 
the colonisation of new host surfaces (9). However, NETs can also be triggered by non-infectious 
agents (9, 13), placental microparticles (13), and inorganic implants (14) and can be harmful for 
the host (15–22). The capability of NETs to prevent bacterial spreading or to cause bystander dam-
ages makes it difficult to comprehend the role of NETs in periodontitis and their impact on the 
periodontitis pathology also remains elusive.
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FigURe 2 | Schematic illustration of exaggerated NETosis in periodontitis. 
LPS, lipopolysaccharide; PMNs, polymorphonuclear neutrophil leukocytes; 
PAMPs, pathogen-associated molecular pattern; DAMPs,  
damage-associated molecular patterns.

FigURe 1 | Schematic illustration of impaired NETosis in periodontitis. 
ELANE, the gene encoding neutrophil elastase; NETs, neutrophil extracellular 
traps; NE, neutrophil elastase.
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Are neTs Beneficial for Periodontal 
Health?
Analysing the co-occurrence of periodontitis in patients with 
both known PMN and NETosis deficiencies may help understand 
the NET impact of NETs on periodontitis.

Papillon–Lefèvre syndrome (PLS) is an autosomal recessive 
disorder characterised by palmoplantar keratosis and aggres-
sive periodontitis. PLS results from mutations that inactivate 
cysteine protease cathepsin C (23), which processes various 
serine proteases including NE, which is an integral structural 
part of NETs (24, 25). Patients with PLS are either unable to 
form NETs or produced them in markedly reduced quantities 
(26, 27). Likewise, inhibitors of NE proteolytic activity, such as 
small β-lactam-based, cell-permeable NE inhibitors, block the 
NET release in neutrophils derived from healthy volunteers 
(25). In addition, the exogenous human secretory leucocyte 
protease inhibitor markedly inhibits NET formation in human 
neutrophils (28). The concomitance of aggressive periodontitis 
and the inability to form NETs suggest the indispensability of 
NETs for maintaining periodontal health (Figure 1A). Similarly, 
mutations in ELANE gene encoding NE are associated with 
aggressive periodontitis in the majority of patients with such 
mutations (29). Quite recently, the inability to form NETs has 
been reported for ELANE mutations (30).

Chronic granulomatous disease (CGD) is a rare primary 
immunodeficiency affecting the innate immune system, caused 
by mutations in any one of four genes encoding the subunits of 
the superoxide generating phagocyte NADPH oxidase, resulting 
in an absence or very low levels of enzyme activity (31). However, 
periodontitis appears to be occasional in CGD patients. Only 
isolated cases of periodontitis have been reported in CGD 
patients (32–34). A survey on 368 CGD patients reported 
merely nine cases of gingivitis or periodontitis (35). Individuals 
with inherited deficient NADPH oxidase activity, i.e., CGD 
patients, are capable of inducing NETosis via a NADPH oxidase-
independent pathway; either via an ROS-dependent mechanism 
utilising ROS from other sources (36) or an ROS-independent 
mechanism (37). Many trigger mechanisms could be responsi-
ble for NADPH oxidase-independent NETosis in CGD patients. 

Thus, NADPH-oxidase-independent NETosis is stimulated by 
higher doses of hepoxilin A3 (38). Another possibility of CGD 
PMNs to produce NETs in the crevice is to utilise mitochon-
drial ROS (39), or other sources, e.g., ROS produced by plaque 
bacteria as Streptococcus sanguinis and Streptococcus oralis (40, 
41). Further, Candida albicans (42) triggers ROS-independent 
NETosis as well as Staphylococcus aureus ROS-independent 
(43) and oxidant-independent NETosis (44). The fact that CGD 
patients are not disposed to periodontitis suggests that the oxi-
dative burst does not appear to play a crucial role in maintaining 
the periodontal health, but NETs constitute the main defence. 
The main function of NETs appears to be that of shielding the 
gingiva and clearing bacteria, and their metabolic products, out 
of the crevice.

The ability of the major periodontal pathogens, i.e., those of 
red and orange complex, to produce deoxyribonucleases (45) 
suggests the importance of NETs for the host defence. It has been 
shown that extracellular nucleases enable periodontal pathogens 
to degrade the host NETs, leading to increased pathogenicity (46) 
(Figure 1B). Although the bacterial nucleases do not affect the 
NET proteases, the latter alone are not able to provide sufficient 
protection against periodontal pathogens.

The inability of patients with PLS and most of those with 
ELANE mutations to form NETs is concomitant with aggressive 
periodontitis. The ability of CGD patients to form oxidase-
independent NETs is a possible explanation for the rarity of 
periodontitis in these patients. The most aggressive periodontal 
pathogens produce DNases to degrade NETs. In sum, the NET 
deficiency paired with aggressive periodontitis indicates the 
indispensability of NET for maintaining the periodontal health.

Can neTs Be Harmful in Periodontitis?
The lipopolysaccharide (LPS) component of the cell wall of Gram-
negative bacteria is an important pathogen-associated molecular 
pattern (PAMP) that triggers an innate immune response mainly 
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through the activation of the toll-like receptor 4. LPS is a potent 
inducer of NETs (9). The supernatant of dental plaque also trig-
gers NETosis (47). Even elevated blood plasma LPS levels have 
been registered in aggressive periodontitis (48) (Figure 2A). A 
LPS injection into the gingival tissues is a model for examining 
how the innate immune response to this bacterial component 
induces experimental periodontitis (49, 50). Histopathologically, 
this model is similar to other periodontitis models and to the 
periodontitis in humans, characterised by increased infiltration of 
leucocytes, higher levels of pro-inflammatory cytokines, collagen 
degradation, and alveolar bone resorption. Typically, a defined 
amount of purified bacterial LPS suspended into small micro-
volumes (1–6 µl) is injected into the gingival tissues surrounding 
the posterior teeth of either mice or rats (51). LPS and other 
plaque PAMPs as well as damage-associated molecular patterns 
(DAMPs) activate the endothelial cells (ECs), due to the insignifi-
cant distance between high endothelial venules (HEVs) and the 
crevice (52, 53). Alveolar bone loss has been induced by injections 
of LPS from various microorganisms, including Escherichia coli, 
Aggregatibacter actinomycetemcomitans, and Salmonella typh-
imurium (51). LPS-activated ECs become leaky, as shown in the 
acute lung injury (54), and trigger PMN transmigration. After 
transmigration across the HEVs, PMNs are attracted to the crevice 
by PAMPs and DAMPs. LPS-stimulated PMNs selectively secrete 
IL8, MIP1β, and TNFα (55), which maintain EC activation. Thus, 
a vicious circle of PMN/HEV mutual paracrine activation may 
yield an exaggerated PMN response damaging the periodontal 
tissues. Unquestionably, the LPS effect is not restricted to HEV 
and PMN activations but affects the entire immunity. Thus, 
PMN infiltration of gingiva, PMN influx into the crevice, and 
subsequent NETosis is a crucial feature of periodontitis, which 
is an exaggerated response to the non-infectious LPS challenge. 
Nonetheless, PMN efflux cannot be separated from the capillaries 
and neither can NETosis from the PMN activation, as NETs are 
just a developmental stage of PMNs. The lack of resolution signals 
warrants the periodontal inflammation (56). The systemic effects 
of NETs in periodontal disease may contribute to the body’s over-
all inflammatory burden, worsening conditions such as diabetes 
mellitus, obstructive pulmonary disease, and atherosclerosis 
(56–60). Further, periodontitis-derived citrullinated histones (8, 
61) may trigger autoimmunity, especially in rheumatoid arthritis.

what Underlies neT Dysregulation in 
Periodontitis?
Genetic predispositions appear to be crucial for both the onset 
and the progression of periodontitis (62, 63). Chronic periodon-
titis occurs when untreated gingivitis progresses to the loss of the 
gingiva, bone, and ligament, which creates the deep periodontal 
“pockets” that are a hallmark of the disease (63). The pocket 
extends the evacuation route of the crevicular fluid, which is 
the blood ultra-filtrate continuously secreted in the periodontal 
crevice (64). NETs form a three-dimensional network entangling 
the particles within the crevice, notably disseminated bacteria, 
desquamated epithelial cells, cell debris, and fragments of biofilm 
matrix (4). This network is flushed out by the crevicular fluid 
outflow. Concomitantly with deepening the periodontal pocket, 

morphological changes of the pocket epithelium take place, 
primarily the inflammatory papillary hyperplasia. As a result, 
many narrow chasms between the papillae are formed, they are 
filled with partially and completely exfoliated epithelial cells, 
which cannot be efficiently flushed out by the crevicular fluid 
outflow (65), i.e., the pocket obstructs the evacuation of PAMPs 
and DAMPs out of the crevice (Figure 2B). The exaggerated NET 
formation causes viscosity rise (66, 67) of crevicular fluid and as 
a result obstruction of PAMP and DAMP evacuation. Further, 
NET formation is directly induced by many oral bacteria from 
the dental plaque (41, 47, 68, 69), neutrophil pro-inflammatory 
chemokines (9, 13, 70), and neutrophil-produced ROS (24). After 
surgery (71, 72), healing is achieved through the formation of a 
long junctional epithelium or a new connective tissue attachment 
to the previously diseased root surface, i.e., through removing 
the pocket obstruction of the PAMP and DAPM clearing. Thus, 
periodontitis occurs, given genetic susceptibility (62, 63), as 
consequence of the exaggerated host response to PAMP and 
DAPM, as the case of experimental LPS-induced periodontitis 
is (Figure 2C). This self-perpetuating periodontal inflammation 
has many common characteristics with the chronic obstructive 
pulmonary disease. Both diseases are characterised by heavy 
PMN infiltration and NETosis (73, 74), obstruction of PAMP, and 
DAMP evacuation and aggravation through smoking, as cigarette 
smoke induces NETs (75).

In cases with exaggerated production of NETs, modulation 
of PMN activation and NET triggering might be a helpful 
approach for periodontitis treatment. A broad spectrum of 
antioxidative substances such as flavonoids, vitamin C, 5-ami-
nosalicylic acid, and N-acetyl-l-cysteine significantly inhibit 
the formation of ROS-dependent NETs (76). In addition, LPS 
effects can be reduced by gallic acid and thereby also NETosis 
(77). In view of the fact that some of these substances are 
innoxious, they might be applied topically, e.g., as dentifrice 
or in cases of exacerbations instilled into periodontal pockets. 
Indeed, further investigations are needed to estimate such 
possibilities.

COnCLUSiOn

The inability of patients with PLS and most of those with ELANE 
mutations to form NETs indicates the role of NETs for maintain-
ing periodontal health. The periodontal pocket formation causes 
clearance obstruction of PAMPs and DAMPs. The sustained 
PAMP and DAMP challenge triggers the exaggerated NETosis, 
which causes bystander damages and the disease progress. Once 
formed, the periodontal pocket boosts the progress of peri-
odontitis. Modulation of exaggerated NET production by topical 
application of NET inhibitors might be a possible approach for 
prevention and treatment of periodontitis.
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