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Bruton’s tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell 
receptor signaling in the development and functioning of adaptive immunity. Growing 
evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune 
system, especially in dendritic cells and macrophages. For example, BTK has been 
shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular 
maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK 
was additionally identified as a direct regulator of a key innate inflammatory machinery, 
the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more 
thorough basic understanding of the human innate immune system but also as a target 
to therapeutically modulate innate immunity. We here review the latest developments 
on the role of BTK in mononuclear innate immune cells in mouse versus man, with 
specific emphasis on the sensing of infectious agents and the induction of inflammation. 
Therapeutic implications for modulating innate immunity and critical open questions are 
also discussed.

Keywords: Bruton’s tyrosine kinase, macrophage, dendritic cell, Toll-like receptor, nLRP3 inflammasome, 
ibrutinib, X-linked agammaglobulinemia

inTRODUCTiOn

Since the first description of X-linked agammaglobulinemia (XLA, OMIM entry 300300) (1) and 
the identification of Bruton’s tyrosine kinase (BTK) as its genetic cause (2), BTK has been widely 
characterized as a critical mediator of B cell receptor (BCR) signaling and thus adaptive immunity 
(3). In the murine Btk-mutated (R28C) X-linked immunodeficiency (Xid) mutant strain CBA/N (4) 
B cell numbers and functionality are reduced but detectable [e.g., unaffected B-1b cell levels (5)].  
In contrast, in humans BTK’s pivotal role is highlighted by the fact that a wide spectrum of BTK 
loss-of-function mutations [reviewed by Ref. (6) and documented in the ‘BTKbase’ database] 
lead to an almost complete absence of peripheral B cells and antibodies in XLA. BTK catalytic 
activity typically drives the activation of at least three key signaling pathways, phospholipase C, 
phosphatidalyinositol-3-kinase/Akt and NF-κB, giving B cells a very strong survival signal upon 
BCR engagement. Totaling a molecular weight of approximately 77 kDa, BTK also contains an 
N-terminal Pleckstrin homology domain that binds membrane phosphatidylinositol (3,4,5)- 
trisphosphate (PIP3), and Tec homology, Src homology (SH) 3, and SH2 domains involved in 
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FiGURe 1 | Overview of the different roles of Bruton’s tyrosine kinase (BTK) in innate immunity. Black boxes indicate major cellular processes for which an 
involvement of BTK has been reported in human or mice, or both. As outlined in the text, for processes such as phagocytosis there is contradictory evidence 
illustrating that the nature of function-modifying mutations, cellular context and species may have a profound effect on the role of BTK in a given process.
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protein-protein interactions. Y223 and Y551 represent two criti-
cal tyrosine phosphorylation sites in the SH3 and kinase domain 
(7). Y551 is phosphorylated by the kinases Syk or Lyn during 
BCR signaling and promotes the catalytic activity of BTK and 
subsequent Y223 autophosphorylation. The strong dependence 
of malignant B cells on BTK activity for survival (3), made BTK 
a key target for the development of small molecule inhibitors (8) 
in B cell malignancies. Nevertheless, BTK is being increasingly 
studied for its role in myeloid and other innate immune cells 
(Figure  1). Here, we summarize the emerging multi-faceted 
roles of this versatile and therapeutically tractable kinase in 
innate immunity.

BTK in inFeCTiOn AnD DAnGeR 
ReCOGniTiOn BY CeLL SURFACe 
ReCePTORS in innATe iMMUne CeLLS

Although innate immune contributions for BTK in in  vivo 
infection models with Btk gene knockout or Xid mice have to 
be interpreted with care (see below), a role for BTK/Btk in the  
sensing of multiple microbes has been reported: Sensing and 
antimicrobial responses to Listeria monocytogenes (9), Staphylo-
coccus aureus (10), dengue virus (11), and Aspergillus fumigatus 
(12) were shown to depend on BTK. This effect may in part be 

due to BTK’s involvement in the sensing of microbes via multiple 
Toll-like receptors (TLRs)—TLR2 (13, 14), TLR3 (11), TLR4  
(14, 15), TLR7/8 (14, 16, 17), and TLR9 (9, 17, 18) on human 
and mouse macrophages and dendritic cells (DC). However, some 
TLR studies, especially those involving XLA patients, have been 
contradictory with regard to specific TLRs requiring BTK (19). 
Potentially, the functional requirements for BTK function during 
B cell development are higher, leading to an XLA phenotype in 
a broader range of mutations and thus patients; conversely, it 
seems that for TLR signaling only certain BTK mutations may 
cause a significant impairment of signaling. Within the vast 
spectrum of BTK mutations reported in XLA patients the func-
tional impact can oftentimes not adequately be predicted. On a 
postreceptor level, BTK is thought to interface with canonical 
TLR pathways at the level of the TLR/MyD88 bridging adaptor 
Mal/TIRAP, one suggested direct BTK substrate (15, 20, 21) 
apart from TLR3 (11). TLR-dependent BTK-activation promotes 
NF-κB and interferon-regulatory factor-dependent transcrip-
tion of inflammatory cytokines and interferons (IFNs) (15, 17).  
BTK was also linked with the cytosolic nucleic acid sensor 
DDX41 (11) and promoted its cooperation with the important 
IFN response regulator STING. BTK also operates downstream 
of the myeloid receptor TREM-1 for cytokine production (22, 
23). On a more global immunoregulatory level, downregulation 
of innate immune-related genes and an upregulation of oxidative 
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FiGURe 2 | Bruton’s tyrosine kinase (BTK) regulation of the canonical NLRP3 
inflammasome. Upon an upstream signal potentially linked to membrane 
integrity or K+ efflux, BTK is phosphorylated at Y551, presumably by Syk, and 
subsequently is activated. The supposed phosphorylation of ASC promotes 
inflammasome assembly and caspase-1 autoproteolytic activation leading to 
the cleavage and secretion of mature IL-1β. Whether BTK also plays a role in 
the alternative NLRP3 inflammasome dependent on caspase-11 remains to 
be investigated.
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phosphorylation and apoptosis-related genes was observed in 
XLA patients (24). In contrast to these proimmune innate func-
tions of BTK, the kinase was also shown to negatively regulate 
TLR-induced cytokine release from primary human innate 
immune cells (25). Moreover, in other DC studies, hepatocyte 
growth factor (HGF) as well as T  cell Ig and mucin protein-3 
(TIM-3)-induced BTK function blocked NF-κB activity (26, 27).  
In phagocytosis BTK was found essential for the clearance of 
infectious agents by mouse macrophages (12, 28); for humans, 
both data supporting a requirement for BTK in phagocytosis 
(24, 29, 30) as well as data arguing for a redundant role of BTK 
in this process (19, 31) have been reported based on studies of 
cells from XLA patients. Off-target effects in studies involving  
BTK inhibitors and the aforementioned unpredictability of nat-
urally occurring BTK mutations or gene alterations1 are likely 
to contribute to these controversial findings. The breadth of 
this multifaceted body of evidence certainly highlights the 
complexity of BTK function and regulation. Specific mutation 
site, receptor pathway, cell type and species are thus important 
factors, rendering the more systematic exploration of BTK’s role 
in innate immunity a formidable challenge.

BTK in THe MATURATiOn, 
ReCRUiTMenT AnD FUnCTiOn  
OF innATe iMMUne CeLLS

Given its role in B  cell development, a role for BTK in the 
development of myeloid cells, which depends on many cues 
provided by cell surface receptors (32), is not surprising. 
Interestingly, in mice GM-CSF receptor α-chain expression was 
required for macrophage maturation and survival. In mice, Btk 
deficiency also correlated with reduced monocyte/macrophage 
numbers (33) but favored granulopoiesis (34, 35). However, 
these granulocytes were immature, had inefficient granule func-
tion and impaired recruitment of neutrophils to sites of sterile 
inflammation. Similarly, in humans BTK seems to be implicated 
in the maturation of neutrophils, since in XLA patients, who are 
frequently neutropenic, neutrophils were arrested at the mye-
locyte/promyelocyte stage (36–38). Conversely, Marron et  al. 
(19) and Cavaliere et al. (31) suggested that BTK is dispensable 
for human neutrophil function; Honda et  al. (39) even found 
an increased TLR or tumor necrosis factor receptor-induced 
ROS production of XLA neutrophils, albeit at higher levels of 
neutrophil apoptosis. Although DC numbers in Btk-deficient 
animals were unaffected, these DC had defects in maturation 
and DC-mediated antigen presentation (40). In human DC, 
the aforementioned HGF- and TIM-3-induced BTK-mediated 
NF-κB inhibition impaired DC activation as well as maturation 
leading to impaired CpG-induced anti-tumor responses (26, 27).  

1 Gross deletion within the BTK genomic locus could affect not only expression and 
function of BTK itself but also that of adjacent genes like TIMM8A, the genetic 
cause of the Mohr-Tranebjærg syndrome (MTS, OMIM entry 304700), a neurode-
generative disorder leading to sensorineural deafness. Additionally, beside isolated 
BTK-deficiency (XLA OMIM entry 300300), patients were reported with growth 
hormone deficiency (GHD) associated with mutations within the BTK gene (XLH-
GHD, OMIM entry 307200). The reason for GHD in XLA remains obscure.

In tumor infiltrating macrophages BTK was found to exert immune-
inhibitory and tumor-promoting effects (41, 42). In contrast, 
inhibition of Btk activity promoted DC maturation and CD4+ 
T cell activating functions (43, 44). Together, these data suggest 
BTK may serve as an important target for immunomodulatory-
based anticancer therapy. The unexpected description of (so far) 
cancer-specific alternative isoforms, p65 and p80, in breast (45), 
brain (46), prostate (47), gastric (48), and colon cancer (49) as 
well as reports for a role of BTK in NK cells (50), and platelets 
(51) also deserve mention and warrant further research.

BTK AnD THe nLRP3 inFLAMMASOMe

The NLRP3 inflammasome, a multiprotein complex involving 
NLRP3, the adaptor ASC and the proteolytic enzyme, caspase-1, 
has recently emerged as a key molecular machinery for the pro-
cessing and thus activation of bioactive IL-1β (52, 53) and a major 
pathophysiological regulator in infection, myocardial infarction, 
stroke, Alzheimer’s and diabetes (53). Reports by us (10) and oth-
ers (54) recently identified BTK as a direct regulator in NLRP3 
inflammasome activation (Figure  2): Ito et  al. demonstrated 
that BTK was critically required for NLRP3 inflammasome-
dependent IL-1β release from murine macrophages. BTK physi-
cally interacted with NLRP3 and its adaptor ASC, resulting in 
the induction of ASC oligomerization and caspase-1 activation 
in a kinase activity-dependent manner in vitro. In both studies, 
BTK was rapidly phosphorylated upon NLRP3 activation. We 
additionally observed that inflammasome activity was impaired 
in PBMC from XLA patients, suggesting that a genetic inflam-
masome deficiency may contribute to the immunocompromised 
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XLA phenotype. Pharmacological BTK inhibitors in vivo affected 
S. aureus clearance in mice and IL-1β release in cancer patients, 
which was associated with a reduced ability of isolated PBMC 
to secrete IL-1β. Excessive IL-1β release in PBMC from Muckle-
Wells Syndrome MWS (OMIM entry 191900) patients could also 
be blocked by BTK inhibitors (10). In a brain ischemia/reperfu-
sion in vivo model Btk was activated in infiltrating macrophages/
neutrophils, and Btk inhibition protected against brain injury 
(54). In combination, these results warrant the exploration of BTK 
inhibition as a strategy to target the NLRP3 inflammasome thera-
peutically. Mechanistically, the emerging role of NRF2, a protein 
shown separately to interact with both BTK (55) and NLRP3 (56), 
will also be interesting to study further. Likewise, the observed 
link with caspase-11 (33) may indicate an additional role for BTK 
in the non-canonical NLRP3 inflammasome that depends on 
caspase-11 in mice and caspase-4/-5 in humans for intracellular 
LPS sensing (57)—a notion intriguing for further study.

THeRAPeUTiC OPPORTUniTieS  
in innATe iMMUniTY

Undoubtedly, the existence of and first clinical data for an FDA-
approved BTK inhibitor, ibrutinib (also known as PCI-32765), 
in oncology (8) make preclinical and translational research into 
BTK’s innate functions highly interesting, for example in arthritis 
(30), thromboinflammation (51), or in ischemic stroke, as afore-
mentioned (52, 54). Compared to other strategies proposed to 
target the pathologically relevant NLRP3 inflammasome/IL-1 
axis—for example, the inhibitor MCC950, whose target is how-
ever unknown (58), or IL-1 blockade which only neutralizes the 
inflammatory potential of certain inflammasome-dependent 
mediators—targeting NLRP3 via BTK is highly intriguing since 
BTK is a well-known (if incompletely understood) molecular 
target with inhibitors approved or in clinical trials. In cancer 
immunotherapies, first results on BTK inhibition modulating 
DC and subsequent CD4+ T cell activation (43) or upregulation 
of the inhibitory receptor TIM-3 on DCs are also noteworthy 
(59). On the other hand, targeting BTK with ibrutinib causes 
significant immunosuppression associated with an increased 
risk of infections (60) indicating that BTK dependent innate 
immunity is severely impaired (23). In addition, leukostasis as 
well as bleeding complications have been reported indicat-
ing that BTK inhibition by ibrutinib also affects leukocyte 
adhesion and platelet functions in a clinically relevant way  
(51, 61). Increased rates of atrial fibrillation (62) as a non-immune 
adverse event in patients receiving ibrutinib advises caution 
when exploring the novel opportunities of BTK blockade in 
various disease entities. Potentially, transient use of inhibi-
tors, e.g., only during phases of acute adverse inflammation  
(e.g., shortly after ischemic brain or heart injury), may never-
theless offer advantageous therapeutic windows in non-chronic 
diseases. Nonetheless, much further work will be required to 
safely harness the potential of BTK for treating additional innate 
immune-related disorders.

OPen QUeSTiOnS AnD OUTLOOK

Although much progress on deciphering the molecular function 
of BTK in various innate cell types has been made, specific BTK 
interactors and substrates in the different aforementioned pro-
cesses have to be studied more systematically as highlighted by 
the many apparent controversies. Additionally, whether BTK 
functions as a bona fide kinase or more as a scaffold protein 
requires clarification, e.g., in the NLRP3 inflammasome pro-
cess. In cell lines, well-characterized loss and gain of function 
mutants of BTK may be useful tools (22). Conditional and/or 
inducible gain- or loss-of-function mouse alleles, which sur-
prisingly have not been described, will be essential for innate 
immunologists to meaningfully study BTK further in vivo and 
to exclude confounding effects from impaired B cell function, 
e.g., in in  vivo infection studies. Furthermore, conditional 
alleles would help flesh out cell-specific and hematopoietic 
roles of BTK more precisely. The resulting in  vivo mouse 
models should complement urgently needed additional studies 
on human BTK that may help to solve some of the apparent 
discrepancies between human and murine studies and deci-
pher some of the profound complexity surrounding BTK. Such 
vital research could be done within ongoing studies in the 
cancer field or of ex vivo studies on biomaterial from healthy 
volunteers or XLA patients. Concomitant and standardized 
kinase and expression level assays conducted on XLA samples 
may help to gauge the penetrance and severity of naturally 
occurring variants better and, by incorporating these results, 
may allow drawing more generally valid conclusions from 
these patient studies.

In conclusion, BTK has emerged as a key node in many 
immunological signaling networks in innate immunity, some of 
which have profound therapeutic potential. Future efforts in both 
academia and industry may help to explore and subsequently 
harness the potential of this intriguing yet highly complex kinase 
for innate immunity. This may offer therapeutic opportunities 
comparable or potentially exceeding those already envisaged for 
oncology.
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