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The association of autoimmune diseases with HLA has been known for many decades. To date, 
however, the underlying mechanisms have not been fully understood.

The recently introduced genome-wide association studies (GWAS) have suggested that several 
genes converging in common pathways contribute to the genetic susceptibility in such disorders. 
Nevertheless, for most autoimmune/autoinflammatory diseases, the HLA genes are by far the strong-
est risk factors. The basis of some associations has now been elucidated, particularly in those cases 
in which exogenous factors are involved.

DiSEASES inVOLVinG AnTi-SELF-REACTiViTY TRiGGERED BY 
KnOWn EXOGEnOUS FACTORS

Celiac disease (CD) is a complex disorder of the small intestine with a strong genetic component, 
which is caused by an inappropriate immune response to ingested wheat gluten. Gluten peptides are 
modified by the enzyme transglutaminase and loaded into the groove of specific DQ2 molecules. This 
event triggers a TCR-mediated cytokine cascade causing the pathology. In 95% of cases, the “guilty” 
molecule is the DQ2, whereas in the remaining 5%, the gluten-derived peptides are presented by the 
DQ8 molecules (1–3).

The hypersensitivity to beryllium induces the chronic beryllium disease (CBD), another disorder 
in which the association with a specific polymorphic amino acid, Glu69, in the HLA-DP beta chain 
is well established. The presence of Glu69, together with a negatively charged amino acid at P4 of the 
peptide and two other negatively charged amino acids in the groove, allows the binding of beryllium 
to the HLA-DP molecules. This triggers a beryllium-specific polyclonal T cell response leading to 
inflammation and tissue damage (4–6).

Drug hypersensitivity could manifest in genetically predisposed subjects. An example is given by 
the anti-retroviral drug abacavir; this molecule can induce a hypersensitivity reaction in individuals 
positive for the HLA-B*5701 class I molecule. The mechanism has been disclosed, showing that 
abacavir settles into the F pocket of the HLA-B*5701 groove thus hampering the binding of the 
bulky tryptophan, the preferred C-terminal anchor for HLA-B*5701, which is thus substituted by 
either Ile or Leu. This changes the peptide repertoire by 25%, unleashing a strong, HLA-restricted 
and anti-self-polyclonal CD8+ T  cell response. The mechanism is highly specific and occurs in 
HLA-B*5701 but not in carriers of HLA-B*5702 or HLA-B*5703 alleles differing from B*5701 for 
three or two amino acids at positions 114, 116, and 156, respectively. These three positions have 
been shown to be relevant for the specificity of the F pocket as well as for the engagement of tapasin,  
a chaperon that binds the HLA-class I molecules in the ER (7, 8).

DiSEASES inVOLVinG An AnTi-SELF-REACTiViTY TRiGGERED 
BY UnDEFinED EnDOGEnOUS FACTORS

In other HLA-class II-associated autoimmune diseases, such as rheumatoid arthritis (RA) or type 
1 diabetes (T1D), the triggering antigens are unknown, but there is no reason to believe that the 
mechanisms are different. Indeed, almost the entire association of HLA with RA can be ascribed to 
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four HLA-DR amino acid positions (amino acids 11, 13, 71, and 
74 in the beta chain) in the groove of the HLA-DR molecules 
which points to antigen presentation as disease trigger (9).

In the case of T1D, the presence of Asp57 in the HLA-DQ 
beta chain is strongly protective suggesting that it hampers 
the binding of diabetogenic self-peptide(s) (10, 11). A more 
refined 4-digit analysis has established that position 57 in the 
HLA-DQβ1 by itself can explain 15.2% of the total phenotypic 
variance in T1D, increasing to 26.9% with the contribution of 
HLA-DRβ1 positions 13 and 71. The three positions together 
explained 90% of the phenotypic variance in the HLA-DRB1–
HLA-DQA1–HLA-DQB1 locus. These observations implicate, 
in addition to the pocket P9, the pocket P4 of the antigen-
binding groove in the presentation of diabetogenic peptides 
(11). GWAS analysis has shown that other genes are involved in 
the triggering of the disease, but they are by far less relevant than 
HLA. Although some antigens such as preproinsulin have been 
found to be targets of the T cells, this involves only a proportion 
of patients (12).

THE T CELL ViEWpOinT

One open question is the nature of the TCRs causing the 
pathogenic T  cell responses. In the case of CD, the T  cell 
response mimics an anti-self-recognition and, in the case of 
CBD, the subversion of the HLA-DP peptidome evokes a robust 
T  cell response. However, in the other cases, the role of the 
T cells and the nature of the TCRs are far from being defined. 
It is a common belief that the effector T  cell clones have to 
escape the thymic-negative selection. Therefore, they are likely 
to express low-affinity TCRs which need to be “woken up” by 
cross-reactive, presumably common pathogens, and/or by an 
inflammatory cascade (13). Although the existence of T regula-
tory cells is now well established, it is still hard to believe that 
the control of the autoreactivity depends entirely on such cells 
(14, 15). An alternative explanation is that novel “self ” antigens 
are formed by mechanisms such as those discussed above or by 
post-transcriptional modifications.

HLA-CLASS i-MEDiATED DiSEASES

It is interesting to note that the association of some diseases with 
HLA-class I has been regarded as an exception to the rule and, 
for each disease, specific mechanisms have been postulated. 
However, several observations point to a more unifying view.

Interestingly, position 116 in the F pocket of HLA-class I, 
which has been involved in the hypersensitivity to abacavir, 
plays also a pivotal role in the association of HLA-B*27 with 
ankylosing spondylitis (AS). In this case, the HLA-B*27 subtypes 
associated with AS possess an Asp at position 116, replaced in the 
non-disease predisposing alleles by a different amino acid (Tyr 
in B*2706 and His in B*2709). HLA-B*2707, whose association 
with AS appears less robust, has also a Tyr at position 116 that, 
however, comes together with another constellation of poly-
morphic residues (16–18). Actually, the F pocket of these HLA 
molecules is relevant for peptide accommodation and influences 

the flexibility of the entire molecule and the surface area seen by 
the TCR (19).

It is tempting to speculate that, as in the case of abacavir or 
beryllium, small molecules could intrude into the pocket and 
dramatically change the peptide repertoire from “self ” to “non-
self.” This would make pointless the effort to single out specific 
pathogenic peptide(s).

The crucial role of the antigen presentation in the onset of 
disease is also indicated by the observation that at least three 
HLA-class I-associated diseases, AS, Behçet, and psoriasis (Ps), 
associated with HLA-B*27, HLA-B*51, and HLA-C*06, respec-
tively, share an association with ERAP1. This is an aminopeptidase 
of the ER which shapes the peptide repertoire of the HLA class 
I molecules. Interestingly, the association only occurs in patients 
possessing the susceptible HLA class I allele, demonstrating an 
epistatic interaction between the two genes (20, 21).

Even more intriguing is the observation that HLA-B*27, HLA-
B*51, and HLA-C*06 together with HLA-B*5701 are the strong-
est protective alleles toward HIV infection (22, 23). It has been 
observed that some of the immunodominant peptides presented 
by these alleles are less prone to mutations because of structural 
and functional constraints. As an example, HLA-B27-positive 
individuals show a reactivity against the immunodominant 
epitope (KK10 epitope) of the HIV p24/Gag. Viral escape in this 
case implies the loss of the P2 anchor. However, this mutation is 
not structurally acceptable for the virus unless a second muta-
tion within the same epitope does occur, an extremely unlikely 
event (24). It is also possible that a broader polyfunctionality and 
a higher functional avidity of the virus-specific cytotoxic CD8 
T cells restricted for these alleles, allow to mount a wide and effec-
tive response, that is eventually redirected against “self ” antigens. 
Indeed, at least in the case of HLA-B*27, the protection extends 
to hepatitis C virus as well (25).

Another disease strongly associated with HLA-class I is the 
Birdshot Chorioretinopathy, a rare form of posterior uveitis, in 
which 85–97.5% of patients are HLA-A*29 positive. The disease 
shows an association with ERAP2, another ER aminopeptidase 
involved in peptide trimming (26). ERAP2 also associates with 
AS in both HLA-B*27-positive and -negative patients (27) and to 
Ps (28), reinforcing the idea that the shaping of the peptide rep-
ertoire is crucial for these diseases to occur, even in the absence 
of the “legitimate” HLA molecule.

An EVOLUTiOnARY GLAnCE

It is also possible, although difficult to demonstrate, that these 
“special” HLA-class I alleles have been selected in the course of 
evolution by devastating epidemics. In this context, it is inter-
esting to note the uneven distribution of some of these alleles 
and the associated diseases. For instance, HLA-B*51 frequency 
varies along a path reminiscent of the silk road (29, 30), or the 
positive correlation between the distance from the equator and 
the prevalence of Ps (31) as well as the distribution of HLA-B*27 
along a north to south gradient (32, 33). Interestingly, this cor-
relates also with the strength of association raising a neglected 
but relevant question: how much the HLA-associated diseases do 
share with the same disorders lacking the relevant HLA alleles? 
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TABLE 1 | HLA-class I and -class II-associated diseases and key polymorphic positions.

Disease HLA-associated allele position Amino acid pocket Reference

Ankylosing spondylitis HLA-B*27 116 Asp F (16)
Psoriasis HLA-C*06 156 Trp F (28)
Chronic beryllium disease HLA-DPB1 69 Glu P4 (4)
Rheumatoid arthritis HLA-DRB1 11, 13, 71, 74 Val, His, Lys, Ala P4 (9)
Celiac disease HLA-DQB1 71 Lys P4 (34)
Type 1 diabetes HLA-DQB1 57 Non-Asp P9 (35)
Multiple sclerosis HLA-DRB1*1501 71, 74, 57 Ala, Ala, Asp P9 (36)
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Family studies on the inheritance of these non-canonical forms 
of the disease could be helpful but the genetics of these cohorts is 
hampered by the low number of subjects and by the heterogeneity 
of the diseases.

nEW iDEAS FROM RECEnT FinDinGS

Hence, we propose here that the association between HLA-class 
I and HLA-class II with diseases is based on similar mechanisms 
and can be regarded as a unicum. In some diseases such as gluten 
intolerance, a specific antigen has the strength to activate a robust 
T cell response, in some others such as CBD or abacavir hyper-
sensitivity, small molecules can dramatically interfere with the 
peptide repertoire thus sensitizing “dormant” T cell clones and 
unleashing an inflammatory cascade (Table 1).

The latter model is applicable also to other diseases such as AS 
where a couple of residues in the F pocket make the difference and 
for which many efforts have not produced a definitive explana-
tion so far. This model could possibly account also for the tissue 
specificity observed in some diseases, if one speculates that the 
triggering molecules, which could be as small as a metal ion, are 
more abundant in some tissues as observed in the case of CBD. 
Of note, there are some HLA alleles which confer susceptibility 
to different diseases such as in the case of DQB1*0201 which 
has been found associated with up to eight distinct diseases with 
different target tissues (37). In this context, there might be cases 
where unpredictable, newly generated epitopes can be expressed 
in a tissue-specific manner. It has been shown that the protea-
some, which is the factory for HLA-class I epitopes, can generate 
peptides that are spliced together from two different fragments 
of the same protein and that this pool accounts for one-fourth 
of the entire immunopeptidome. This event can happen in a 
tissue-specific manner and generate novel epitopes. This unique 
set of antigens are therefore excellent candidates as triggers for 
autoimmunity (38).

RNA modifications such as RNA editing can yield new 
epitopes by inducing post-transcriptional modifications of the 
RNA sequence (39). It has also been shown that even short RNAs, 
i.e., circular RNAs, which were thought to have a regulatory role, 
can indeed be translated and become the source of new epitopes 
(40). In addition, defective ribosomal products (DRiPs) are con-
tinuously produced under stress conditions and they have been 
shown to be processed and presented (41).

All these mechanisms can, in particular conditions and in a 
tissue-specific manner, generate altered self that can unleash a 

T  cell response. In this context, a recent study showed that in 
T1D, the DRiPs translated from a reading-frame shifted sequence 
in insulin mRNA, can generate new epitopes, which can bind the 
susceptible HLA-DQ8 molecules (42). These epitopes are ignored 
by the immune system because produced under particular condi-
tions and can therefore induce a specific T cell response. Most 
intriguingly, this same epitope has been shown to contextually 
bind the HLA-A2 class I molecules and therefore trigger a cyto-
toxic T  cell response against the insulin-producing pancreatic 
beta cells in the HLA-A2-positive individuals (42). In support of 
these observations, GWAS have shown independent associations 
of several autoimmune diseases with both HLA-class I and HLA-
class II regions.

Remarkably, new findings have now been published 
demonstrating that CD4 and CD8 T  cells from patients with 
Parkinson’s disease recognize α-synuclein peptides displayed by 
both HLA-class II and class I molecules, respectively. Similar 
to other autoimmune diseases, only a fraction of Parkinson’s 
patients responds to the same peptides leaving room for still 
unknown antigens. Of note, the presenting HLA-class II alleles 
had been previously described as weakly associated with the 
disease (43). This indicates that autoimmune mechanisms can 
extend to many different diseases, even in the absence of a robust 
HLA association.

In conclusion, to disentangle the immunopathogenesis of 
autoimmune diseases, we probably need to look at metabolic 
pathways that can broaden the spectrum of epitopes rather 
than evoking overturnings in the homeostasis of the immune 
responses. Newly generated epitopes eventually produced by 
stressed cells or the subversion of the peptidome by small mol-
ecules can unleash an everlasting anti-self T cell response.
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