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Leishmaniasis encompasses a group of diseases caused by protozoan parasites 
belonging to the genus Leishmania. These diseases range from life threatening visceral 
forms to self-healing cutaneous lesions, and each disease manifestations can progress 
to complications involving dissemination of parasites to skin or mucosal tissue. A feature 
of leishmaniasis is the key role host immune responses play in disease outcome. T cells 
are critical for controlling parasite growth. However, they can also contribute to disease 
onset and progression. For example, potent regulatory T cell responses can develop that 
suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can 
be generated that cause damage to host tissues. There is no licensed human vaccine and 
drug treatment options are often limited and problematic. Hence, there is an urgent need 
for new strategies to improve the efficacy of current vaccine candidates and/or enhance 
both antiparasitic drug effectiveness and subsequent immunity in treated individuals. 
Here, we describe our current understanding about host immune responses contributing 
to disease protection and progression in the various forms of leishmaniasis. We also 
discuss how this knowledge may be used to develop new strategies for host-directed 
immune therapy to prevent or treat leishmaniasis. Given the major advances made in 
immune therapy in the cancer and autoimmune fields in recent years, there are significant 
opportunities to ride on the back of these successes in the infectious disease domain. 
Conversely, the rapid progress in our understanding about host immune responses 
during leishmaniasis is also providing opportunities to develop novel immunotherapy 
strategies that could have broad applications in diseases characterized by inflammation 
or immune dysfunction.
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LeiSHMANiASiS

Leishmaniasis describes a collection of neglected tropical diseases caused by protozoan parasites 
of the genus Leishmania that are transmitted by female Phlebotomine sand flies (1). It largely 
affects the poorest populations living in developing countries and is prevalent throughout the 
tropical and subtropical regions of Africa, Asia, the Mediterranean, Southern Europe, and South 
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and Central America. Globally, 350 million people are at risk 
of developing leishmaniasis and 1.5–2 million new cases occur 
annually (2). The clinical spectrum of leishmaniasis ranges 
from the life-threatening visceral form to self-healing cutane-
ous lesions or a more serious mucosal manifestation.

Visceral leishmaniasis (VL), also known as kala-azar, typi-
cally involves long-term, low-grade fever, enlarged spleen and 
liver, weight loss, pancytopenia, and hypergammaglobulinemia 
[reviewed in Ref. (3)]. Untreated VL cases are almost always 
fatal, and more than 90% of cases occur in India, Bangladesh, 
Nepal, Sudan, Ethiopia, and Brazil with an estimated incidence 
of at least 500,000 new cases and 50,000 deaths each year (2–4). 
Of note, the state of Bihar in north east India has been the 
focus of most VL cases for many years (5), but recent efforts 
toward elimination, and civil unrest in Southern Sudan, have 
now made the latter region the source of most cases (6).  
Post kala-azar dermal leishmaniasis (PKDL), which can be a 
late cutaneous manifestation of VL, either following drug treat-
ment or sometimes independent of VL development, is con-
fined to the Indian subcontinent [India, Nepal and Bangladesh,  
and East Africa (Sudan)]. It presents as an accumulation of 
heavily infected macrophages in the skin (7–9), which appear 
as nodules, papules, or hypopigmented macules. PKDL can 
appear from 6  months to years after apparent VL cure in 
the Indian subcontinent, but can also occur earlier (within 
6 months) or along with VL in the Sudan, where the incidence 
of this disease is higher. PKDL heals spontaneously in a pro-
portion of cases in Africa, but rarely in Indian VL patients and 
requires prolonged treatment. Since PKDL patients harbor 
increased parasite numbers in their skin, they are thought to 
act as parasite reservoir and play an important role in disease 
transmission in endemic regions. As such, they may be an 
important population to target with effective host-directed  
immunotherapies.

Cutaneous leishmaniasis (CL) is characterized by the 
development of ulcerative skin lesions containing parasites 
and is the most common form of disease occurring mainly in 
Afghanistan, Algeria, Brazil, Colombia, the Islamic Republic of 
Iran, Pakistan, Peru, Saudi Arabia, and Syria (2, 10). Cutaneous 
lesions are generally localized and may persist for months to 
years or heal spontaneously within weeks. The development of 
disfiguring scars at the affected skin areas following healing is a 
major concern.

Mucocutaneous leishmaniasis (MCL) is prevalent in Boli-
via, Brazil, Peru, and Ethiopia (WHO, 2014) and is caused by 
L. baziliensis, L. panamensis, and L. aethiopica. These species 
metastasize to mucosal tissue in the mouth and upper respiratory 
tract, leading to localized tissue destruction. MCL can present 
from several months to years after the development of a cutane-
ous lesion. Diffused cutaneous leishmaniasis (DCL), which is 
more common in central and South America, is thought to occur 
in immunosuppressed individuals, where parasites can readily 
disseminate to subcutaneous tissue. As both MCL and DCL are 
associated with strong and weak host inflammatory responses, 
respectively, which appear to contribute to disease pathology, 
they also have potential for improved treatment involving host-
directed immune therapy.

iMMUNOLOGiCAL CHARACTeRiSTiCS  
OF DiSeASe

visceral Leishmaniasis
Studies in experimental VL in mice, caused by infection with 
the human parasites L. donovani or L. infantum, show the 
development of antiparasitic IFNγ-producing, Tbet+ CD4+ T 
(Th1) cells is critical for resistance against infection (11). Many 
VL patients fail to generate potent cell-mediated immune 
responses against parasite antigens and this is thought to be an 
underlying cause of disease. However, enhanced IFNγ mRNA 
expression in the spleen and bone marrow, as well as increased 
circulatory plasma IFNγ, TNF and IL-12 in VL patients, 
suggests that they do not lack a protective Th1 response, but 
instead, immunosuppressive mechanism are established to 
prevent parasite killing (12–15). Importantly, antigen-specific 
responses in whole blood assays indicate that VL patient CD4+ 
T cells have the capacity to produce IFNγ in response to para-
site antigen (16–18). Therefore, attention has now focused on 
regulatory mechanisms that prevent Th1 cell-mediated control 
of parasite growth.

CD4+ T cell IL-10 production has emerged as an important 
mechanism to dampen T  cell activation in parasitic infec-
tions, including in humans with VL (15, 19, 20). Importantly, 
most T cell-derived IL-10 is not produced by thymus-derived 
Foxp3-expressing regulatory T (Treg) cells. Instead, the IL-10 
producing CD4+ T cells often co-produce IFNγ and have been 
designated type 1 regulatory (Tr1) cells (15). They are increas-
ingly recognized as a critical regulatory CD4+ T  cell subset 
that protects tissue from inflammation (21–23). However, Tr1 
cells also appear to promote infection by suppressing Th1 cell-
mediated immunity. The role of IL-10 in immune suppression 
and disease progression is well documented in both experimen-
tal and human VL (15, 24–28). Human VL is associated with 
enhanced IL-10 plasma levels, increased IL-10 mRNA expres-
sion in lymph nodes, bone marrow, and spleen, and readily 
detected IL-10 produced by whole blood cells from VL patients 
following parasite antigen stimulation (15, 28). IL-10 dampens 
major histocompatibility complex (MHC) class II expression on 
APC and downregulates TNF and nitric oxide (NO) production, 
leading to reduced parasite clearance and suppressed activation 
of Th1 cells (29). Neutralization of IL-10 in VL patient sera can 
suppress L. donovani replication in macrophages (15, 30), and 
IL-10 blockade in splenic aspirate cultures from VL patients 
can limit parasite replication and enhance Th1  cell cytokine 
production (24). IL-10 can also modulate immune responses by 
promoting T cell exhaustion (31, 32).

A number of immune checkpoint molecules have also been 
identified on CD4+ T cells from experimental VL models and VL 
patients (Table  1). These include CTLA-4 (CD152) and PD-1, 
which are negative regulators of T  cells and are expressed on 
exhausted or anergic T cells during chronic infection. CTLA-4 
binds to the costimulatory ligands B7-1 (CD80) and B7-2 (CD86), 
with much higher affinity than CD28, while PD-1 interacts with 
PD-1 ligand 1 (PD-L1; B7.H1) and PD-L2. Activation of CTLA-4 
leads to increased levels of TGFβ, as well as apoptosis of CD4+ 
T  cells in murine VL (33). In mice infected with L. donovani, 
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TAbLe 1 | Immune checkpoint molecules tested for therapeutic effects in leishmaniasis.

Disease biological system Reference

visceral 
leishmaniasis

Cutaneous 
leishmaniasis

Diffused cutaneous 
leishmaniasis

Mucocutaneous 
leishmaniasis

Human Preclinical

IL-10 Y Y Y Y (15, 24, 26, 27, 41–45)
PD-1 Y Y Y Y Y (38, 40, 46–50)
PDL-1/2 Y (49)
CTLA-4 Y Y Y (34–37, 51, 52)
OX40 Y Y Y (37, 53, 54)
CD40 Y Y Y (36, 55–57)
CD28 Y Y (36)
CD80/86 Y Y (58–61)
ICOS Y Y (62)

Y, indicates immune checkpoint molecule tested in the disease indicated.
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CTLA-4 blockade decreased parasite burden in both liver and 
spleen, associated with increased frequencies of IFNγ and IL-4 
producing cells, and an accelerated hepatic granulomatous 
response (34, 35). CTLA-4 blockade has also been shown to 
increase the efficiency of chemotherapy in L. donovani infected 
mice (36, 37). Similarly, blockade of PD-1 or PD-L1 resulted in 
enhanced parasite clearance and increased pro-inflammatory 
cytokine production in experimental VL (38–40). Thus, these 
studies clearly show the therapeutic potential of targeting immune 
checkpoint molecules for host-directed immune therapy in VL.

Another important regulatory cytokine involved in VL 
is IL-27, which is composed of the EBI-3 and p28 sub-units. 
IL-27 belongs to IL-6/12 cytokine family and was originally 
described as a co-factor for Th1  cell differentiation, along 
with IL-12 (63, 64). IL-27 promotes T  cell IL-10 production 
in mice, which is further amplified by autocrine IL-21 pro-
duction (65, 66). IL-27 receptor-deficient mice infected with 
L. donovani developed enhanced Th1 responses, but this was 
associated with severe liver pathology (67). Patients with active 
VL also presented with enhanced IL-27 plasma levels, as well 
as increased mRNA transcripts encoding EBI-3 and p28 in 
splenic aspirates (28). IL-27 produced by CD14+ cells, along 
with IL-21 from T  cell sources, promoted the differentiation 
and expansion of Ag-specific, IL-10–producing T cells in VL 
patients. Importantly, pro-inflammatory cytokines, such as 
IFNγ, act on macrophages and stimulate IL-27 production, sug-
gesting a feedback mechanism to stimulate IL-10 production 
to control IFNγ levels and protect host tissue. IL-27 has also 
been associated with suppression of CD4+ T  cell IL-17A and 
IL-22 secretion (68, 69). Since L. donovani antigen-stimulated 
production of both IL-17A and IL-22 by PBMC in an apparent 
disease-resistant Sudanese population, these cytokines were 
proposed to be protective following L. donovani infection and, 
therefore, elevated IL-27 in VL patients might not only promote 
disease by increasing IL-10 production, but also by regulating 
IL-17 production (70). Studies with Indian VL patients showed 
low levels of IL-17A mRNA transcripts, as well as the IL-17-
related transcription factor RORγT during active disease (28). 
However, there was no direct evidence that this Th17 response 
was suppressed by IL-27. Furthermore, there is evidence from 
experimental VL that the impact of IL-17A may depend of the 
stage of infection, whereby this cytokine impedes antiparasitic 

immunity early (71), but is protective following establishment 
of infection (72). Hence, immune dysfunction in VL patients 
appears to involve multiple immune regulatory pathways that 
differ both spatially and temporally, and identifying which can 
be safely and effectively targeted for clinical advantage should 
be a major research priority.

Other immunosuppressive mechanisms established during 
VL may be mediated through regulatory T  cells. Regulatory 
T cells can be classified as thymus-derived CD4+CD25+FoxP3+ 
T (Treg) cells and inducible regulatory T  cells that include 
conventional T cells that convert to FoxP3+ regulatory T cells 
in peripheral tissues, as well as Tr1 cells (73, 74). To maintain 
immune homeostatic conditions, Treg cells limit the activity of 
potentially self-reactive T cell responses and prevent immune-
mediated pathology and autoimmunity (75, 76). However, these 
same mechanisms may also contribute to impaired pathogen 
clearance during parasitic infection. Treg cells function by 
secreting regulatory cytokines such IL-10 and TGFβ, as well 
as expressing inhibitory molecules such as CTLA-4 and IL-35 
(77). Treg cells express high levels of CD25 (IL-2R), thereby 
allowing them to form the high affinity receptor for IL-2, which 
allows them to deprive conventional T cells of this important 
growth factor, thus causing apoptosis (78). However, there is 
little evidence for the involvement of Treg cells in human or 
experimental VL. Studies from VL patients in Bihar, India 
showed no accumulation of Treg cells in the spleen or blood, 
and the frequency of these cells did not change during the 
course of infection (15, 79). Moreover, FoxP3− T cells were the 
major source of IL-10 mRNA in VL patient spleens, and this 
finding was in accordance with murine VL studies where IL-10 
secretion by FoxP3−CD4+ T cells correlated with disease severity 
(19). However, other studies have reported the accumulation of 
Treg cells at sites of infection and suggested their possible role in 
disease pathogenesis in both human and experimental VL. One 
study from India suggested that Treg cells were a major source 
of IL-10 in the bone marrow of VL patients and that IL-10 secre-
tion from Treg cells suppressed conventional T cells (80). In a 
different study with Indian VL patients, production of IL-10 and 
TGFβ by Treg cells was positively correlated with parasite load 
(81). Similarly, TGFβ-producing Treg cells were shown to accu-
mulate in infected tissues in a murine model of VL (82). Thus, 
further investigation is needed to establish whether Treg cells 
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FiGURe 1 | Potential immunotherapy targets to manipulate CD4+ 
T cell-dendritic cell (DC) and CD4+ T cell-infected macrophage (MΦ) 
interactions during leishmaniasis include both cognate and soluble cytokine 
signals. Primary signals between CD4+ T cells and macrophages or DCs 
through major histocompatibility complex class II antigen presentation of 
parasite peptide to the T cell receptor are indicated (red), as are both positive 
(green), and negative (orange) costimulatory signals. Positive (blue) and 
negative (purple) soluble cytokine signals are also show. Note that many of 
these signals are bidirectional, as indicated by the double-ended arrows. In 
addition, molecules highlighted by an asterisk have been reported to have 
the opposite effects in different type of Leishmania species infections. 
Amastigotes residing in macrophages are shown in black.
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are involved in the pathogenesis of VL and whether they can 
be modulated for therapeutic advantage. Interestingly, TGFβ is 
also secreted by macrophages and dendritic cells (DCs) during 
experimental VL. A cathepsin B-like cysteine protease present 
in L. donovani can activate TGFβ (83), which, in turn, activates 
arginase-1, leading to enhanced l-ornithine production and 
reduced NO secretion, thereby promoting parasite survival in 
infected cells (84, 85). Human VL patients have enhanced TGFβ 
plasma levels (13) during active disease, suggesting a possible 
role in pathogenesis. However, more research is needed to better 
understanding the precise mechanisms of TGFβ-mediated sup-
pression of antiparasitic immunity before it can be considered 
as an immune therapy target.

The development of regulatory DC subsets following L. dono­
vani infection can also have a major impact on T cell responses 
during VL. These regulatory DCs are capable of producing anti-
inflammatory cytokines, such as IL-10, TGFβ, and IL-27 (86).  
In experimental VL, it was shown that IL-10+IL-27+ DCs were 
able to promote IL-10 production by Th1 cells in vivo and iden-
tified this cell population as a potential target for immunother-
apy (87). Furthermore, CD11cloCD45RB+ DCs in the spleen of  
L. donovani-infected mice had high levels of IL-10 production, 
compared to CD11chi populations, and displayed features of 
immature DCs, including low expression of co-stimulatory 
molecules and intracellular MHC class II (88). These DCs 
also produced IL-10 when stimulated with lipopolysaccharide 
and promoted Treg cell IL-10 production capable of inhibit-
ing mixed lymphocyte reactions driven by conventional DCs 
(89). The inhibitory effects of these regulatory DCs could be 
reversed by IL-10 signaling blockade, indicating that IL-10 
production was a critical regulatory mechanisms employed 
by this DC subset (88). Therefore, both cognate and soluble 
cytokine signals between effector CD4+ T  cells, DCs, and 
infected macrophages have key roles in determining whether 
parasite growth is controlled and/or disease develops, mak-
ing these interactions promising targets for immune therapy 
(Figure 1).

CD8+ T  cells can kill Leishmania-infected macrophages by 
secreting cytolytic enzymes (90, 91). However, studies with human 
VL blood samples suggest that CD8+ T cells have an anergic or 
exhausted phenotype, as indicated by high expression of IL-10, 
CTLA-4, and PD-1, which may hamper the protective efficiency 
of these cells during active disease (51). A better understanding 
of role of CD8+ T cells during VL is needed if the antiparasitic 
potential of these cells through vaccination or immune therapy 
can be exploited.

POST KALA-AZAR DeRMAL 
LeiSHMANiASiS

Post kala-azar dermal leishmaniasis often develops as a cutane-
ous complication of VL in apparently cured patients, but can 
also develop independent of VL. The pathogenesis of PKDL 
remains poorly understood. It has been postulated that immune 
suppression may allow multiplication of latent parasites from the 
viscera or residing in the skin (8). Similar to clinical VL, elevated 
IFNγ and TNF levels are found in lesions of PKDL patients, with 

the concurrent presence of the immunosuppressive cytokines 
IL-10 and TGFβ (92). Despite the presence of high IFN-γ and 
TNF in these tissues, there is reduced expression of IFNγ and 
TNF receptors in Indian PKDL patients (92, 93), while genetic 
polymorphisms in the IFNγ receptor 1 gene promoter region 
have been reported and found to be associated with susceptibil-
ity to PKDL in Sudanese patients (94, 95). Treg cells have also 
been associated with PKDL in the Indian subcontinent and 
elevated FoxP3, CD25, and CTLA-4 mRNA expression has been 
reported in the skin of patients. Furthermore, Foxp3, CD25, 
and IL-10 mRNA levels directly correlated with parasite load 
in these PKDL patients (96). Since PKDL either develops soon 
after VL or independent of VL in the Sudanese population, but 
takes longer to develop after VL in the Indian subcontinent, the 
immunopathology of PKDL is likely to differ in these popula-
tions. PKDL patients from the Sudan display immune responses 
similar to cured VL patients and their PBMC proliferate in 
response to parasite antigens and CD4+ T cells secrete IFNγ and 
IL-10 (97, 98). However, PKDL patients from the Indian subcon-
tinent have high numbers of CD8+ T cells in their lesions and 
circulation, along with increased antigen-induced IL-10 produc-
tion by circulating CD8+ T cells and impaired antigen-induced 
proliferation (99, 100). Studies with Indian PKDL patients have 
also demonstrated enhanced Th17 cell responses by analyzing 
mRNA and protein expression of Th17-related IL-23, IL-17A, 
and RORγt (101). Stimulation of PKDL patient PBMCs with 
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parasite antigens resulted in IL-17A and IL-23 production, 
while stimulation with recombinant IL-17A enhanced TNF and 
NO production. Hence, these data suggest that enhanced Th17 
responses may have a role in parasite clearance during PKDL. 
However, it is still not clear whether regulatory cytokines and/
or other mechanisms suppress IL-17-mediated protective 
responses during active disease. This knowledge is important 
if we wish to manipulate this immunoregulatory pathway to 
improve antiparasitic immunity.

CUTANeOUS LeiSHMANiASiS

Cutaneous leishmaniasis is caused by several Leishmania spe-
cies, including Leishmania major, L. braziliensis, L. mexicana, 
and L. amazonensis. Cell-mediated immune responses at the 
site of cutaneous lesions are of primary importance in deter-
mining the outcome of disease. Furthermore, in murine models 
of CL caused by L. major, the genetic background of mice 
also determines disease outcome. In C57BL/6 mice, Th1  cell 
responses promote a self-healing process, while Th2 responses 
are associated with parasite persistence in the lesions of BALB/c 
mice [reviewed in Ref. (102, 103)]. In humans infected with  
L. major, cutaneous lesions have been associated with high 
IFN-γ, IL-10, and IL-12 mRNA accumulation, indicative of a 
mixed CD4+ T cell response. Several immune checkpoint mol-
ecules have also been identified in experimental CL studies that 
can modify CD4+ T cell responses to favor parasite clearance 
(Table 1), again demonstrating immune checkpoint blockade as 
a potential approach to improve disease treatments.

Following transmission of L. major to mice via sand fly bites 
or needle, neutrophils rapidly infiltrate the bite site and capture 
injected parasites (104). Neutrophils rapidly express apoptotic 
markers following L. major uptake, which attracts monocytes 
and DCs to the site of infection for removal of apoptotic cells 
(105, 106). This allows the uptake of parasites into phagocytic 
cells without triggering inflammation, and thereby enabling 
establishment of infection. Infected neutrophils also express 
chemokines, such as CCL-3, to attract DCs to the site of infec-
tion (107). This may help to stimulate Th1 cell responses follow-
ing activation of DCs through interaction of DC-SIGN on DC 
and specific glycans on neutrophils (108). In addition, CCL3 can 
induce IL-12 secretion by macrophages in C57BL/6 mice, but 
not in BALB/c mice (107). Given these latter pro-inflammatory 
properties of neutrophils, any modifications of neutrophil func-
tions may have to be directed specifically toward their activity 
as a “Trojan horse” for establishment of infection. However,  
it is important to remember that the role of neutrophils is 
critically dependent on the Leishmania species in question, the 
parasite lifecycle stage and stage of infection, when trying to 
manipulate neutrophil functions.

Following L. major infection, complement-dependent plate-
let activation, including the release of platelet-derived growth 
factors, can stimulate the release of CCL2/MCP-1 by leukocytes 
and mesenchymal cells, leading to recruitment of Ly6C+ inflam-
matory monocytes, which can capture and kill parasites via 
oxidative burst (109). Importantly, these monocytes can migrate 
to lymph nodes and differentiate into specialized DC subsets 

during L. major infection. These monocytes-derived DCs secret 
high levels of IL-12 and stimulate L. major-specific Th1  cell 
responses, suggesting a contribution to protection against dis-
ease (110, 111). Monocytes expressing high levels of CCR2 can 
also capture L. major at the site of infection in C57BL/6 mice, 
then migrate to draining lymph nodes and differentiate into 
inducible nitric oxide (iNOS)-producing DC that also promote 
Th1  cell-mediated protection (112). Hence, the promotion of 
these activities in the context of vaccination or drug treatment 
may be desirable.

NK  cells are also recruited to the site of infection in mice 
infected with L. major and produce IFN-γ, which can amplify 
DC IL-12 production required for the development of strong 
Th1  cell responses (113). However, NK  cells can also produce 
IL-10 during L. donovani infection (114), suggesting they can play 
either antiparasitic or immunoregulatory roles during infection. 
Depending upon the dose of infection, CD8+ T  cells also pro-
duce IFN-γ in murine models of CL, which can also help shape 
early adaptive immune responses associated with protection 
(115–118). However, resolution of infection following L. major 
infection is primarily associated with CD4+ T  cell-mediated 
immunity (119–121). Despite healing of cutaneous lesions, 
parasites continue to persist at the original site of infection, in 
part due to IL-10-mediated mechanisms, and these persisting 
parasites are thought to help maintain effector memory CD4+ 
T cells (TEM) that protect against re-infection (122, 123). This TEM 
response is lost if parasites are eliminated, as shown by studies in 
which mice were manipulated to achieve sterile cure (122). Thus, 
concomitant immunity is compromised and protection against 
a secondary challenge can be lost in the absence of persisting 
parasites (124). However, there is also evidence that a pool of 
long-lasting central memory CD4+ T cells (TCM) can develop in 
absence of persisting parasites, and that these can acquire effec-
tor functions after re-infection leading to protection (125). These 
TCM cells require additional IL-12 signals to develop into fully 
functional Th1 cells, and in absence of this signal, they can con-
vert into IL-4-producing Th2 cells (126). TCM cells appear to be 
generated early during infection, and not only help in controlling 
secondary infec tions, but also contribute to clearance of primary 
infection (127). Hence, these findings suggest both TEM and TCM 
cells participate in maintaining immunity to L. major infection, 
but only the TEM require persistent parasite antigen. Therefore, 
vaccines designed to protect against leishmaniasis should target 
the expansion of long-lasting TCM cells, rather than short lived 
TEM cells.

More recently, skin resident memory (TRM) CD8+ T cells have 
been shown to provide protection against L. major infection, 
independent of circulatory CD4+ T cells, by recruiting inflam-
matory monocytes, which rapidly control parasite growth via 
reactive oxygen species (ROS) and NO generation (128). Thus, 
these TRM cells also represent a potential target cell population  
for vaccination. Treg cells appear to play a role in L. major per-
sistence in C57BL/6 mice by suppressing CD4+ T  cell effector  
functions through IL-10-mediated immunosuppressive 
mechanisms (122). The IL-10 produced by these Treg cells can 
also promote parasite persistence by modulating APC func-
tion and/or inhibiting parasite killing mechanisms in infected 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


6

Kumar et al. Immunotherapy for Leishmaniasis

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1492

macrophages. Thus, the activity of Treg cells at the site of infec-
tion can promote concomitant immunity, but also allow parasites 
to persist. Therefore, although Treg cells could be targeted for 
immunomodulation, care would have to be taken to ensure that 
long-term protection was not compromised.

In non-healing CL caused by L. major Seidman strain in 
C57BL/6 mice, Nlrp3 inflammasome-dependent IL-1β activa-
tion plays an important role in determining disease outcome 
(129). The activation of the Nlrp3 inflammasome enhanced 
IL-1β activation through caspase-1 cleavage, which caused 
recruitment of neutrophils to the site of infection, and ulti-
mately resulted in the suppression of immunity, which was 
confirmed by using neutropenic Genista mice (129). Nlrp3 
can promote Th2 cell development in non-healing cutaneous 
lesions caused by L. major infection in BALB/c mice (130). 
Thus, this inflammasome and related cell signaling pathways 
are potential targets for immune therapy to treat and promote 
healing of cutaneous lesions in human CL (see also below). 
However, inflammasome- and caspase-1-dependent IL-1-β 
production has been shown to provide resistance against L. 
amazonensis infection in mice by triggering NO production 
(131), thus emphasizing the need for careful consideration 
in choosing appropriate targets for immune modulation in 
specific disease settings.

MUCOCUTANeOUS LeiSHMANiASiS

Although self-cure is often the outcome of CL, some patients 
infected with L. braziliensis, L. panamensis, and L. aethiopica 
can develop MCL after resolution of their primary lesion, 
characterized by chronic inflammation of the nasal mucosa 
and by a hyperactive T-cell response (132, 133), associated 
with high levels of pro-inflammatory cytokines, such as 
IFN-γ and TNF-α, and decreased levels of IL-10 and TGF-β 
(132, 134, 135). Thus, a poorly regulated T  cell response is 
an underlying cause of disease pathogenesis in MCL patients. 
In patients infected with L. braziliensis, the number of CD8+ 
T cells recruited to lesions increased as disease progressed, and 
these cells expressed high levels of granzymes and perforin, 
indicating they had elevated cytolytic activity (136). In fact, 
these CD8+ T  cells have now been shown to contribute to 
inflammation and disease pathology via perforin-mediated 
cytotoxicity (137). In mice co-infected with lymphocytic cho-
riomeningitis virus and L. braziliensis, it was found that per-
forin-mediated CD8+ T cell cytotoxicity in the lesion resulted 
in enhanced recruitment of neutrophils and monocytes, which 
produced IL-1-β that contributed to immunopathology and 
disease severity (138). Importantly, pharmacological blockade 
of Nlrp3 reduced inflammation caused by cytotoxic CD8+ 
T  cells in this mouse model of MCL, thus identifying this 
inflammasome, as well as CD8+ T cell-mediated cytotoxicity, 
as potential targets for immunotherapy. This was supported by 
additional data from the same study, using skin biopsies and 
PBMCs from CL patients infected with L. braziliensis, which 
IL-1β was highly expressed in skin lesions and blockade of 
the Nlrp3 inflammasome prevented the IL-1-β secretion from 

skin biopsies, suggesting a similar pathogenic mechanism 
might be operating during clinical MCL.

In addition to CD8+ T cell-mediated pathology, Th17 cells have 
also been associated with pathogenesis in MCL patients (139). 
MCL lesions were found to have elevated IL-17A mRNA, as well 
as TGF-β, ROR-γT, and IL-23 mRNA levels, which are associated 
with Th17 cell differentiation. Interestingly, IL-17 was not only 
produced by CD4+ T cells but also by CD8+ T cells, CD14+, and 
CCR6+ Cells. The enhanced production of IL-17 was associated 
with infiltration and recruitment of neutrophils into the lesion, 
suggesting that IL-17 may promote inflammatory responses in 
MCL patients. Thus, IL-17 production could be a therapeutic 
target in MCL patients to reduce tissue pathology.

DiFFUSe CUTANeOUS LeiSHMANiASiS

Diffused cutaneous leishmaniasis is a severe manifestation of 
CL characterized by a defective cellular immune response to 
Leishmania antigens (140). However, this unresponsiveness is 
restricted to antiparasitic immune responses, as responses to 
unrelated antigens remain intact (141, 142). DCL patients have 
high parasite numbers within skin lesions, which has been associ-
ated with low levels of IFN-γ and IL-2 mRNA, and concurrent 
high levels of IL-10, IL-4, and IL-5 mRNA in lesions (135). 
Therapeutic cure was associated with enhanced IFNγ production, 
but low IL-10 expression (143), indicating the requirement for a 
classical Th1 cells response for favorable clinical outcomes. This 
disease is also associated with high antibody titers and plasma 
TGF-β [reviewed in Ref. (102)]. IL-10 and TGF-β, along with 
Treg cells, can antagonize IFN-γ and TNF activities, resulting 
in impaired microbicidal activities in infected macrophages 
[reviewed in Ref. (144)]. However, it is not clear in DCL whether 
high antigen exposure causes T  cell unresponsiveness or if 
impaired T cell responses promote localized parasite growth in 
the skin [reviewed in Ref. (144)].

Diffused cutaneous leishmaniasis patients respond poorly to 
conventional drug treatment (145), but some degree of treat-
ment success has been achieved with immune modulation using  
IFN-γ combined with viable BCG and antimonial drug (146, 147). 
Since unresponsive T  cells often express inhibitory molecules, 
such as PD-1, CTLA-4, and LAG-3, these may make attractive 
targets for immune therapy in DCL patients. IL-1-β has also been 
associated with disease severity in L. mexicana-infected DCL 
patients (148), making it another potential therapeutic target. 
Again, care will need to be taken to ensure the promotion of 
antiparasitic immunity in this context is not at the expense of 
protection against tissue damage.

LeiSHMANiZATiON

The fact that L. major-induced cutaneous lesions often heal 
spontaneously and protect against future infection is the basis 
for leishmanization, which involves inoculation with live, 
virulent parasites in an unexposed part of body to produce a 
controlled lesion. This strategy has been practiced successfully 
in the former Soviet Union, Middle East, and Israel, and likely 
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provides protection in humans because it mimics a natural 
infection, including allowing parasite persistence and devel-
opment of concomitant immunity. The protection provided 
by leishmanization is essentially T  cell-mediated, whereby 
IFN-γ-producing CD4+ T  cells are recruited to dermal sites 
of infection where they perform effector functions, including 
the promotion of microbicidal mechanisms in infected mac-
rophages (123). Importantly, the success of leishmanization 
depends on the viability and infectivity of injected parasite. 
Parasites that lost virulence stimulated delayed-type hypersen-
sitive reactions, but did not provide protection from natural 
re-infection (149). Leishmanization was abandoned in most 
countries because of logistical problems and safety concerns, 
due to some immunosuppressed individuals developing 
non-healing lesions (150). Interestingly, leishmanization can 
provide cross protection against the visceral form of disease, as 
leishmanized C57BL/6 mice infected with L. major were pro-
tected from heterologous visceral infection with L. infantum, 
associated with recruitment of IFN-γ-producing Ly6C+CD4+ 
T cells to both skin and visceral organs (151). Similarly, longi-
tudinal studies in the Sudan indicated that people residing in 
an L. major endemic area were protected against VL caused by  
L. donovani (152, 153). In addition, CL caused by a L. donovani 
strain in Sri-Lanka provided cross protection against visceral 
disease (154). These findings suggest that leishmanization 
could be a strategy employed to increase protection against 
VL. However, a better understanding of the immunoregula-
tory mechanisms associated with this process is needed to fully 
exploit the positive aspects of leishmanization with improved 
safety.

STRATeGieS TO iMPROve vACCiNeS

Although different Leishmania species cause a broad range of 
clinical symptoms, genetic analysis indicates a large degree of 
genomic conservation between species. Thus, it may be possible 
to generate broadly effective vaccines against different clinical 
diseases. However, despite many efforts, there is no effective, 
licensed vaccine to prevent human leishmaniasis. There is a 
major need for more efficacious and less toxic adjuvants and 
immune therapies for better vaccines for patients suffering from 
leishmaniasis. Studies in VL patients and experimental models 
(15, 155) indicate the rapid development of immunoregulatory 
networks following exposure to parasites, which raises ques-
tions about how these regulatory networks might influence 
subsequent immunity, particularly to vaccines. It is noteworthy 
that many vaccines tested in disease endemic regions have not 
performed as well as when tested in healthy volunteers. For 
example, the RTS,S/AS01 vaccine in children and infants affords 
36 and 25% efficacy against clinical malaria, respectively (156), 
while a recent study showed that the efficacy of the same vaccine 
in healthy volunteers in CHMI studies was 52% (157). Similarly, 
BCG-mediated protection against pulmonary tuberculosis var-
ies geographically and appears to be much less effective in areas 
with high incidence of previous infection with M. tuberculosis 
or sensitization with environmental Mycobacteria (158, 159). 

Although many reasons could account for the reduced efficacy of 
vaccines in disease endemic areas, these results suggest that the 
early establishment of potent, pathogen-specific immunoregula-
tory networks may be an important factor contributing to this 
problem (160). Treatment in the field of cancer has been revolu-
tionized by immune checkpoint blockade strategies. These take 
advantage of the patients own immune system to recognize and 
kill cancer cells. Although many of the molecules being targeted 
by this approach were discovered in infectious diseases research, 
this approach has not been applied to reducing the burden of 
infection. Therefore, incorporating inhibitors of specific immune 
checkpoints into vaccine formulations may be one way to tran-
siently reduce immune suppression to allow the generation of 
robust vaccine-mediated, antiparasitic immunity.

Both CTLA-4 and PD-1 blockade have been successfully used 
individually and in combination to treat cancer patients (161). 
Given that leishmaniasis is a chronic infection and shares several 
key immunoregulatory features with cancer, one strategy could 
be to “piggy back” on the success of immune checkpoint block-
ade drugs in cancer to either improve drug treatment protocols 
by making subsequent immunity more potent and long-lasting 
or enhance vaccine efficacy. However, it will be important to 
bear in mind that specific types and combinations of immune 
checkpoint blockade work best for particular types of cancer, and 
this is also likely to be the case with the spectrum of diseases 
caused by Leishmania species. Thus, careful consideration will 
need to be given to types of immune checkpoint blockade best 
suited to VL, CL, MCL, PKDL, or DCL because they are likely to 
differ in their outcomes.

STRATeGieS TO iMPROve DRUG 
TReATMeNT

Antimonial chemotherapy was the mainstay for VL treatment 
for many decades (162). However, parasite resistance against 
these drugs has developed, especially in the Indian subcontinent  
(163, 164). Therefore, these drugs are now mainly employed to 
treat VL in Africa, while drugs such as Amphotericin B, Amb-
isome, Miltefosine, and paromomycin have been introduced 
to treat VL in areas of antimonial drug resistance (164, 165). 
How ever, these drugs are not without problems, such as toxicity, 
high cost, potential development of parasite drug resistance, 
and prolonged treatment regimes [reviewed in Ref. (165)].  
Recently, a single dose of Ambisome (lipid formulation of 
Amp hotericin B) was found to be sufficient to successfully 
treat VL with low toxicity and has now been recommended 
as a choice of treatment in India subcontinent (166, 167). 
The oral drug miltefosin has also been used in combina-
tion with Amphotericin B. However, based on studies in 
preclinical models of leishmaniasis, there are concerns 
that even with combination therapy, drug resistance will 
develop (168). Further, these drugs do not cause sterile 
cure and parasites persist in the infected individuals after 
drug treatment (168–170). This is concerning because 
these persisting parasites may help promote transmission,  
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with people living in the same household being most at risk 
of infection (171, 172). Thus, not only should successful cure 
of disease be a goal of treatment, but lowering the burden of 
persisting parasites as far as possible is also desired if parasite 
transmission is to be minimized. However, when considering 
these goals, it will be important to remember that persistent 
parasites are also required to maintain concomitant immunity 
(170), so sterile cure of infected individuals may not necessarily 
be beneficial. Instead, it may be necessary to establish the level 
of parasite burden that is low enough to prevent parasite trans-
mission, but at the same time, maintain concomitant immunity,  
and then try and achieve this through a combination of 
antiparasitic drug and immunomodulatory strategies.

Drug treatment works most effectively in association with 
the host immune system, and in particular, cell-mediated 
immune responses (164). Hence, understanding immunologi-
cal changes during the course of infection and how these might 
be modulated to work best with drug is important. The use 
of biological molecules to stimulate cell-mediated immunity 
to help achieve therapeutic success has been tested in both 
preclinical and clinical studies on leishmaniasis (173). In an 
experimental model of leishmaniasis, treatment with recombi-
nant IL-12 or anti-IL-10 receptor monoclonal antibody, along 
with pentavalent antimony (Sbv), resulted in improved clear-
ance of L. donovani parasites, compared with animals treated 
with drug alone (27, 174). In addition, human recombinant 
IFN-γ has been successfully used to accelerate antiparasitic 
and clinical responses when used with antimony treatment, 
and importantly, treat seriously ill VL patients with refractory 
disease (175–178). Many drugs used to treat VL not only 
kill parasites, but also promote host immunity. For example, 
antimonial drugs stimulate the generation of ROS and NO, 
while miltefosine and Ambisome induce the secretion of 
IFN-γ, TNF, IL-12, IL-6, and IL-1β from immune cells with 
a simultaneous decrease in anti-inflammatory cytokine pro-
duction (179–182). Thus, combining immune-based therapy 
with conventional antiparasitic drugs is an obvious strategy to 
improve current treatment protocols.

Rather than supplement or block immune effector molecules, 
another approach to use host-directed therapy to improve drug 
treatment is to target intracellular signal transduction pathways. 
For example, it has been shown that L. infantum infection 
rapidly induces activation of phosphatidylinositol 3-kinase/Akt 
and extracellular signal-regulated kinase1/2 in bone marrow-
derived dendritic cells (BMDDC), thereby limiting their matu-
ration and pro-inflammatory cytokine secretion. The blockade 
of this pathway with wortmannin resulted in reduced infection 
rates of BMDDC (183). Similarly, the rapid activation of protein 
tyrosine phosphatase, such as SHP-1, by Leishmania is another 
important parasite evasion strategy, and administration of the 
SHP-1 inhibitor bpV-phen to mice infected with L. major and 
L. donovani promoted control of infection via induction of reac-
tive nitrogen intermediates that would otherwise be repressed 
by parasite-activated SHP-1 (184, 185). Hence, small molecule 
inhibitors of key cell signaling pathways is another potential 
approach that could be used with current antiparasitic drug 
treatment protocols.

DeveLOPiNG STRATeGieS FOR 
ReSOURCe POOR SeTTiNG

Leishmaniasis is generally a disease associated with poverty 
(186) and as such, diagnosis, treatment, and hospitalization costs 
are an important consideration in disease control programs. In 
addition, drug development programs for leishmaniasis are often 
not a high priority for pharmaceutical companies. Furthermore, 
even if effective, high-cost drugs or vaccines are available, 
they are unlikely to be used without significant government 
or philanthropic subsidization. Hence, a practical challenge is 
to supply relatively cheap drugs in resource poor settings, and 
this will require the participation of regulatory bodies, as well 
as public and private sector partnerships. A successful example 
of this was the implementation of the wider use of Ambisome 
for VL treatment. This is normally a high-cost drug, but has 
been substantially reduced in cost for the distribution through 
the public sector agencies in developing countries, by an agree-
ment negotiated between WHO and the manufacturer (187). 
However, other issues can complicate such arrangements. For 
example, the requirement of a reliable cold chain for Ambisome 
implementation can result in a failure to provide the drug or the 
use of drug stored under conditions not consistent with storage 
advice. Therefore, the introduction of new treatment regimes for 
diseases such as VL will need to consider multiple aspects of drug 
development, formulation, storage, and delivery. One approach 
for reducing development costs is to repurpose drugs already 
licensed for other indications, as was the case with Ambisome, 
which was first licensed as an anti-fungal drug. Another way of 
reducing cost is to develop cheaper small molecules rather than 
more expensive biologics to target parasites or host responses. 
In addition, as well as usual safety considerations, the stability 
of drugs in areas of unreliable cold-chain must be considered, 
as well as ease of manufacturing. Therefore, when considering 
strategies to promote host directed therapy, regardless whether 
this be targeting specific immune check points or stimulating 
microbicidal mechanisms, small molecules are likely to be more 
cost-effective than antibodies.

CONCLUDiNG ReMARKS

Leishmaniasis has clear, unmet medical needs. These differ, 
depending on the disease in question. However, the host immune 
response to infection is a central component of each of these 
diseases, whether it is immune dysfunction in the case of VL 
and DCL or immune-mediated tissue pathology in the case of 
severe CL and MCL. Therefore, targeting these host responses, 
as is increasingly occurring in other chronic diseases, such as 
cancer and autoimmunity, offers promising new opportunities 
to either improve the efficacy of vaccine candidates or drug 
treatment protocols. Given the long time lines for vaccine devel-
opment, the latter approach may have a greater impact in the 
short term. Furthermore, combining host-directed therapy with 
antiparasitic drug, offers the added advantage of further reduc-
ing parasite loads in treated individuals and improving long- 
term protective immunity. These outcomes will greatly benefit 
current disease elimination programs.
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