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Cancer is still one of the world’s most pressing health-care challenges, leading to a 
high number of deaths worldwide. Immunotherapy is a new developing therapy that 
boosts patient’s immune system to fight cancer by modifying tumor–immune cells 
interaction in the tumor microenvironment (TME). Extracellular adenosine triphosphate 
(eATP) and adenosine (Ado) are signaling molecules released in the TME that act 
as modulators of both immune and tumor cell responses. Extracellular adenosine 
triphosphate and Ado activate purinergic type 2 (P2) and type 1 (P1) receptors, 
respectively, triggering the so-called purinergic signaling. The concentration of eATP 
and Ado within the TME is tightly controlled by several cell-surface ectonucleotidases, 
such as CD39 and CD73, the major ecto-enzymes expressed in cancer cells, immune 
cells, stromal cells, and vasculature, being CD73 also expressed on tumor-associated 
fibroblasts. Once accumulated in the TME, eATP boosts antitumor immune response, 
while Ado attenuates or suppresses immunity against the tumor. In addition, both 
molecules can mediate growth stimulation or inhibition of the tumor, depending on 
the specific receptor activated. Therefore, purinergic signaling is able to modulate 
both tumor and immune cells behavior and, consequently, the tumor–host interaction 
and disease progression. In this review, we discuss the role of purinergic signaling 
in the host–tumor interaction detailing the multifaceted effects of eATP and Ado in 
the inflammatory TME. Moreover, we present recent findings into the application of 
purinergic-targeting therapy as a potential novel option to boost antitumor immune 
responses in cancer.
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iNTRODUCTiON

Cancer is still one of the world’s most pressing health-care challenges, leading to death in an esti-
mated number of 600,920 patients per year in the United States (1). However, recent advances in 
cancer immunotherapy have transformed the treatment of several patients, extending and improving 
their lives (2, 3). Immunotherapy is a new developing therapy that boosts patient’s immune system 
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to fight cancer, by modifying tumor–immune cells interaction in 
the tumor microenvironment (TME) (4). According to the cancer 
immunoediting concept, the interaction between cancer and 
immune cells occurs in three essential phases: elimination, equilib-
rium, and escape—from cancer immune surveillance to immune 
escape (5–7). In the elimination and equilibrium phase innate 
and adaptive immune system—mainly NK and T cells—mount 
an effective immune response against the highly immunogenic 
tumors, and allow the less immunogenic ones escape (8–16). This 
immunologic pressure selects and favors tumor variants resistant 
to the immune system to proliferate (immunoevasion) (9, 17). 
During this process, both cancer and inflammatory cells release 
several soluble factors such as cytokines, chemokines, growth 
factors, matrix-degrading enzymes, and nucleotides that facilitate 
tumor immune escape and allow tumor growth, angiogenesis, 
invasion, and metastasis (18–22). Therefore, targeting multiple 
molecules that avoid immunoevasion and boost antitumor 
immune responses are the leading paths to successfully treat a 
whole range of tumor types (3).

Among the nucleotides released in the TME, extracellular 
adenosine triphosphate (eATP) and adenosine (Ado) are potent 
modulators of both immune and tumor cell response (23, 24). 
eATP and Ado exert their effects acting through P2 and P1 
purinergic receptors, respectively, triggering the so-called 
purinergic signaling (25, 26). Purinergic signaling has long 
been involved with inflammation and cancer having a pivotal 
role in modulating cell migration, proliferation, and cell death  
(27, 28). P2 and P1 receptors are expressed by nearly all cell 
types (immune and non-immune cells) and differently trigger 
cell signaling according to their subtypes (29–31). The P2 recep-
tor is subdivided into two separate subfamilies, P2X (P2X1–7) 
ionotropic ion channels receptors and P2Y (P2Y1, P2Y2, 
P2Y4, P2Y6, and P2Y11–P2Y14) G-protein-coupled receptors  
(25, 26), whereas the P1 receptor family (A1, A2A, A2B, and A3) only 
comprised by G-protein-coupled receptors subtype (32). These 
different purinergic receptors express distinct agonist affinity and 
specificity, therefore influencing both tumor and immune cells 
behavior according to the levels of eATP/Ado in TME (33–35).

Levels of eATP and Ado are tightly controlled by several 
ectonucleotidases. Among them, CD39 and CD73 are the most 
important ecto-enzymes expressed in cancer cells, regulatory 
immune cells and vasculature responsible for modulating puriner-
gic signaling within the TME (36, 37). CD39 is a member of the 
ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) 
family that comprised of eight members (E-NTPDase1–8), each 
one with a distinct cellular location and catalytic properties 
(36, 37). E-NTPDase1 (CD39), E-NTPDase2, E-NTPDase3, 
and E-NTPDase8 are plasma membrane-bound enzymes that 
degrade with different affinities adenosine triphosphate (ATP) 
and ADP to AMP (24, 36, 37). AMP is in turn converted to Ado 
by CD73, which is an ecto-5′-nucleotidase cell-surface enzyme 
(37). This sequential activity of CD39/CD73 is the main pathway 
for the eATP scavenging and generation of Ado in the tumor 
interstitium (24, 36).

Once accumulated in the TME, eATP and Ado act as signal-
ing molecules triggering different and opposite effects on both 
host and tumor cells. While eATP boosts antitumor immune 

response and Ado attenuates or suppresses immunity on the host 
side (38–45), both molecules can mediate growth stimulation or 
inhibition on the tumor cells, depending on the specific receptor 
activated (46–52). Regardless, the final effect on tumor growth—
either beneficial or detrimental—will depend on the eATP/Ado 
levels, the panel of P2 and P1 receptors subtypes and CD39/CD73 
expression by immune, tumor, and stromal cells in the TME (22).

Therefore, despite its complexity and dual behavior, modula-
tion of purinergic signaling by targeting eATP/Ado pathways 
appears to be a promising strategy to modify cancer and immune 
cells cross talk in the TME (24, 36, 53). In this review, we will 
discuss the role of purinergic signaling into the host–tumor 
interaction detailing the multifaceted effects of eATP and Ado 
in the inflammatory TME. Furthermore, we will highlight the 
application of combining purinergic-targeting therapies with 
other anticancer treatments as a potential new strategy to over-
come immune escape, potentiate antitumor immune response, 
and, consequently, restrain tumor growth.

eATP iN THe TMe

Measurement of eATP levels in different biological context 
reveals that healthy tissues present very low levels (10–100 nM) 
of this nucleotide in the pericellular space, while in sites of tissue 
damage, inflammation, hypoxia, ischemia, TME or metastases 
it can reach high levels (hundreds of micromoles per liter)  
(24, 54–56). ATP is abundantly released in the extracellular 
space due to cell death, cell stress, and activation of pannexin/
connexin channels on immune and endothelial cells (54, 57, 58). 
In these settings, increased levels of eATP are sensed as a “danger 
signal” by the innate immune cells resulting in their recruitment 
to the damaged-tissue site (42, 57, 59–61). Particularly in the 
TME, eATP acting through P2 receptors boosts the antitumor 
immunity at the same time that stimulates endothelial and tumor 
cells (27, 36, 42, 48, 60).

eATP effect on the Host Side
Activation of P2 receptors by eATP shapes various innate and 
adaptive immune responses (30). The P2X and P2Y receptors 
expression (either constitutive or upregulated in pathological 
conditions) varies according to the cell type and therefore dictates 
immune cell function, such as metabolism, adhesion, activation, 
migration, maturation, release of inflammatory mediators, cyto-
toxicity, and cell death, as extensively reviewed in Ref. (30, 36, 62). 
In the innate immunity, activation of P2Y2 and P2X7 receptors 
leads to stimulation of myeloid cells and promotes chemotaxis 
of macrophages and neutrophils (38, 63–65). At the same time, 
engagement of P2Y2 and P2X7 receptors induces dendritic cells 
(DCs) activation and chemotaxis (66). Indeed, stimulation of 
P2Y11 receptor inhibits IL-12 and boosts IL-10 release by DCs (67) 
whereas it activates granulocytes (68). In the adaptive immunity, 
engagement of various P2X receptors, such as P2X1, P2X4, P2X5, 
and P2X7, results in T-cell activation (39, 69–71). Among them, 
P2X7 has been linked to stimulation of CD4+ and CD8+ effector 
T cells (40, 69, 72) as well as NKT cells (73), induction of Treg 
apoptosis (41, 74, 75), and inhibition of Tr1 cell differentiation 
(76). In addition, ATP acting via the P2X7 receptor is crucial to 
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the generation of inflammatory Th17 lymphocytes by contribut-
ing for the generation of a microenvironment with high levels of 
IL-1β, IL-6, and IL-17 (77, 78).

In the context of TME, recent studies have highlighted the 
importance of eATP acting through the P2X7 receptor in the 
chemotherapy-elicited anticancer immune response, also known 
as immunogenic cell death (ICD) (42, 60). Accordingly, ATP 
derived from dying tumor cells stimulates P2X7 receptors in 
DCs, thus activating the NLRP3/ASC/caspase-1 inflammasome 
and driving the secretion of interleukin-1β (IL-1β). IL-1β is then 
required for the adequate polarization of IFNγ-producing CD8+ 
T cells, which is critical for the efficacy of chemotherapy (42, 60).

Despite its role in ICD, eATP-P2X7 signaling has also been 
related to the control of tumor growth. Recent studies have shown 
that host P2X7 expression limits tumor growth and metastasis 
spread by supporting an antitumor immune response (47, 79). 
Host P2X7 seems to boosts cytokine release, chemotaxis, and 
tumor infiltration by inflammatory cells. Accordingly, P2X7 
host genetic deletion in mouse (P2X7-KO) impaired immune 
response against melanoma (B16) and colon carcinoma cells 
(CT26), leading to accelerate tumor growth in comparison to 
P2X7-WT hosts. Moreover, transplantation of P2X7-WT bone 
marrow to P2X7-KO mice reduced tumor growth at a rate similar 
to the P2X7-WT group (47).

Even though eATP acting through P2X7 receptor seems to be 
an important signaling to stimulate immune cell response against 
the tumor, a critical role for the ATP/P2X7 receptor axis in modu-
lating myeloid-derived suppressor cells (MDSCs) functions in the 
TME has also been described (23). Accordingly, P2X7 receptor 
activation stimulates the release of reactive oxygen species, 
arginase-1, and transforming growth factor-β 1 (TGF-β1) from 
monocyte MDSCs present in the TME, contributing to MDSC 
immunosuppressive effect. Therefore, considering these contra-
dictory effects the use of both antagonist/agonist of the P2X7 
receptor has been investigated as a promising novel strategy for 
anticancer therapy and will be discussed with more details below.

eATP effect on the Tumor Side
Practically all types of cancer cells express P2X and P2Y receptors 
that efficiently sense changes in ATP concentration in the TME 
and modulate different cellular functions such as proliferation, 
differentiation, and apoptosis (24, 28). Cancer cells may be 
more sensitive to the cytotoxic or to the trophic effect of e ATP 
according to the expression of their P2 receptor subtypes as well 
reviewed in Ref. (28).

Among the P2Y receptors, stimulation of P2Y2 and P2Y11 
receptors leads to cell proliferation and migration of human 
hepatocellular carcinoma (HCC) cells (49, 80). P2Y2 receptor 
activation is also highly involved with tumor invasiveness and 
metastatic diffusion in prostate and breast cancer (81–87). On the 
other hand, eATP-P2Y2 receptor signaling inhibited nasopharyn-
geal carcinoma and human colon carcinoma growth (50, 88). 
P2Y1 receptor activation induces apoptosis and inhibits human 
intestinal epithelial carcinoma, prostate cancer, and melanoma 
cell proliferation (89–91).

In the P2X receptors family, a role for P2X3, P2X5, and P2X7 
in carcinogenesis has already been depicted, with a major focus 

on the P2X7 receptor. P2X3 receptor overexpression seems to be 
crucial for HCC cell survival and basal proliferation as well as 
proliferation in response to changes in ATP concentrations in the 
TME (92). Moreover, high P2X3 receptor expression is associated 
with poor prognosis in patients with HCC. P2X5 overexpres-
sion was also demonstrated in human basal cell and squamous 
carcinomas, but differently, it was expressed exclusively on cells 
undergoing proliferation and differentiation, suggesting a differ-
ent role in tumor growth (93).

P2X7 is far the most P2X receptor subtype studied in cancer. 
Unlike the other P2 receptors, P2X7 is unique for its capacity to 
form a nonselective pore on the plasma membrane upon stimula-
tion with high levels of eATP, leading to cell death (94, 95). Its role 
in carcinogenesis remains a controversy, but now it is known that 
P2X7 receptor triggers cell death or growth according to its level 
of activation and cell type stimulated (94, 96–98). As mentioned 
earlier, P2X7 receptor overstimulation with a high level of exog-
enous eATP triggers tumor cell death, while its tonic stimulation 
with endogenous eATP often induces cancer cell survival and 
proliferation (28, 99, 100). Whereas the former leads to a marked 
mitochondrial catastrophe, the latter stabilizes the mitochondrial 
network, increases mitochondrial potential, oxidative phospho-
rylation, and aerobic glycolysis, culminating in a large increase 
in the overall intracellular ATP content and gain in proliferative 
advantage by P2X7-expressing cells (99). P2X7 receptor activa-
tion also triggers NFATc1, Erk, PI3K/Akt, and HIF-1α intracel-
lular pathways (101–103), being the PI3K/Akt pathway linked to 
the P2X7-dependent tumor cell growth, invasiveness, metastatic 
spreading, and angiogenesis (101, 104). Also supporting a role 
for P2X7 receptor in tumor growth is the fact that many types 
of cancer such as leukemia (98, 105, 106), melanoma (107), neu-
roblastoma (108), pancreatic adenocarcinoma (109), esophageal 
carcinoma (110), breast (111), prostate (112), thyroid (113), and 
head and neck cancer (114) showed an increased expression of 
P2X7 receptor. Moreover, in  vivo experiments demonstrated 
that blocking P2X7 receptor activation by either silencing or a 
pharmacological manipulation decreased tumor progression 
and inhibited metastatic diffusion (100, 115). Therefore, it seems 
reasonable to say that P2X7 receptor is an important target in 
cancer therapy not only for its role in the immune system but also 
for its impact on tumor growth. An overview of eATP effect on 
tumor and host side is illustrated in Figure 1.

eADeNOSiNe iN THe TMe

High levels of extracellular adenosine (eAdo) were also demon-
strated in the TME. While Ado levels in healthy tissue are around 
the nanomolar range, it can reach the micromolar range in the 
tumor core (36, 51, 116, 117). In the later context, many factors 
can contribute to Ado production, but hypoxia seems to be the 
main driver for the eAdo accumulation (118). In this setting, eAdo 
is mainly generated at the expenses of the eATP metabolism via 
the sequential enzymatic activity of CD39 and CD73 (119–122). 
CD39 catalyzes the first enzymatic reaction by breaking down 
ATP and ADP into AMP, whereas CD73 hydrolyzes AMP into 
Ado. CD73 irreversibly converts AMP to Ado being considered 
the rate-limiting enzyme for Ado formation (37, 122).
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Many cells have the capacity to generate eAdo in the TME, 
such as tumor cells (43, 120, 123–126), Tregs (120, 127, 128), 
Th17 (129, 130), MDSCs (44, 131, 132), endothelial cells (127, 
133, 134), cancer-associated fibroblast (135, 136), and mesen-
chymal stromal/stem cells (MSCs) (45, 137). Exosomes derived 
from CD39+CD73+ tumor cells (138), Tregs (139), or MSCs (45) 
can also contribute to eAdo production. Once in the pericellular 
space, Ado can exert a local signaling effect through the activa-
tion of the P1 purinergic receptors, be metabolized to inosine or 
recaptured by the cell via nucleoside transporters (140).

Likewise eATP, eAdo acts as an endogenous immunomodula-
tory molecule, but unlike the former, it mostly mediates immu-
nosuppressive effects (30). Particularly in the tumor interstitium, 
eAdo acting through P1 receptors downregulates cell-mediated 
immunity at the same time that stimulates tumor cells and pro-
motes angiogenesis (45, 133, 136, 137).

eAdo effect on the Host Side
Extracellular adenosine exerts immunosuppressive activities in vari-
ous immune subsets, interfering with antitumor immune responses 
(36). Innate and adaptive immune cells react to Ado stimulation 
according to the expression/density of the four P1 receptor subtypes, 
namely A1, A2A, A2B, and A3 (30, 32). These receptors sense different 
levels of Ado and are classified as high-affinity (A1, A2A, and A3) and 
low-affinity receptors (A2B) (32). A1 and A3 are Gi-coupled receptors 
that inhibit adenylate cyclase and cyclic AMP production, while A2A 
and A2B are Gs-coupled receptors that stimulate cAMP synthesis 
and downstream signaling pathways (32, 141).

Activation of A2A and A2B receptors protect tissues against 
excessive immune reaction and therefore play a major role in 
Ado immunosuppressive effects (142–146). Stimulation of A2A 
receptor is related to the inhibition of DC activation (147), Th1/
Th2 cytokine production (148, 149), T  cells proliferation and 
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activation (148, 149), and NK cells activation, maturation, and 
cytotoxicity (125, 150), as well as enhancement of the suppressive 
function of Tregs, Tr1 cells, and macrophages (151–153). In addi-
tion, A2A receptor activation prevents the LPS-induced increase in 
ectonucleotidase activities during inflammation (154, 155).

Activation of the A2B receptor has a major effect on Tregs and 
MDSCs, stimulating Treg proliferation or differentiation from 
naïve T cells, production of IL-10 (156) and enhancing the sup-
pressive function of MDSCs (44). A2B signaling is also linked to 
vascular endothelial growth factor (VEGF) secretion and tumor 
angiogenesis (44, 157). Engagement of A2A and A2B receptors 
inhibits neutrophils activation (158) and immune cells adhesion 
to endothelial cells (127). On the other hand, activation of A1 and 
A3 receptors promotes neutrophils chemotaxis and stimulates 
pro-inflammatory activities (158).

In general, Ado accumulation in the TME and its immunosup-
pressive effect via A2A and A2B receptors is a critical regulatory 
mechanism implemented by the tumors to evade the immune-
mediated cancer cells destruction, allowing tumor growth and 
impairing cancer immunosurveillance (159). In this way, new 
strategies targeting Ado production and signaling have emerged 
as a promising approach in cancer immunotherapy and will be 
discussed in more details below.

eAdo effect on the Tumor Side
Differently from its effect on the host side, where Ado is well 
known for its strong immunosuppressive activities, on the tumor 
side Ado can either stimulate or inhibit tumor growth, depend-
ing on the cell type and receptor expressed by the tumor bulk 
(160). Likewise, pro- and antitumoral effects coming from A1, 
A2A, A2B, and A3 activation have been described (160). A1 recep-
tor activation is related to stimulation of MDA-MB-468 breast 
carcinoma cells proliferation (161) and melanoma cells chemo-
taxis (162). On the other hand, it may inhibit LoVo colon (163), 
TM4 Sertoli-like (164), MOLT-4 leukemia, T47D, HS578T, and 
MCF-7 breast, and glioblastoma cancer cells proliferation (160). 
Ado-A1 signaling has also been reported to protect endometrial 
carcinoma invasion and metastasis, by promoting cortical actin 
polymerization, increasing cell–cell adhesion thus preserving 
epithelial integrity (165). In the same manner, activation of A2A 
and A2B receptors leads to controversial scenarios depending on 
the cell type studied. A2A stimulation results in increased MCF-7 
breast cancer proliferation (166), whereas it promotes A375 
melanoma cell death (167). Activation of A2B receptor inhibits 
ER-positive MDA-MB-231 breast cancer cell proliferation, while 
it boosts oral squamous cell carcinoma progression (168, 169). 
Stimulation of A2B receptor also leads to reduced cell–cell contact 
and increased cell scattering in breast, lung, and pancreatic cancer 
cell lines, suggesting a role for this receptor in tumor invasion and 
metastatic spreading (170). These conflicting results might reflect 
differences in the experimental settings where distinct tumor 
cell lines were exposed to diverse agonist/antagonist drugs with 
different specificity and selectivity. Moreover, the use of specific 
agonist might not reflect the real effect triggered by Ado in the 
context of the tumor bulk given the complexity and heterogeneity 
of cells, Ado receptors, and downstream signaling that interact to 
produce the final cellular response.

A3 is by far the most studied Ado receptor in cancer and 
conflicting results have also been reported for this receptor. A3 
receptor is expressed by many tumor cell lines, such as HL60 and 
K562 human leukemia (171, 172), Jurkat lymphoma (173), U937 
monocytic–macrophagic human cell lines (174, 175), Nb2 rat 
lymphoma (176), A375 human melanoma (177), PGT-betamouse 
pineal gland tumor cells (178), human glioblastoma (179, 180), 
and human prostatic cancer cells (181). Moreover, A3 overexpres-
sion (either protein or mRNA levels) has been reported in human 
melanoma, colon, breast, small-cell lung, thyroid, pancreatic, 
and HCC vs adjacent normal tissue, supporting the notion that 
A3 receptor levels may reflect the status of tumor progression  
(182–184). In accordance with this statement, A3 activation 
increases HT29, DLD-1 and Caco-2 colon cancer cell proliferation 
(160). However, A3 stimulation also results in antitumoral effects, 
inhibiting proliferation of Nb2-11C and YAC-1 lymphoma, K562 
and HL60 leukemia, B16-F10 and A375 melanoma, LN-Cap and 
PC3 prostate carcinoma, MIA-PaCa pancreatic carcinoma, breast 
and Lewis lung carcinoma cells (176, 185–189). Contrasting 
responses were also reported for A3 stimulation on metastatic 
spreading, leading to either increased (HT29 colon carcinoma) 
or decreased (prostatic cancer) cell migration (179, 181). Despite 
these dual effects, the A3 receptor has been pointed as a potential 
target for tumor growth inhibition (182, 190). A phase I/II clinical 
trial using an A3 agonist for the treatment of advanced unresect-
able HCC has been performed and despite preliminary data, 
favorable results were demonstrated in patients (191).

Rather than acting through P1 receptors, eAdo can also 
promote tumor cell death via its continuous uptake into the 
cell (52). Our group demonstrated that Ado formed from eATP 
degradation is the main factor responsible for apoptosis induc-
tion in human cervical cancer cells. Accordingly, eAdo trans-
ported into the cell through the nucleoside transporters leads to 
AMPK activation, p53 increase, PARP cleavage, and autophagy 
induction, culminating in cell death (52). Similar results were 
also reported in human gastric cancer cells (192), malignant 
pleural mesothelioma cell (193), mouse neuroblastoma cells 
(194), astrocytoma cells (195), and human epithelial cancer 
cells originating from breast, ileum, colon, and ovary (89, 196), 
bringing a distinct insight into the Ado effect on the tumor side. 
An overview of eAdo effect on tumor and host side is illustrated 
in Figure 2.

PURiNeRgiC SigNALiNg AS POTeNTiAL 
TARgeT FOR CANCeR THeRAPY

As depicted alongside this review, purinergic signaling has a 
major role in controlling tumor growth, survival, and progres-
sion, not only by acting on tumor cells but also by modulating 
the immune system and the interaction of tumor and immune 
cells in the TME (24). Therefore, many potential targets involv-
ing ATP and Ado signaling has emerged as attractive candidates 
for cancer therapy. In this topic, we will discuss recent findings 
in this field highlighting P2X7, CD39, CD73, and A2A receptor 
targeting therapy to restrain tumor progression in vivo models 
and in patients.
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Targeting P2X7 Receptor in Cancer 
Therapy
As discussed earlier, the P2X7 receptor has contrasting effects when 
activated on the tumor or the host cells, potentiating or inhibit-
ing tumor growth—depending on the level of stimulation—while 
boosting inflammation, respectively. Evidence supporting P2X7 
growth-promoting activity has increased recently, and it appears 
to result from a large number of effects, i.e., inducing the release of 
immunosuppressive molecules by MDSCs and promoting VEGF 
release, angiogenesis, and tumor cell proliferation (23, 100). On 
the other hand, P2X7 receptor seems to restrain tumor growth by 
promoting DC/cancer cell interaction, cytokine release, chemot-
axis, and infiltration of immune cells in the TME (53). Therefore, 

both strategies either stimulating or blocking P2X7 receptor have 
been studied to hinder cancer growth (46, 197).

P2X7 receptor overstimulation by using high levels of eATP 
was the first attempt to increase tumor cell death through its 
known apoptotic/necrotic function. Administration of very high 
levels of ATP (25 and 50  mM) effectively reduced the growth 
of hormone-refractory prostate cancer and melanoma tumors 
in  vivo, respectively (198, 199). However, these studies were 
performed in nude athymic mice, therefore excluding a role for 
the immune system on this antitumor effect. eATP acting exclu-
sively through P2X7 receptor also inhibited colon carcinoma and 
melanoma tumor growth in C57BL/6 wild-type mice, by perturb-
ing the balance between two signaling axes—P2X7-PI3K/AKT 
and P2X7-AMPK-PRAS40-mTOR—and promoting tumor cell 
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death through autophagy (48). Again, this result was focused on 
the stimulation of the tumor P2X7 receptor, and no mention to 
the host counterpart was reported. Regardless of these promis-
ing results, three clinical trials fail to demonstrate a beneficial 
impact by using exogenous ATP to treat cancer in patients, being 
an improvement of the quality of life the only positive effect 
demonstrated (200–202). Besides eATP, the use of P2X7 receptor 
agonists, such as BzATP and ATPγS, has also been employed to 
delay tumor growth, but once more, only the effect on the P2X7 
receptor tumor side was evaluated (203, 204). Accordingly, BzATP 
inhibited the formation of DMBA/TPA-induced skin papillomas 
and carcinomas in wild-type FVB mice (203), while ATPγS 
decreased the tumor growth and metastasis of mouse mammary 
carcinoma cells in wild-type C57BL/6 mice (204).

P2X7 receptor activation through the eATP released from 
the irradiation and chemotherapy has also an important role in 
controlling tumor response to those treatments (205–207). In 
glioblastoma, P2X7 receptor expression by tumor cells dictated 
patient response to radiotherapy (208). Accordingly, high levels of 
P2X7 receptor are associated with good prognosis and increased 
glioma radiosensitivity. Moreover, P2X7 silencing prevents tumor 
response to radiation in an in vivo model of glioblastoma, rein-
forcing that functional P2X7 expression is crucial for an efficient 
radiotherapy response (208). Likewise, eATP acting via P2X7 
receptor on DCs is determinant for the chemotherapy-induced 
ICD, stimulating host-specific immune responses (206, 207). We 
recently showed the importance of P2X7 receptor overactivation 
in colon cancer cells to potentiate chemotherapy cytotoxicity 
(209). According to our data, hyperthermia—by influencing 
plasma membrane fluidity—boosted P2X7 functional responses 
to eATP, leading to maximal tumor cell death, mainly in associa-
tion with chemotherapy drugs. Therefore, P2X7 hyperactivation 
by hyperthermia might be used as an adjunct therapy in the 
treatment of cancer.

Tumor P2X7 receptor expression and activation and its impact 
on cancer proliferation have long been investigated. However, 
two recent studies also demonstrated a critical role for the host 
P2X7 receptor in stimulating the antitumoral immune response 
and restraining the tumor growth (47, 79). Correspondingly, ani-
mals with host genetic deletion of P2X7 were not able to mount 
an effective host inflammatory response, reporting reduced cell 
infiltration at the tumor bed, accelerated tumor growth, and 
metastatic spreading in comparison to the wild-type group.

Although the overstimulation of P2X7 receptor with agonists 
appears to be the most logical strategy to decrease tumor prolifera-
tion, by inducing both tumor cell death and antitumor immune 
response, recent studies have been demonstrated that blocking 
P2X7 receptor activation is more efficacious in preventing tumor 
growth, mainly in those cancers in which P2X7 receptor is over-
expressed (28, 46, 47, 100). Administration of P2X7 inhibitors 
and antagonists has been shown to decrease cancer cell growth or 
spreading in animal models of colon (100), breast (115) and ovar-
ian carcinoma (210), neuroblastoma (101), melanoma (47, 100), 
and glioma (211).

Several inhibitors and antagonists have been used to block 
P2X7 receptor in tumor cells, including oxidized-ATP (100, 
212), BBG (210), AZ10606120 (47, 100, 101), A740003 (47, 101), 

A438079 (115), and also P2X7 blocking antibodies (115). A recent 
phase I clinical trial using anti-P2X7 antibody to treat basal cell 
carcinoma demonstrated exciting results and showed that 65% of 
patients respond to the treatment and had a significant reduction 
on the lesion area (213). The authors support the use of antibod-
ies against P2X7 receptor as a safe and well tolerable treatment 
for BBC.

An important point to be considered is that the use of P2X7 
receptor antagonists have been shown to demonstrate strong 
anticancer effects in immune-competent mice expressing P2X7 
in both tumor and host side (47, 100), suggesting that blocking 
P2X7 on the tumor side is critical to the final antitumor action, 
despite the mild immunosuppressive effect due to inhibition of 
the P2X7 on the host side (53). Regardless, more studies inves-
tigating the P2X7 receptor function in host/tumor interactions, 
and their impact on tumor growth will indicate the feasibility of 
using P2X7 as a new target in cancer therapy.

Blocking CD39 Activity—First Step to 
inhibit Ado Formation and Restore 
Antitumor immune Response
The conversion of eATP to Ado, either in physiological or patho-
logical conditions, is mainly coordinated by the sequential activity 
of CD39 and CD73. In the TME, those enzymes will affect tumor 
growth according to their ability to produce Ado and therefore 
trigger an immunosuppressive signaling (24, 37).

Increased expression of CD39 has been widely reported in 
several tumors, such as medulloblastoma (214), sarcoma (215), 
HCC (216), pancreatic cancer (217), colorectal cancer (218, 219), 
gastric cancer (216), and endometrial cancer (220); as well as in 
infiltrating immune cells (216, 221–224) and tumor endothelial 
cells (216, 225), influencing tumor growth, metastasis and angio-
genesis. As an example, expression of CD39 by Tregs plays a per-
missive role in a mouse model of hepatic metastasis by inhibiting 
NK cell antitumor immunity and contributing to tumor immune 
escape (226).

Therefore, strategies to block CD39 activity and Ado genera-
tion has become a new approach to avoid Ado immunosuppres-
sive effects and restores the antitumor responses (36). So far, few 
approaches targeting CD39 by using pharmacological inhibitors, 
genetic deletion or antibodies have been rendered promising 
results (215, 224, 226, 227). As reported in the literature, blocking 
CD39 activity by using the inhibitor ARL67156 partially over-
comes T cell hyporesponsiveness in a subset of patient samples 
with follicular lymphoma (224). In the same line, CD39 blockage 
with both inhibitor (ARL67156) and antibody (OREG-103/
BY40) increased T cells and NK cell-mediate cytotoxicity against 
SK-MEL-5 melanoma cells (228). In an in vivo model, injection of 
POM1, a pharmacological CD39 inhibitor, was able to limit B16-
F10 melanoma and MCA 38 colonic tumor growth at the same 
rate as demonstrated in animals CD39−/− (226). Indeed, CD39 
deletion inhibited metastatic melanoma and colonic growth in 
the liver as well as decreased tumor angiogenesis (226). Similarly, 
CD39 deletion abrogated B16-F10 melanoma and LLC lung 
carcinoma tumor growth, angiogenesis, and pulmonary metas-
tases in mice (227). In another study, treatment with a specific 
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TABLe 1 | Clinical trials currently underway that are testing the potential use of anti-CD73 mAb and A2A antagonists alone or in combination with other immunotherapies 
to treat cancer.

Phase Propose of study intervention Condition iD

I Evaluate the safety, tolerability, 
pharmacokinetics, immunogenicity, 
and antitumor activity

Monotherapy: anti-CD73 mAb (MEDI9447)
or
Combination: anti-CD73 mAb (MEDI9447) and anti-PD-L1 mAb 
(MEDI4736)

Advanced solid tumors NCT02503774

I/Ib Determine the safety, tolerability, 
feasibility, and preliminary efficacy

Monotherapy: adenosine (Ado) A2A receptor antagonist (PBF-509)
or
Combination: Ado A2A receptor antagonist (PBF-509) and anti-PD-1 
mAb (PDR001)

Non-small cell lung cancer NCT02403193

I/Ib Study the safety, tolerability, and 
antitumor activity

Monotherapy: Ado A2A receptor antagonist (CPI-444)
or
Combination: Ado A2A receptor antagonist (CPI-444) and anti–PD-L1 
mAb (atezolizumab)

Non-small cell lung cancer
Malignant melanoma
Renal cell cancer
Triple negative breast cancer
Colorectal cancer
Bladder cancer
Prostate cancer

NCT02655822
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anti-CD39 antibody significantly improved survival in a lethal 
metastatic patient-derived sarcoma model (215).

Altogether, these studies indicate that blocking Ado forma-
tion through targeting CD39 is a promising strategy in cancer 
therapy not only for boosting the antitumor immune response 
(immunotherapy) but also for blocking tumor angiogenesis 
(antiangiogenic therapy). However, future studies involving the 
use of anti-CD39 antibodies will provide supportive insights into 
the potential clinical application of CD39-targeting therapy in 
oncology (36).

inhibiting CD73 Activity—Second Step  
to Block Ado Formation and improve 
Antitumor immune Response
CD73 is a 5′ ectonucleotidase enzyme that degrades extracel-
lular AMP—derived from the ATP metabolism—to Ado (37). As 
mentioned earlier, the sequential enzymatic activity of CD39 and 
CD73 is the main pathway for the generation of Ado in the tumor 
interstitium. In this context, CD73-derived Ado exerts many 
immunosuppressive effects to attenuate antitumor immunity 
(122). Likewise CD39, CD73 is expressed by cancer cells, regula-
tory immune cells, and the vasculature, therefore affecting tumor 
growth, metastasis and angiogenesis (36).

Elevated CD73 expression has been reported in several 
types of human cancers such as glioma (229–231), head and 
neck (128), melanoma (232), thyroid (233), breast (234–238), 
pancreas (239), colon (219, 240), bladder (241, 242), ovarian 
(243), prostate (244), and leukemia (126), being positively 
correlated with poor prognosis. In addition to tumor-derived 
CD73, host CD73 also negatively regulates tumor immunity 
(245). Accordingly, both hematopoietic and nonhematopoietic 
expression of CD73 is important to promote tumor immune 
escape. For example, Tregs-derived CD73 contributed to their 
immunosuppressive effects (245), while enzymatic activity of 
CD73 on tumor-associated endothelial cells restricted T  cells 
homing to tumors (127). Altogether, these data suggest that 
both tumor and host CD73 cooperatively protect tumors from 

the immune system response, favoring cancer growth and 
spreading. Supporting this assumption, studies performed with 
CD73-deficient mice showed that animals lacking CD73 have an 
increased antitumor immunity and are resistant to carcinogen-
esis (245–247). Therefore, targeting CD73 appears to be a useful 
therapeutic tool to treat cancer.

Many approaches using small molecules inhibitors such as 
ACPC and antibodies against CD73 have shown important anti-
tumor and antimetastatic effects in various preclinical models of 
melanoma (127, 245, 246, 248), fibrosarcoma (247), breast (125, 
134, 235, 249, 250), prostate (247), and ovarian cancer (123). 
Those effects are mainly attributed to the immune-stimulating 
activity of CD73 blockage on host and tumor cells. However, a role 
for CD73 in controlling cancer cell proliferation independently of 
the immune system was also reported (251). Accordingly, CD73 
gene-silencing in human tumor cells promoted cell-cycle arrest 
and apoptosis, decreasing cell growth rate in a xenograft tumor 
model.

Targeting CD73 has also been shown to suppress tumor 
angiogenesis (133, 134). Anti-CD73 therapy with monoclonal 
antibody significantly reduced tumor VEGF levels and abolished 
tumor angiogenesis in a mouse model of breast cancer (134). 
Accordingly, tumor-derived CD73 triggered VEGF production 
by tumor cells, while endothelial-derived CD73 promoted the 
formation and migration of capillary-like structures by endothe-
lial cells, demonstrating that CD73 expression on tumor and host 
cells contribute to tumor angiogenesis.

A phase I clinical trial study is currently undergoing to test 
safety, tolerability, and antitumor activity of anti-CD73 mAb, 
MEDI9447, in cancer patients (NCT02503774) (Table  1). 
MEDI9447 is a selective, potent, and non-competitive inhibitor 
of CD73 that blocks both membrane-bound and soluble states 
of this enzyme (252). Preclinical data using mouse syngenic 
CT26 colon carcinoma tumor model showed that MEDI9447 
inhibited tumor growth by promoting changes in both myeloid 
and lymphoid infiltrating leukocytes within the tumor inter-
stitium (253). Among these changes, increasing number of 
CD8+ effector T  cells and activated macrophages in the TME 
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has been reported. In addition, mice treated with a combination 
of anti-CD73 and anti-programmed cell death protein (PD)-1 
antibodies showed increased tumor rejection and survival rates 
when compared with mice treated with an individual antibody. 
Synergistic effects by combining CD73 blockade with other cur-
rently available anticancer agents, including anthracycline (254), 
radiation (160), anti-cytotoxic T-lymphocyte antigen (CTLA)-4 
antibodies (255, 256), and anti-PD-1 antibodies (255) have also 
been reported and highlight the potential clinical application 
of CD73 target therapies in combination with other anticancer 
modalities to improve antitumor immune response as well as 
tumor death.

Blocking A2A Receptor—Alternative 
Approach to Restrain Ado 
immunosuppressive effect and Boost  
the Antitumor immunity
Targeting the Ado receptor A2A is also an alternative approach 
to block the Ado immunosuppressive effect and boost the anti-
tumor immunity (36). As depicted earlier, A2A receptor plays an 
important role in triggering Ado immunosuppressive activities 
in many immune subsets. Therefore, blocking Ado A2A receptor 
with antagonist appears to be an attracting strategy, besides 
CD39 and CD73 inhibition, to increase innate and adaptive 

FigURe 3 | Therapeutic strategies to overcome tumor immune escape and boost cancer immunosurveillance in the tumor microenvironment (TME). In the 
inflammatory TME, tumor and immune cells interact to produce a favorable immunosuppressive microenvironment. Extracellular adenosine triphosphate (eATP),  
a pro-inflammatory mediator, accumulates in the TME, but it is rapidly converted to the immunosuppressive factor adenosine (Ado) via the sequential enzymatic 
activity of CD39 and CD73. Ado acting through A2A and A2B receptors inhibits dendritic cells (DCs), NK, and effector T cells activation while it enhances the 
suppressive function of Tregs, macrophages, and myeloid-derived suppressor cell (MDSC). Strategies by targeting Ado formation, i.e., by blocking CD39/CD73 
enzymes and Ado receptors (mainly A2A) will build up eATP concentration and improve the antitumor immune response. Specifically on DCs, eATP acting through 
P2X7 receptor will trigger NLRP3 inflammasome activation and IL-1β release with consequent stimulation of CD8+ and CD4+ lymphocyte-mediated antitumor 
response, which is a critical step for the efficacy of chemotherapy and radiotherapy. Therefore, combining purinergic-targeting therapies with other anticancer 
modalities may be a new strategy to overcome immune escape, potentiate antitumor immune response, and consequently restrain tumor growth.
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immune response against the tumor (153). Many studies have 
been shown the potential use of A2A antagonists alone or in com-
bination with other therapies to enhance antitumor immunity in 
preclinical models (125, 150, 257, 258). Combination therapies 
targeting both A2A receptor and co-inhibitory molecules, such 
as CTLA4 and PD-1, have shown synergistic effects (256, 257, 
259). Coadministration of A2A antagonist with anti-CTLA4 
mAb marked inhibited tumor growth and enhanced antitu-
mor immune responses in a mouse melanoma model (256). 
Moreover, dual blockade of A2A receptor and PD-1 significantly 
reduced CD73+ tumor growth and metastasis spreading as well 
as prolonged mice survival (257, 259). The mechanism of the 
combination therapy was mainly dependent on NK cells, CD8+ 
T, cells and IFN-γ. Importantly, the overexpression of CD73 by 
tumor cells was critical for the efficacy of the combined therapy, 
suggesting that CD73 might be a potential biomarker for the 
selection of patients undergoing this method of treatment. 
Supporting this statement, co-inhibition of CD73 and A2A 
receptor by either gene deletion or pharmacological therapy 
limited tumor initiation, growth, and metastasis in vivo (260). 
In the double knockout (KO) mice, tumor control required 
CD8+ T-cell and IFN-γ production within the core of tumors, 
while therapeutic activity of CD73 antibodies depend on Fc 
receptors binding. Interestingly, A2A single KO mice showed a 
significant upregulation of CD73 expression in tumor cells and 
endothelial cells, suggesting that CD73 overexpression might 
be a mechanism of escape and resistance to monotherapy with 
A2A antagonists. So far, two clinical trials (phase I) are cur-
rently underway to evaluate safety, tolerability, and antitumor 
activity of A2A antagonists as a single agent and in combination 
with PD-1/PD-L1 inhibitors in patients (NCT02403193 and 
NCT02655822) (Table  1). Therefore, associating A2A antago-
nist with other checkpoint blockade inhibitors appears to be 
a promising strategy to improve patient survival and yet many 

researchers have pointing the anti-adenosinergic signaling as 
the next-generation target in immuno-oncology.

CONCLUSiON

Despite its complexity and contradictory effects, purinergic sign-
aling has emerged as a novel targetable therapy to improve other 
anticancer modalities and cannot be underestimated considering 
its role in carcinogenesis. Strategies by blocking Ado formation 
and its immunosuppressive effects in the TME favoring eATP 
accumulation, and its pro-inflammatory effects appears to be 
the most promising approach to maximize the efficacy of other 
therapies such as immunotherapy, radiotherapy, and chemo-
therapy (Figure 3). However, considering the multifaceted effects 
of eATP and Ado in the TME, where host immune and stromal 
cells as well as tumor cells are modulated in different ways, 
choosing the most feasible purinergic target will be a challenging 
task. Ongoing and upcoming clinical trials will hopefully identify 
the best combinatorial approach to boost antitumor immune 
response and successfully restrain tumor growth.
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