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Neutrophils are the most abundant leukocytes in human blood. Upon microbial infection, 
they are massively and rapidly recruited from the circulation to sites of infection where 
they efficiently kill pathogens. To this end, neutrophils possess a variety of weapons 
that can be mobilized and become effective within hours following infection. However, 
several microbes including some Leishmania spp. have evolved a variety of mechanisms 
to escape neutrophil killing using these cells as a basis to better invade the host. In 
addition, neutrophils are also present in unhealing cutaneous lesions where their role 
remains to be defined. Here, we will review recent progress in the field and discuss the 
different strategies applied by some Leishmania parasites to escape from being killed 
by neutrophils and as recently described for Leishmania mexicana, even replicate within 
these cells. Subversion of neutrophil killing functions by Leishmania is a strategy that 
allows parasite spreading in the host with a consequent deleterious impact, transforming 
the primary protective role of neutrophils into a deleterious one.

Keywords: Leishmania, neutrophils, Leishmania survival, neutrophil extracellular traps, reactive oxygen species, 
neutrophil granules, Leishmania replication

neUTROPHiLS AnD Leishmania: A MULTiFACeTeD STORY

Neglected parasitic diseases are affecting more than one million people worldwide. Amongst 
them, leishmaniases are a complex of diseases that affects 2 million people per year across 98 
countries. The Leishmania protozoan parasites are transmitted by blood-sucking sand flies that 
deposit the parasites in the mammalian skin during their blood meal. There are more than 20 
different Leishmania species worldwide. The infecting species together with host factors determine 
the various clinical manifestations leishmaniasis can have as well as the outcome of the disease. 
Cutaneous leishmaniasis is the most predominant form of the diseases. Following infection, an 
ulcerative lesion usually appears near the insect bite site. In mucocutaneous leishmaniasis, the 
disease affects the mucocuatenous tissues of the oro-naso-pharyngeal areas and often leads to local 
tissue destruction and death due to secondary infections if left untreated. Visceral leishmaniasis 
is characterized by hepatosplenomegaly and impeded bone marrow function due to the prolifera-
tion of parasites in macrophages within these organs. If not treated, visceral leishmaniasis patients 
develop cachexia, pancytopenia, subsequent immunosuppression and they eventually succumb to 
their disease (1). There are several treatments available against leishmaniasis of which pentavalent 
antimonials have been the standard of care for decades. However, these drugs have many adverse 
effects and the emergence of drug-resistant parasites is increasing worldwide. As the increase in 
drug resistance renders the available therapeutics less efficient, the need of efficient vaccines and  
a better understanding of the diseases is crucial to fight leishmaniases (2, 3).
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Neutrophils are massively and rapidly recruited to sites of 
injury and microbial infections. They are the most abundant 
leukocytes in human blood. Neutrophils play very important 
roles in innate immunity and in the regulation of adaptive 
immune response (4, 5). They are well known for their antimi-
crobial functions, playing a decisive role in innate host defense 
against a variety of pathogens, including bacteria and fungi.  
To kill microbes, neutrophils possess an arsenal of weapons 
that include phagocytosis and subsequent microbe degradation 
within phagolysosomes, where granules fuse to rapidly release 
their microbicidal agents. Neutrophils can degranulate their 
granule content also in the local microenvironment and they can 
also kill pathogens through the production of reactive oxygen 
species (ROS). In addition, neutrophils can extrude neutrophil 
extracellular traps (NETs) that consist of a DNA backbone asso-
ciated with microbicidal proteins. NETs allow entrapping of the 
pathogens, preventing their spread, and in some cases killing 
them (6). Cytokines and chemokines released by neutrophils 
are involved in the activation and/or recruitment of other innate 
cells thereby contributing to the shaping and development of 
an adaptive immune response (7, 8). The relevance of the role 
played by neutrophils in the fight against many infections is 
underlined by the susceptibility to repeated life-threatening 
bacterial and fungal infections observed in patients suffering 
from genetically inherited or acquired neutropenia or who 
have neutrophils with functional defects (9). The important 
role of neutrophils in regulating defense against parasites and 
some viruses has more recently emerged (10, 11) and increasing 
evidence points out to a crucial role for neutrophils in leishma-
niasis disease outcome (10–13).

In contrast to their well-described protective roles in 
many infections, neutrophils may play a detrimental role in 
leishmaniasis disease development, at least in some instances. 
In addition to their early recruitment following infection, neu-
trophils were reported to infiltrate damaged tissues of human 
mucosal leishmaniasis (14) and to be present in the chronic 
form of the disease in human and animals (14–20). Following 
experimental infection with most Leishmania spp. neutrophils 
are rapidly and massively recruited to the site of parasite inocu-
lation where they rapidly phagocytose most of the parasites 
present. Several groups have used genetically neutropenic mice 
or mice rendered neutropenic by injection of anti-neutrophil 
antibodies to show the importance of this early wave of neu-
trophil on disease outcome. Collectively, most of these studies 
reported that neutropenic mice had a better disease outcome, 
indicating a negative role for neutrophils in some forms of 
cutaneous leishmaniasis (2, 21–24). In contrast, neutrophils 
may facilitate parasite clearance as observed for Leishmania 
braziliensis and Leishmania amazonensis (25–30) and for 
Leishmania donovani (31). However, L. amazonensis killing 
appeared to be parasite stage-dependent as promastigotes, the 
infecting form of the parasites, but not amastigotes, the intra-
cellular replicative forms of the parasite, were killed in vitro by  
neutrophils (32).

One of the immune evasion strategies used by Leishmania 
parasites may be linked to the status of neutrophil apoptosis 
as phagocytosis of apoptotic neutrophils has been shown to 

impair dendritic cells (DCs) maturation and the development 
of an efficient adaptive immune response [reviewed in Ref. (7)]. 
Indeed, internalization of apoptotic Leishmania major-infected 
neutrophils by DCs impaired development of Leishmania-specific 
immune response (33, 34). Interaction of apoptotic neutrophils 
with macrophages also has a negative impact on the disease (35). 
Following Leishmania delivery by sand fly bite or needle inocula-
tion, parasites were reported to induce, delay or have no impact 
on neutrophil apoptosis, depending on the Leishmania spp. or 
the origin of neutrophils. Leishmania mexicana did not influ-
ence dermal neutrophil survival ex vivo (36) and L. infantum 
did not induce neutrophil apoptosis in  vitro (37). In contrast,  
L. brasiliensis induced neutrophil apoptosis, at least in vitro (30). 
L. major infection induced murine neutrophil apoptosis in the 
dermis (22, 34) while it delayed human blood-derived neutrophil 
apoptosis (22, 34, 38, 39). These results suggest that the effect of 
Leishmania on neutrophil apoptosis may differ between murine 
and human neutrophils, or the difference observed may come 
from the diverse Leishmania spp. or neutrophil origins.

Recent data reported that a subset of low density neutrophils 
expressing HLA-DR express high levels of PDL1 in human CL 
and VL patients (19, 40), a marker promoting T cell exhaustion. 
These data suggest a novel negative role for this neutrophil 
subset in leishmaniasis.

THe DiSTinCT MeCHAniSMS USeD  
BY Leishmania spp. TO eSCAPe  
KiLLinG BY neUTROPHiLS

Leishmania are using neutrophils transiently to finally be ingested 
by macrophages, their final host. The parasites may be released 
by dying neutrophils and/or infected apoptotic neutrophils may 
be phagocytosed by macrophages. This latter process referred 
to as the “Trojan horse” entry in macrophages, confers a silent 
entry for the parasites in these cells (41). We will now discuss 
the several mechanisms used by some Leishmania spp. to escape 
neutrophil killing and even in some cases how the parasites can 
use these cells to replicate, collectively resulting in a negative 
impact on disease outcome.

Using in vivo two-photon imaging, intact and live parasites 
have been detected in neutrophils during the first days of  
L. major and L. mexicana infections, revealing that a good 
proportion of parasites can resist neutrophil microbicidal func-
tions (22, 36). Several strategies used by Leishmania parasites 
to escape killing by neutrophils have been described. During 
neutrophil development there is a continuity of granule forma-
tion, including azurophil granules (primary or peroxidase-
positive granules), specific (secondary granules), and gelatinase 
granules (tertiary granules). Secretory granules are formed last 
(42). During the maturation of myeloblasts into neutrophils, 
more than 300 different proteins are stored into granules. One of 
the ways parasites may survive in neutrophils is through inter-
ference in the process of granule fusion with the Leishmania 
containing phagosome. In vitro studies showed that L. major 
and L. donovani promastigotes regulate granule fusion with 
phagosomes, allowing azurophil but preventing specific and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Different mechanisms used by some Leishmania spp. to escape neutrophil killing. Leishmania can impair parasite destruction by neutrophils  
(A) by affecting the formation of mature phagolysosomes and their fusion with neutrophil granules, (B) by localization in non-lytic compartments, and (C) by resisting 
to the toxicity associated with reactive oxygen species production. Some Leishmania spp. can also resist to the microbicity associated with neutrophil extracellular 
trap (NET) formation (D) by directly inhibiting NET formation, or by digestion of the NET scaffold using pathogen-or vector-derived endonucleases (e). They can also 
resist NET antimicrobial factors through the expression of protease-resistant surface molecules. (F) A subset of L. mexicana amastigotes was shown to replicate in 
neutrophils.
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gelatinase granule fusion with parasite-containing phagosomes 
(43). This prevents their destruction by neutrophils microbi-
cidal granule contents (Figure 1A). In addition, L. donovani was 
shown to traffic to non-lytic compartments within neutrophils 
(44), establishing yet another strategy to escape the neutrophil 
killing machinery (Figure 1B).

In addition to the release of antimicrobial molecules, the 
assembly of a functional NADPH oxidase (NOX2) is playing a 
crucial role for neutrophil microbicidal function (45). NOX2 
assembly is inducing the generation of reactive oxygen spe-
cies (ROS), a process called oxidative burst. Interference with 
oxidative burst increases pathogen survival within neutrophils. 
It has been shown that L. major does not elicit the generation 
of ROS upon phagocytosis by human neutrophils (Figure 1C) 

(43). However, L. braziliensis induce high levels of ROS produc-
tion upon infection of human and murine neutrophils but ROS 
generation in human neutrophils did not affect parasite survival 
(31, 45). In addition to its major role in neutrophil intracellular 
killing functions, NOX2-mediated generation of ROS has also 
been reported to be crucial for classical (NADPH-dependent) 
NET formation. This is exemplified by the lack of NET forma-
tion in patients with chronic granulomatous disease (46, 47) 
and restoration of NET formation in these patients upon re-
introduction of NOX2 by genetic engineering (48). Moreover, 
there also exists ROS-independent NET release. L. amazonensis 
promastigotes were shown to elicit both types of NETs and be 
killed by them (29). Thus, the impact of parasites on ROS forma-
tion is also Leishmania spp. dependent.
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PATHOGenS eSCAPe FROM neTs

Upon activation, neutrophils can form NETs that can entrap 
and often kill pathogens, reviewed in Ref. (49). However, several 
microbes including some Leishmania spp. have developed vari-
ous mechanisms to escape NET trapping and/or killing. Whether 
parasites are killed or not by NETs depends on the involved 
Leishmania spp. For instance, in humans, L. amazonensis was 
shown to induce NET formation and to be killed by them (50).  
In contrast, NETs failed to kill (36) L. infantum (51) and L. dono-
vani (52) parasites. Furthermore, murine NETs were not able to 
kill L. mexicana (36).

A very efficient strategy used by Leishmania infantum (51) is 
to prevent NET formation by suppressing or inducing decreased 
efficiency of the oxidative burst (Figure 1C).

As another strategy to avoid NET killing, several microbes 
express nucleases that degrade the NET DNA backbone. For 
example, surface DNAse and wall anchored nuclease expression 
were reported in Gram-positive bacteria (53–56) and for several 
Gram-negative bacteria (53, 57–59). NET degrading endo-
nucleases have also been reported in Gram-negative bacteria 
(60–62). Expression of the enzyme 3′nucleotidase/nuclease by 
Leishmania also contributes to protection from the microbicidal 
activity of NETs as shown for L. infantum (51). In addition,  
the parasite sand fly vector may interfere with NET formation. 
The saliva of the New World Leishmania vector, Lutzomyia 
longipalpis, was shown to contain an endonuclease capable of 
degrading NETs (63). As salivary gland proteins are deposited by 
the sandfly in the host during the insect blood meal its endonu-
cleases may indirectly influence the role of NETs in the disease 
pathogenesis (Figure 1D).

Microbes may also avoid NET killing through the synthesis 
of cell surface components rendering them resistant to NET-
associated protease activity (Figure 1E). This has been observed 
for L. amazonensis and L. donovani. Leishmania surface coat is 
densely packed with lipophosphoglycan (LPG), a glycoconjugate 
that is polymorphic among Leishmania spp. and which is differ-
entially expressed in the infective promastigote form compared 
to the replicative amastigote form (64). In L. amazonensis, LPG 
was shown to induce NET formation, and confer resistance 
to NET-mediated killing by forming a thick glycocalyx that 
protects the parasite from microbicidal agents (50). In contrast, 
LPG of L. donovani, was shown not to induce NET formation, 
although it also conferred protection against NET mediated 
parasite killing (52). Peripheral blood neutrophils from active  
VL patients were unable to release NETs despite an active phe-
notype (65), showing that the replicating amastigote stage of the 
parasites also has an impact on neutrophil functions, contribut-
ing to the pathology of the disease.

neUTROPHiLS AS A PLACe TO 
RePLiCATe

Neutrophils are short-lived non-dividing cells that become 
rapidly apoptotic in the circulation. However, during inflam-
mation and infection, the neutrophil lifespan can be extended 

to several days (66), although it still remains difficult to estimate 
neutrophil lifespan in tissues, mostly due to technical issues. For 
some Leishmania spp. transient inhibition or delay of neutrophil 
apoptosis is an obvious strategy to allow prolongation of their 
presence within these cells. The PI3K/AKT, ERK1/2 p28MAPK 
pathways which maintain expression of the antiapoptotic Mcl1 
protein were shown to contribute to prolonged neutrophil lifes-
pan in L. major infection (67).

The induction of delayed neutrophil apoptosis together with 
the inhibition of neutrophil killing machinery elicited by some 
Leishmania spp. suggested that the parasite could use these cells 
to replicate. Leishmania parasites have two life cycle stages, the 
infective flagellated promastigote form which is elongated with 
a size comprised between 6 and 12 µm, not including the flagel-
lum length, and the replicative, non-flagellated amastigote form, 
which is intracellular and of smaller size (3–5  µm). The sand 
fly is depositing in the skin metacyclic promastigotes, a process 
inducing rapid recruitment of neutrophils. It is therefore not 
surprising that most studies investigating interactions between 
neutrophils and Leishmania have been performed with the 
promastigote form of the parasite, reviewed in Ref. (12, 13, 24). 
In addition, neutrophils have been detected in smears of unheal-
ing cutaneous lesions of L. braziliensis patients, at a time when 
the parasite is in its intracellular amastigote form. The presence 
of neutrophil-attracting chemokine mRNA was observed in 
biopsies of patients with chronic lesions due to L. panamensis 
and L. braziliensis, suggesting neutrophil presence in the lesion. 
Also, neutrophils were observed in biopsies of tegumentary leish-
maniasis patients (14, 68–71). Furthermore, neutrophil presence 
was also observed in unhealing lesions of experimental cutane-
ous leishmaniasis following L. major (18, 21) and L. mexicana 
infection (36). Very few studies have investigated the interactions 
between neutrophils and the amastigote form of the parasite. The 
group of Soong was the first to show that neutrophils internalized 
in  vitro L. amazonensis and L. braziliensis amastigotes. While  
L. amazonensis amastigotes survived in neutrophils, L. brazil-
iensis amastigotes were efficiently killed (28, 32). We recently 
reported that L. mexicana amastigotes are also internalized 
and survive in neutrophils in vitro. After overnight incubation, 
we observed an average of one amastigote per neutrophils.  
In contrast, the majority of lesion-derived neutrophils harbored 
>2 intact amastigotes per neutrophil. Imaging of the lesion-
derived neutrophils showed the presence of several aligned 
amastigotes within neutrophils, suggesting possible parasite 
replication in these cells. Parasite uptake by neutrophils was rela-
tively neutral, eliciting low level of apoptosis or neutrophil activa-
tion in infected neutrophils (20). To measure parasite replication, 
we generated transgenic parasites expressing a photoconvertible 
GFP mKikume gene (72). These L. mexSWITCH parasites express 
constitutively green fluorescence that can be converted to red 
fluorescence upon exposure to a pulse of violet light. Upon cell 
division, the photoconverted red proteins are diluted as de novo 
green protein in synthesized, and the fluorescence recovery after 
conversion (FRAC) is measured in dividing cells. Analysis of 
FRAC by imaging flow cytometry and time-lapse microscopy 
revealed that, 48  h after photoconversion, a subset of highly 
infected neutrophils containing more than 4 amastigotes per cell 
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showed high replication (Figure 1F). Amastigotes were found in 
large vesicular acidic compartment. In macrophages, Leishmania 
amastigotes reside in phagolysosome-like compartments called 
parasitophorous vacuoles (PVs) where they multiply. For most 
Leishmania spp. one amastigote is enclosed within these PVs with 
little vacuole space. However, L. mexicana and L. amazonensis 
form upon division communal large PVs containing numerous 
amastigotes, a process diluting toxic components and directly 
linked to parasite evasion to host immune responses (73, 74). 
We observed larger Lysosensor-positive vacuoles in L. mexicana 
infected neutrophils (20), suggesting the formation of communal 
PVs in neutrophils. It remains to be determined whether the 
replication of amastigotes in neutrophils is linked to the presence 
of these large PVs.

The majority of parasite replication is taking place in mac-
rophages, and most lesional parasites divide at a slow rate even 
if, as observed in vitro, there is likely variability in the growth 
rates of parasites in unhealing cutaneous lesions (75). Indeed, in 
a recent study a small subset of parasites that appeared to divide 
rapidly was reported. These parasites could use neutrophils as a 
safe transient place to replicate.

The demonstration that a subset of L. mexicana parasites 
is able to replicate within neutrophils revealed a novel role of 
neutrophils that can act as a niche for parasite replication during  
the chronic phase of infection. However, there very likely exist 
differences in the ability of the invading Leishmania spp. to rep-
licate in neutrophils. These could originate from parasite factors 
but also from host factors.

COnCLUDinG ReMARKS

The primary function of neutrophils in innate immunity resides 
in killing invading microorganisms. It is therefore not surpris-
ing that some pathogens have evolved several ways to escape 
elimination by these cells, allowing their silent entry in the host 
and even sometimes their replication in these cells. Caution in 
the interpretation of some of these studies should be taken as 
most human studies are performed with peripheral blood neu-
trophils that functionally differ from extravasated neutrophils 
present in inflamed tissues. To better understand the relevance 

of neutrophil functions in  vivo, experimental murine models 
are used. However, it should be kept in mind that functional 
differences exist between mouse and human neutrophils as well, 
including differences in the antimicrobial repertoire and number 
of circulating neutrophils (76). That being said, the generation 
of new tools such as two-photon microscopy imaging (77) and 
the use of photo-switchable pathogens (78) for probing pathogen 
biology during infections should allow finer investigation of the 
mechanisms used by pathogens to promote their own survival 
in neutrophils in vivo. Furthermore, neutrophils appear to be a 
more heterogeneous cell population than previously anticipated  
(79) and new markers defining mature from immature circulating 
neutrophils are emerging (80). It will thus be interesting to assess 
whether selective Leishmania spp. transient survival and/or rep-
lication occur in a specific neutrophil subset, while Leishmania 
killing would take place in other subsets.

Survival of pathogens in neutrophils is not specific to 
Leishmania, indeed several bacteria, fungi or viruses are also able 
to escape neutrophil killing and use these cells to propagate in 
the host, reviewed in Ref. (81). For instance, intracellular bacteria 
including Francisella tularensis (82), Neisseira gonorrhoae (83), 
Chlamydia pneumonia (84); and more recently, Yersina spp. (85) 
have been shown to replicate in vitro in human or murine neutro-
phils, suggesting that not only Leishmania parasites but also other 
pathogens are diverting the primary neutrophil killing function 
to their own benefit and dissemination in the invaded host. Finer 
understanding of the mechanisms used by some Leishmania spp. 
to block neutrophil effector functions will be important in the 
design of prophylactic or therapeutic measures taken against 
leishmaniasis.
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