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Innate lymphoid cells (ILCs) are a key cell type that are enriched at mucosal surfaces 
and within tissues. Our understanding of these cells is growing rapidly. Paradoxically, 
these cells play a role in maintaining tissue integrity but they also function as key drivers 
of allergy and inflammation. We present here the most recent understanding of how 
genomics has provided significant insight into how ILCs are generated and the enormous 
heterogeneity present within the canonical subsets. This has allowed the generation of a 
detailed blueprint for ILCs to become highly sensitive and adaptive sensors of environ-
mental changes and therefore exquisitely equipped to protect immune surfaces.
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iNTRODUCTiON

The importance of innate immunity has been recognized for many years. These cells play a key role in 
rapid responses to pathogens to protect the mucosal and external surfaces of the body. Natural killer 
(NK) cells and lymphoid tissue-inducer (LTi) cells are the founding members of the innate lymphoid 
family with the former identified more than 40 years ago. Over the past 10 years, a number of new 
family members have been discovered revealing an entire network of innate cells that complement 
the adaptive immune network. These cells went largely unrecognized for several decades which begs 
the question as to how they were overlooked. In this review, we summarize the current knowledge 
on innate lymphoid cell (ILC) differentiation and critically discuss the key challenges in the field in 
understanding ILC homeostatic regulation.

CANONiCAL iLC SUBSeTS

The ILC family is divided into three major groups: group 1 ILCs (ILC1s) which includes NK cells and 
ILC1s that produce interferon-γ (IFN-γ) and depend on the transcription factors Eomesodermin 
(Eomes) and T-bet; group 2 ILCs (ILC2s) that secrete IL-5 and IL-13 and are characterized by 
Gata3 expression; and group 3 ILCs (ILC3s) that express the RAR-related orphan receptor, Rorγt, 
and includes LTi cells and multiple subsets of ILC3s capable of producing IL-17 and/or IL-22 
(Figure 1A). The ILCs are distinguished from adaptive immune cells by their lack of germline rear-
ranged antigen-specific receptors and generalized lack of lineage-specific markers normally used to 
distinguish B and T cells. ILCs are not thought to traffic through tissues and are often referred to as 
“tissue-resident” (1) but their precursors can be isolated in humans from blood (2) indicating that 
these cells are not completely sessile throughout their life cycle. At the very least, they transit around 
the body to achieve their strategic positioning close to barrier surfaces to allow them to respond 
rapidly to local environmental changes.

Innate lymphoid cell subsets were initially categorized based on their phenotype, function, and 
the key transcriptional regulators that drive their development. In many aspects, these subsets mirror 
CD4+ T cell subsets although some populations such as ILC1s have been quite difficult to position 
due to their lack of specific distinguishing markers (3, 4). The current classification model has served 
as an important framework to focus our thinking around canonical subset classifications. However, 
recent analyses of elegant reporters and genomic probing of individual cells has revealed that ILCs 
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FiGURe 1 | Overview of stages of innate lymphoid cell (ILC) development. (A) Current understanding of the regulation of peripheral ILC subsets. A variety of different 
transcription factors are required for the development of peripheral ILC subsets. Key transcription factors (red) are responsible for the lineage determination of the 
canonical ILC subsets (top panel). ILC subsets can also be further differentiated and categorized based on the organ in which they reside, functional differences, or 
the expression of different receptors and surface markers (middle panel). In response to activation signals, ILCs are able to produce effector molecules and 
cytokines to mediate an appropriate immune response (bottom panel). (B) Schematic showing the current understanding of ILC development from the common 
lymphoid progenitor (CLP) through multiple intermediary stages on their way to becoming mature ILC subsets ILC1, 2, and 3. CLP has multi-lineage potential, 
including T and B cell fate, but this potential is gradually lost as the progenitors differentiate into the more lineage restricted αLP. This occurs through the 
intermediate α4β7+ CLP and αLP/common helper-like ILC precursor (CHILP) progenitors or through an alternative pathway via the early innate lymphoid progenitors 
(EILPs). Within the αLP population, the natural killer (NK) cell lineage diverges from the ILC lineage and the ILC precursor (ILCp) exclusively develops into the 
remaining mature ILCs in the periphery. (C) Dynamic regulation of the surface markers (left panel) and transcription factors (right panel) throughout the ILC ontogeny. 
The graphs show the relative RNA expression among the different ILC progenitor stages (100% represents the highest expression for each gene detected across 
the six different populations).
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are dynamically tuned resulting in enormous heterogeneity (5–8). 
Potentially, this property would enable ILCs to respond to diverse 
stimuli in “real time.” It is widely accepted that CD4+ T cell subsets 
display extraordinary plasticity allowing them adapt to a broad 
spectrum of inflammatory signals, but such a program among 
ILCs has not been appreciated until recently. Indeed, the capacity 
for ILCs to exhibit a highly flexible program may be an essential 

element for tuning ILCs to ensure responsiveness to continuous 
changes in signals encountered at mucosal barriers.

Recent findings in the field have identified conceptually new 
ideas about how the immune system is regulated and how the 
innate arm might contribute to this process. For example, the 
ILC network forms an extensive interface between the external 
environment and the adaptive immune system. Their regulation 
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TABLe 1 | Requirement for different transcription factors during innate lymphoid cell (ILC) development.

Gene Progenitors Mature cells Mouse phenotype

Natural killer 
(NK) cells

iLC1 iLC2 iLC3

Nuclear factor, interleukin 3 (E4bp4) ✓ − − − − Loss of αLP, small and fewer Peyer’s patch; normal 
lymph nodes, significantly reduced NK cells (14, 15)

Inhibitor of DNA binding 2 (Id2) − ✓ n.d. n.d. n.d. Complete loss of lymph node and Peyer’s patch 
formation, significantly reduced NK cells in KO and 
reduced IL-15 responsiveness in cKO (16, 17)

RAR-related orphan receptor gamma, 
RORγt (Rorc)

✓ − − − ✓ Complete loss of lymph node and Peyer’s patch 
formation, loss of all ILC3s (18)

B-cell lymphoma/leukemia 11B BCL11B 
(Bcl11b)

✓ − − ✓ − Impaired function of ILC2 via dysregulation of Gfi1 
and IL-33 receptor (ST2) (19–21)

Thymocyte selection-associated high 
mobility group protein (Tox)

✓ n.d. n.d. n.d. n.d. Normal NKp, loss of lymph node, and Peyer’s patch 
formation, reduced NK cells, loss of mature NK cells 
(22–24)

ETS proto-oncogene1, ETS1 (Ets1) ✓ ✓ n.d. ✓ n.d. Reduced NK cells, hyporesponsive to IL-15 and 
impaired killing and degranulation, impaired ILC2 
development.

T cell-specific transcriptions factor 1 (Tcf7) ✓ − n.d. n.d. n.d. Small Peyer’s patches, reduced NK cells in bone 
marrow but normal peripheral compartment (25, 26)

Promyelocytic leukemia zinc finger 
(Zbtb16)

✓ − ✓ ✓ ✓ [not lymphoid 
tissue-inducer (LTi)]

Not required in peripheral NK cells of LTi cells (13)

GATA-binding protein 3, GATA3 (Gata3) ✓ ✓/− ✓ ✓ − Loss of GATA3 impairs NK cell maturation (27–29)

Growth factor independent 1 
transcriptional repressor, GFI1 (Gfi1)

n.d. n.d. n.d. ✓ n.d. Regulates GATA3 expression together with 
responsiveness via IL-33 receptor (ST2) (30)

Tbx21 − ✓ ✓ n.d. ✓ Reduced NK cells, ILC1 and NCR+ ILC3; reduced 
mNK cells

Eomesodermin − ✓ n.d. n.d. n.d. Reduced NK cells and loss of mNK

Pdcd1 − ✓ n.d. ✓ n.d. Normal secondary lymphoid tissue formation (5, 9)

✓, required for development and/or maintenance; −, not required for development and/or maintenance; mNK cells, mature NK cells; KO, germline deletion; cKO, conditional  
deletion; n.d., not determined.
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is highly dynamic and relies on a highly integrated molecular 
signaling network, resulting in heterogeneity and plasticity. 
Finally, it appears to be highly complementary to the adaptive 
immune system providing a fail-safe mechanism for ensuring 
immune protection and repair processes. Excitingly, we are only 
just beginning to understand how this network of cells might 
work.

CORe TRANSCRiPTiON FACTORS 
eSTABLiSH THe iLC DiFFeReNTiATiON 
FRAMewORK

Innate lymphoid cells arise from the common lymphoid progeni-
tor (CLP) through multiple intermediary stages with changes in 
surface expression of key surface molecules and the temporal regu-
lation of transcriptional regulators to become mature ILC1, 2, and 
3 subsets (Figure 1B). Induction of the downstream molecular 
program involves the induction of α4β7 which identify the α4β7+ 
CLP (9) [also called αLP1 (10)] follow by the downmodulation 
of Flt3 expression leading to the emergence of the α lymphoid 
progenitor (αLP, also called αLP2) (10, 11). While the αLP can 

generate all ILC subset, a subpopulation seems to have lost the 
ability to generate NK cells and named common helper-like ILC 
precursor (CHILP) (12). The distinction between the αLP and 
CHILP is not clear as they appear to be very highly similar in 
their surface marker or transcription factor expression. Finally, 
the induction of promyelocytic leukemia zinc finger (PLZF) in 
the ILC precursor (ILCp) mark the bifurcation between LTi and 
NK cells with the other ILC1, 2, and 3 subsets (13). Their fate is 
guided by lineage-determining transcription factors that are also 
involved in specifying different subsets of T cells. Transcription 
factors control multiple aspects of the development of immune 
cell lineages including proliferation, migration, metabolism, 
and effector function (Table 1). Some transcription factors play 
unique roles in defining the fate of early progenitors, but increas-
ingly it is emerging that overlapping and synergistic contributions 
by transcription factors may be critical in setting the threshold 
for fate decisions and the function of an individual cell. A major 
challenge for the field now is to understand the combinatorial 
interactions between transcription factors and how they define 
ILC developmental choices.

The emergence of the innate cells from the CLP and the 
divergence of this pathway away from the adaptive lineages is 
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an extremely controlled process that involves the coordinated 
actions of several transcription factors. Detailed analysis of the 
transcriptional landscape of the ILC development from the earli-
est precursor to the committed cells has revealed that regulation of 
the different developmental stages is highly dynamic. The sequen-
tial expression of nuclear factor interleukin 3 (NFIL3), inhibitor 
of DNA binding 2 (ID2), thymocyte selection-associated high 
mobility group box protein (TOX), and GATA-binding protein 
3 (GATA3) establishes the framework for ILC differentiation (7, 
9) (Figure 1C). ID2 counterbalances the effects of E proteins to 
direct cell choices away from T and B cell outcomes (31). Other 
transcription factors such as EOMES, PLZF, transcriptions factor 
1 (TCF-1), and RUNX influence subset divergence. We now have 
new insight to the key factors that determine the fate outcome of 
progenitor cells under steady-state conditions. However, it still 
remains unclear how higher order genomic architecture estab-
lishes and maintains the differentiation program.

THe eARLY ReGULATORS: A QUARTeT

Two major transcription factors, NFIL3 and TOX, have emerged 
as critical initiators of development of early αLP. Induction of 
NFIL3 appears to be the critical initiating step in driving the αLP 
toward the ILC lineage (7, 9). NFIL3 is induced in α4β7+ CLP, but 
the factors responsible for this induction have yet to be elucidated 
(Figures 1B,C). Concomitantly, TOX and ID2 are only expressed 
at low levels in the CLP but TOX expression rapidly increases in 
the early innate lymphoid progenitors (EILPs) while ID2 levels 
remains low until the late αLP and common helper ILC (CHILP) 
stages (12, 32–34). Nevertheless, the expression of ID2 has two 
patterns in ILCps; the first phase in which ID2 is expressed at low 
levels (and the E protein E2A is concomitantly high) and does 
not appear to be required for ILC development, and the second in 
which ID2 is strongly upregulated with concurrent downregula-
tion of E2A and is essential for ILC lineage progression (9, 31). 
Indeed, while the deletion of NFIL3 blocks the development of 
the α4β7+CLP, ID2 deletion has does not appear to affect the 
development of the αLP. However, all cells derived from the ILC 
progenitor are absent in ID2−/− mice suggesting that ID2 is more 
important in late differentiation and in maintaining the long-
term identity of ILCs (16, 35). Loss of ID2 in ILCs has also been 
shown to repress genes belonging to the stem cell program such 
as Gfi1b, Tal1, Lmo2, Gata2, and Hhex (9).

Precisely how NFIL3 and TOX regulate the development of 
the ILC progenitors remains unclear. TOX-deficient progenitors 
appear to lack the expression of key factors thought to be essential 
for ILC development including Gata3, Rora, Rorc, Tcf7, and Zbtb16 
(22). Despite this, Nfil3 expression, which could be regulated by 
TOX, was not found to be different from that of wild-type cells. 
Thus, more work will be necessary to ascertain whether NFIL3 is 
a direct target of TOX or not. NFIL3 has been shown to directly 
bind to ID2; however, it is not clear that this binding is actually 
responsible for the induction of ID2 (36). In ILC progenitors, ID2 
expression has been found to be reduced when NFIL3 is deleted 
in the hematopoietic compartment. However, in mature cells, 
ablation of NFIL3 did not alter ID2 expression suggesting that 
the developmental stage of the cell influenced the interactions 

(37, 38). Furthermore, overexpression of either ID2 or TOX in 
NFIL3-deficient CLPs revealed that both transcription factors 
could at least partially rescue ILC development independent 
of NFIL3. Therefore, it is likely that the key role of NFIL3 is to 
promote the emergence of ILCs by induction of the expression of 
these two key transcription factors.

eXPReSSiON PATTeRNiNG OF NFiL3 AND 
iD2 eSTABLiSHeS THe LANDSCAPe FOR 
iLCs

Although several details of the fine tuning of NFIL3 remain 
unanswered, the timing and action of NFIL3 is very interesting. 
Nfil3flox/flox mice crossed to the Id2ERT2Cre strain generated a model 
in which deletion of NFIL3 could be timed relative to ID2 (9). 
This approach demonstrated that NFIL3 expression preceded 
that of ID2 but that surprisingly, deletion of NFIL3 in ID2+ cells 
either in vivo or in vitro did not affect the subsequent develop-
ment of any of the ILC subsets. These findings are consistent 
with earlier work showing that NFIL3 was not required for the 
maintenance of mature NK  cells (14). What was particularly 
unexpected, however, in the study, was the very transient nature 
of the NFIL3 expression which was both necessary and suffi-
cient to promote ILC development. Indeed, only a short pulse 
of NFIL3 expression in the progenitors was required and it 
subsequently rapidly decreased as ILC progressed through each 
developmental stage (7, 9) and is repressed in mature cells in the 
periphery (15).

This pattern of short-lived expression found in NFIL3 may 
represent a more generalized pattern for orchestrating the 
complex integration of different transcriptional signals. This 
expression pattern has also been reported for Zbtb16 (that 
encodes PLZF), another transcription factor important for ILC 
development but which was originally implicated in NKT cell 
development (39). Mature ILCs do not express PLZF; however, 
lineage tracing experiments revealed that 60–75% of ILCs exhib-
ited a fluorescent imprint marking their previous expression of 
PLZF during development (13). In this setting, only ~5% of LTi 
cells and ~20% of NK cells were labeled indicating that bifurca-
tion of these lineages from other ILC subsets occurred before 
the induction of PLZF. The role of the transient expression of 
PLZF in ILCp is not known. Using the PLZF-reporter mice, 
Constantinides et al. (13) also showed that PLZF is expressed 
only transiently. This allowed the identification of the ILCp, but 
PLZF was subsequently downregulated after this stage. PLZF 
does not appear to be absolutely required for ILCs as deletion 
of PLZF results in ~4-fold reduction in the number of ILCs that 
develop in contrast to ablation of NFIL3 which results in more 
than a 10-fold reduction. PLZF is expressed after NFIL3 coor-
dinately with E2A and ID2 resulting in a stepwise progression 
through the early progenitor stage to generate E2AhiPLZF−ID2lo, 
E2AhiPLZF+ID2lo, E2AloPLZFhiID2hi, and E2AloPLZF−ID2hi 
expressing cells (31). In competitive situation, PLZF-deficiency 
appears selective, mainly affected ILC2s in the lamina propria 
and ILC1s in the liver (13). It was notable that ~40% of the ILC2s 
in this study were not labeled in these tracing experiments, so it 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Huang et al. ILC Diversity

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1569

remains possible that they could be derived from an alternative 
pathway that is independent of PLZF.

LOSS OF iL-7R eXPReSSiON: A New 
PROGeNiTOR OR AN ALTeRNATive 
PATHwAY?

The identification of the early ILC progenitor in the bone marrow, 
or EILP, noted for its high expression of TCF-1, has raised some 
questions around the linear model of ILC development (25). This 
EILP lacks B or T cell potential but can generate all ILC subsets 
including the NK cells similar to the αLP progenitor capacity, but 
it differs from the other precursors described as it lacks IL7Rα 
expression (25). One possibility is that IL-7Rα expression is lost 
between the αLP and the ILCp stages. Such changes could be 
regulated via posttranslational modifications though the biologi-
cal relevance for such downregulation is unclear. A second pos-
sibility is that the EILP is a precursor for an alternative pathway 
for ILC development. EILPs express high levels of NFIL3, TOX, 
and TCF-1, low levels of ID2 and PLZF is almost undetectable. 
Interestingly, the EILPs are not affected by ID2 deletion, thus 
the EILPs appear to be very similar to the IL-7R-expressing αLP. 
A comparison between these two cell types may help to better 
understand the relationship between the IL7Rα+ and IL7Rα− 
ILCps and define the factors that regulate IL-7R signaling in ILCs 
that is essential for their development. To date, TCF-1 and ID2 are 
known to be upregulated in EILP but additional transcriptional 
requirements of this progenitor have not been investigated. 
Therefore, whether EILP represents an intermediate stage of the 
ILCp, or an alternative precursor that does not fit in the current 
linear model of ILC development, remains an open question.

HeTeROGeNeiTY AND PLASTiCiTY OF 
iLCs ARe KeY TO MAiNTAiN 
HOMeOSTASiS

Initial categorization of ILC subsets relied on cytokines and 
effector molecules they produced combined with signature 
transcription factors that appeared to be central regulators of 
the different subsets. The patterns found in ILCs were aligned to 
the categorization of CD4+ T cell subsets. Unlike CD4+ T cells, 
however, it quickly emerged that several ILC phenotypes did not 
necessarily neatly fit into the unified nomenclature coined in 
2013 with subsets described as being “like” other subsets (40). The 
full spectrum of ILC heterogeneity has recently been unveiled 
using comprehensive single-cell sequencing combined with 
mass cytometry approaches which has allowed the field to bridge 
between our understanding of ILCs in mouse and man (2, 6, 41, 
42) (Figure 2A). This approach revealed that potentially as many 
as 15 transcriptionally distinct identities could be delineated in 
the small intestine and that crosstalk orchestrated via cytokines 
such as IL-12 and IL-23 and microbial signals were substantially 
responsible for mediating this subset plasticity (6). It is undoubt-
able that these approaches are transforming our understanding 
of diversity in immune cell subsets but these data also throw 
up new technical and intellectual challenges in understanding 

how diversity arises. Historically, various surface markers have 
been considered to represent “lineage specificity” but we now 
recognize that this is seldom the case, challenging that how we 
interpret complex data and underlying that subsets cannot be 
defined exclusively by particular markers or transcription factors 
(43). Nevertheless, it provides a rich landscape for understand-
ing how different stimuli affect the homeostatic balance of ILC 
subsets. It has been revealed that ILCs exhibit tissue-specific 
characteristics and this in part reflects alterations in phenotype 
that can be significantly regulated by responses to inflammation 
and infection.

The first example of ILC ability to adopt a different phenotype 
was the identification of ILC3s that downregulated RORγt but 
expressed T-bet, NK1.1, and produced IFN-γ (also known as ex-
ILC3s) (12, 44, 45) under chronic stimulation and RORγt+ ILC3 
that produced IL-17 which were found in the large intestine (46) 
(Figure 2B). IL-12 was found to be a key driver of this pathway. 
Similarly, IL-1β, together with combinations of IL-4, IL-12, and 
IL-33, can drive ILC2s to adopt an IFN-γ-producing phenotype 
called ex-ILC2 (47–49). ILC2s can be divided into two subsets: 
homeostatic or natural ILC2s which typically reside in barrier 
tissues and respond to IL-33; and inflammatory ILC2s which 
are generally not found in peripheral tissues at steady-state 
but respond to IL-25 which induces multipotency (50–53). In 
this setting, T-bet (encoded by Tbx21) was induced, whereas 
GATA3 was diminished. These studies highlight the variability 
that can occur in ILCs, particularly in  vitro as demonstrated 
for ILC2s (47–49). Indeed, even NK  cells can undergo this 
sort of transformation (54). Signaling through the TGF-β 
pathway can convert NK  cells (CD49a−CD49b+Eomes+) into 
intermediate ILC1 (CD49a+CD49b+Eomes+) and bone fide ILC1  
(CD49a+CD49b+Eomes+/−) within a tumor microenvironment. 
Strikingly, these latter ILC1 were disabled in their capacity to con-
trol local tumor growth and to prevent metastasis, while NK cells 
retained their ability to undertake immune surveillance (54). It is 
striking that once activated through these different pathways, each 
subset converges on an “IFN-γ-producing ILC1-like” phenotype. 
This suggests that this fate may represent a common outcome for 
multiple ILC subsets, even perhaps an essential adaptive program 
for all ILCs. It remains a challenge, however, to understand how 
these IFN-γ-producing cells arise and whether it represents a 
protective response or the first steps to loss of immune control 
(Figure 2B). Teasing this apart will require much more extensive 
study particularly in the context of pathogen infection, inflamma-
tion, and tumor development.

ARe MORe SUBSeTS POSSiBLe?

How ILCs populate tissues after birth or maintain their presence 
in peripheral tissue is not clear. Our current understanding indi-
cates that ILCs are almost exclusively tissue resident and that they 
do not routinely circulate throughout the body. This perception is 
predicated on the findings that during engraftment following irra-
diation, donor ILCs largely fail to replace ILCs originally found in 
the host (1). Instead, they depend on local proliferation to expand 
and replace ILCs, and it is only late in an infection or physiologi-
cal disturbance that replenishment from blood-borne precursors 
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FiGURe 2 | Heterogeneity and plasticity are prominent features of innate lymphoid cell (ILC) behavior across all subsets. (A) Deep analysis into the transcriptome of 
ILCs demonstrates that heterogeneity occurs within every subset. Depending on the type or intensity of the stimuli received by these cells, different molecular 
pathways may be activated by cells of the same subset. This results in phenotypic or functional variation and a subsequent spectrum of ILCs within each 
compartment. Whether additional subsets such as the proposed regulatory subset exist is yet to be fully determined. (B) ILC3s can adopt an ILC1-like phenotype 
when activated by IL-12. They are known as “ex-ILC3s.” In human cells, this pathway can be reversed by the action of IL-23, IL-2, and IL-1β. ILC2s are activated by 
IL-2 and IL-33. Stimulation with IL-1β primes the responsiveness of ILC2 by enhancing the expression of cytokine receptors such as IL-25R, IL-33R, and TSLP to 
potentiate ILC2 responsiveness and induce a significant increase in the population. Critically, however, IL-12 is essential to effect remodeling of the chromatin 
landscape in ILC2 allowing them to induce phenotypic changes and become more like ILC1s (ILC1-like or “ex-ILC2s”) that produce IFN-γ. Natural killer (NK) cells 
respond to TGF-β to form “intermediate ILC1” reflecting their acquisition of CD49a and bone fide ILC1. In many situations, it appears that the transcription factor 
T-bet is key to augmentation of the inflammatory program and concurrently represses signature transcription factors that typically define individual lineages.
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restores the integrity of the ILC compartment. But have we got 
this right? These findings depend on a number of assumptions. 
For example, it is presumed that the transcriptional regulators, 
surface molecules, maturity, and frequency of relatively “mature” 
ILCs are also the most useful for pinpointing circulating ILCs. 
In addition, the high similarity of markers in murine ILCs that 
are comparable in man may have obscured our ability to identify 
circulating progenitors, or more mature cells, that are critical to 
maintain tissue homeostasis.

Circulating Precursors
The first clue that programming might potentially differ between 
mouse and man came from Scoville et al. (55) who observed that 
RORγt was expressed in all human ILCs. This was in striking 
contrast to murine ILCs where RORγt expression was highly 
restricted to the ILC3 subset (18). Interestingly, CD34+ progenitors 
expressing c-kit and RORγt could generate all ILC subsets, includ-
ing NK cells. These progenitors selectively resided in secondary 
lymphoid tissues. This helped to identify the pathway of ILC 
development in man; however, the involvement of these precur-
sors remained unclear. Later, an extensive analysis of the c-kit+ 
ILCs from the blood and tissues revealed that circulating ILCp in 
humans exist and do not typically express many of the markers 
associated with mature cells but do express low levels of RORγt (2). 
Such cells are maintained in RORC-deficient patients and retain 
the potential to produce different populations of ILC except ILC3. 
Thus, it appears that high expression of RORγt is necessary to 
generate an ILC3 in both man and mouse, but these observations 
raise the question of whether in mice similar progenitors have been 
simply discounted due to their low expression of this transcription 
factor. However, while the role of RORγt in the development of 
human ILCps is unclear, transcriptomic and epigenomic analysis 
of circulating human ILCps revealed the upregulation of many 
transcription factors known to be critical for ILC development in 
mice such as NFIL3, ID2, TOX, TCF7, ZBTB16, and GATA3 (2). 
This suggests that transcriptional regulation of ILC development 
share common factors in human and mouse.

Regulatory iLCs
Innate lymphoid cell subsets appear to largely mimic those defined 
for CD4+ T cells. Recent evidence suggests that this extends to the 
presence of regulatory ILCs. Among the ILCs, NK cells have been 
described to produce IL-10 (56, 57) that acts to depress B cell (58) 
and dendritic cell immune responsiveness (59, 60) and suppress 
activation. The Ohashi group (61) strengthens the notion that a 
regulatory subset might exist. During their evaluation of a tumor-
infiltrating cell-based adoptive immunotherapy for ovarian 
cancer, it was noticed that a high frequency of CD56+CD3− cells 
was strongly correlated with suppression of tumor-infiltrating cell 
outgrowth and proposed that these cells played a regulatory role. 
While this effect has only been tested in vitro, they ascertained that 
regulatory and conventional CD56+CD3− ILCs exhibited high 
levels of the transcription factors ID2, ZBTB16 (PLZF), RUNX3, 
and TOX, but similar amounts of EOMES, TBX21, GATA3, RORA, 
and AHR, factors also shared with NK cells, ILC2s, and ILC3s. 
Very recently, however, Wang et al. (62) provide the first descrip-
tion of regulatory ILCs in mice and humans which were shown to 

be important in response to gut inflammation such as Citrobacter 
rodentium. This subset arises from an ID2-expressing progenitor 
and depends on a second inhibitor of DNA-binding protein, ID3 
but not PLZF or RORγt. Intriguingly, this subset lacks expres-
sion of any of the classical transcription factors required for the 
early steps in development by other ILCs including NFIL3, TOX, 
TCF-1, GATA3, or PLZF. Thus, it remains unclear whether the 
early progenitor is the ILCp, or alternatively a distinct progenitor 
gives rise to this subset. However, like other ILC subsets they lack 
typical lineage markers but do express CD25 and CD90 while 
autocrine expression of TGF-β1 drives expansion of this IL-10+ 
subset during inflammation and results in suppression of activa-
tion of ILC1 and ILC3.

Combined, these important studies point toward the existence 
of a regulatory subset, but important questions still remain. For 
example, how and when do regulatory ILCs emerge, what other 
transcription factors drive this process, and do they express 
receptors that can be targeted to restore immune homeostasis 
during chronic and autoimmune diseases. If they do, this proves 
another avenue to unleash the protective power of ILCs either 
within tumors or during inflammation and in maintaining nor-
mal homeostasis to prevent autoimmunity.

CONCLUDiNG ReMARKS

With increasing understanding of the regulation of the ILC, we 
realize how extensive is their ability to adapt their microenviron-
ment. While ILC subsets are often seen as innate counterpart of 
T helper cells, it may be interesting to imagine the ILCp as an 
innate counterpart of naive T cells. ILC subsets also to appear to 
be an extremely plastic population that can profoundly change 
their predicted responses in reaction of extracellular mediators. 
One important challenge will be to identify the large variety of 
environmental and host-derived signals they can integrate to 
understand the role of ILCs in the homeostasis of the tissue and 
during inflammation.
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