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The discovery of innate lymphoid cells (ILCs) with selective production of cytokines 
typically attributed to subsets of T helper cells forces immunologists to reassess the 
mechanisms by which selective effector functions arise. The parallelism between 
ILCs and T cells extends beyond these two cell types and comprises other innate-
like T  lymphocytes. Beyond the recognition of specialized effector functionalities in 
diverse lymphocytes, features typical of T  cells, such as plasticity and memory, are 
also relevant for innate lymphocytes. Herein, we review what we have learned in terms 
of the molecular mechanisms underlying these shared functions, focusing on insights 
provided by next generation sequencing technologies. We review data on the role 
of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes 
emerge developmentally whereas the much of the open chromatin regions of T cells 
are generated acutely, in an activation-dependent manner. And yet, these regions of 
open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though 
accessibility is acquired by distinct modes, the end result is that convergent signaling 
pathways may be involved. Although much is left to be learned, substantial progress 
has been made in understanding how TFs and epigenomic status contribute to ILC 
biology in terms of differentiation, specification, and plasticity.

Keywords: innate lymphoid cells, NK cells, epigenetic, regulomes, DNA accessibility, transcriptomes, transcription 
factors

iNTRODUCTiON

The immune system employs a variety of effector cells that ensure protection against diverse types of 
infections. An important strategy for host defense is that distinct immune responses are evoked by 
different pathogens, one aspect being the production of selective cytokines (1, 2). Intracellular bacte-
ria and viruses are usually eliminated through the so-called type 1 response, which is dominated by 
the release of interferon (IFN)-γ as a signature cytokine. Moreover, cells infected by these pathogens 
are recognized by immune cells with the ability to directly kill their targets by releasing perforin 
and granzymes and inducing programmed cell death (3–5). In contrast, parasites and worms evoke 
a type 2 response, characterized by the production of interleukin (IL)-4, IL-5, and IL-13, necessary 
to drive their elimination/expulsion (6, 7). Finally, extracellular pathogens and fungi are associated 
with production of the signature cytokines IL-17 and IL-22, which provide host defense at mucosal 
surfaces (8).

In many respects, the effector functions described above have been mainly associated with the 
adaptive arm of the immune system, with a largely T cell-centric point of view (9). Although NK cells 
were recognized 40 years ago, other innate lymphocytes with helper features were unknown until 
recently (10). Based on the analogy with the effector functions of T cell subsets, innate lymphoid 
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FigURe 1 | Innate lymphoid cells (ILCs) are divided into three groups analogously to T cell subsets. NK cells and other interferon-γ producing cells, namely ILC1, 
belong to the group of type 1 ILCs. Helper ILCs producing T helper (Th)2- and Th17/22-cytokines are termed ILC2 and ILC3, respectively. Type 3 ILCs comprise 
lymphoid tissue inducer-like cells and NCR+ ILC3. The different ILC subsets acquire their specific epigenomic features in a step-wise manner during development. In 
the course of specification, ILC precursors acquire regulatory elements for signature genes expressed by mature cells, while opposing fates are antagonized. During 
infection, ILCs and effector T cells undergo convergent epigenetic regulation. Transcription factors required during development and lineage-defining transcription 
factors for prototypical ILC subsets are shown.
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cells (ILCs) are currently divided into three groups (Figure  1) 
(11). Type 1 ILCs include both NK  cells and ILC1 which may 
be viewed as the innate counterpart of CD8+ cytotoxic T  lym-
phocytes, and T helper (Th) 1 cells, respectively. Similarly, ILC2 
and ILC3 comprise helper lymphocytes that promote Th2- and 
Th17/22-related responses (12–16). Lymphoid tissue inducer 
(LTi)-like cells are included in the ILC3 group, as well as, ILCs 
expressing natural cytotoxicity receptors (NCRs), found in the 
mucosal tissues (17–22). More recently, the identification of an 
ILC subset that produces IL-10 and transforming growth factor 
(TGF)-β, and suppresses effector functions of other ILCs has 
broadened this view, adding yet another ILC subset that shares 
functional properties with regulatory T cells (23). Beyond these 
functions, several other concepts of T  cell biology have been 
applied to ILCs, including memory-like responses of NK  cells 
following viral infection (24–26) and the plasticity of ILCs that 
occurs in response to environmental changes (27, 28). Despite 
the similarities, an important distinction between innate and 

adaptive lymphocytes is the characteristic poised activation state 
of ILCs, as well as, their lack of antigen receptor engagement for 
acquisition of effector functions (29–31).

The field of ILC biology is an area of intense investigation and 
it is impossible to do justice to all the rapid advances. Not only 
are ILCs being considered in terms of host defense and immune 
mediated disease, but are emerging as players in the regulation of 
metabolic homeostasis, deposition of adipose tissue and, obesity, in 
both physiological and pathological conditions (32–35). However, 
in this short essay, we will focus on how the progress of next gen-
eration sequencing (NGS) technologies has provided new insights 
into some of the aspects of ILC biology from a genome-wide 
perspective. Clues to the nature of ILC identity and function are 
revealed by their global epigenomic features and transcriptomic 
programs, providing insights into heterogeneity and plasticity, and 
new paradigms for their relationships to T cells. These concepts can 
be integrated in the context of transcription factor (TF) networks, 
differentiation, microenvironment, and infections.
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TRANSCRiPTiONAL PROgRAMS 
DeFiNiNg iLCs

The transcriptional programs defining distinct ILC lineages 
have been investigated by using both genomic and genetic tools. 
These approaches have helped to elucidate shared and distinc-
tive features of innate and adaptive lymphocytes, and the TFs 
required in regulation of ILC differentiation/functions. Although 
in homeostatic conditions ILCs share more genes with each 
other than they do with T cells (36, 37), the similarity between 
T cells and ILCs is exemplified by the common expression of a 
high number of genes and the clear reliance on many of the same 
lineage-defining transcription factors (LDTFs), also referred to as 
“master regulators” of T cell fate.

The expression of two LDTFs belonging to the T-box family, 
EOMES and T-BET (encoded by TBX21), is critical for NK cells. 
Deletion of Eomes in mouse leads to the loss of NK cells, which 
is not rescued by the expression of T-BET (38). On the other 
hand, Tbx21−/− NK cells show defects in cell turnover, trafficking, 
and functional properties (39). The constitutive expression of 
these two TFs helps to explain the poised features of NK  cells 
and highlights functionalities shared with CD8+ T cells, although 
the latter upregulate T-BET and EOMES expression after activa-
tion. Transcriptomic analyses have shown that the poised state 
of NK cells is not restricted to the expression of Ifng and genes 
required for the cytotoxic machinery, but comprises multiple 
effector molecules transcribed in resting mouse NK cells and also 
in activated/effector CD8+ T cells (37).

In contrast to NK  cells, ILC1 do not express EOMES and, 
instead, like Th1, require only T-BET for their development, as 
shown by Tbx21−/− mice (38, 40, 41). However, the ectopic expres-
sion of EOMES in ILC1 pushes their differentiation toward 
mature NK  cells, suggesting that ILC1/NK conversion could 
involve induction of EOMES (42). Recently, cells with mixed 
ILC1/NK phenotype have been identified in mouse salivary 
gland, as well as, NK cells expressing EOMES and low levels of 
T-BET in human liver (43–45). Based on expression of cytokine/
chemokine receptors and other surface markers, liver-resident ILC1 
can be viewed as being related to NKT cells. More broadly though, 
the liver ILC1 program has greater global similarity to NK  cells 
versus NKT cells (46). Although liver ILC1 are not considered pro-
totypical cytotoxic ILCs, they do express high levels of the transcripts 
encoding for granzyme A and C (Gzma, Gzmc) and can kill through 
the expression of tumor necrosis factor-related apoptosis-inducing 
ligand (36, 46, 47). Together, these findings blur the boundaries 
among the different type 1 ILCs; although, strong evidence for 
functional sub-specialization of this group of cells is still limited.

Type 2 ILCs are dependent upon GATA-3 for their develop-
ment, as this LDTF is for Th2 cells. Likewise, ILC3 require RORγt 
(encoded by RORC), which also promotes the fate of Th17/22 
cells (12). Further complexity in the ILC3 group is provided by 
the combinatorial expression and requirement of T-BET, and 
GATA-3 in NCR+ ILC3 (40, 48–53). The evidence for expres-
sion of more than one LDTF in ILCs highlights the functional 
importance of a coordinated network of TFs in regulation of ILC 
transcriptional programs. However, ILCs are not alone in this 
regard—both adaptive and innate T cells are now appreciated to 

rely on a network of TFs working in conjunction, rather than on a 
single TF as previously proposed in the monolithic view of T cell 
development (9, 31, 54).

Together with the functional options acquired by “default” 
during development, the phenotype of mature ILCs can be skewed 
toward different fates through distinct environmental stimuli 
(51, 55–60). Cytokines previously linked to the processes of dif-
ferentiation and plasticity of Th cells are now considered major 
drivers of the functional plasticity of ILCs. For instance, type 1 
features in ILC2 can be induced by IL-12 (57, 58, 60), whereas 
ILC3/ILC1 transitions can be driven by IL-12 and IL-23 (51, 55, 
56). In addition, both canonical and non-canonical pathways 
downstream of TGF-β signaling regulate NK/ILC1 conversion, 
along with imprinting of the ILC1 features, NK cell activity, and 
differentiation (43, 61–65). Thus, the environment—including 
tissue-specific signals—becomes a fundamental element to con-
sider in the regulation of global gene expression in ILCs, which 
can modify the effects of lineage identity driven by LDTFs (36, 
66–68). In this regard, the role for signal-dependent TFs, such as 
AHRs, RORs, NOTCHs (including the induction of downstream 
TFs, BCL11B, and GFI1), and STATs has become evident in 
several settings (29, 69–73).

Our understanding of the functions of key TFs involved 
in ILC differentiation is often limited by the total loss of cells 
observed in knockout mice, which limits the ability to identify 
direct targets. To overcome this issue, deletion of a single TF 
allele may still permit cell development and thus, permit evalu-
ation of the consequence of reduced TF expression. This genetic 
approach, combined with transcriptomic analysis, has been 
useful to identify a discrete number of genes directly regulated 
by T-BET and, more recently, STAT5 in ILCs (53, 74). In the case 
of STAT5, the presence of two distinct genes encoding Stat5a 
and Stat5b, provides multiple genotypes, and ILC phenotypes, to 
explore. Deletion of the entire Stat5a/b locus has profound effects 
on lymphoid development and NK cells were absent in the few 
mice that survived this genetic lesion (75). More recently, lack 
of NK cells has been observed in mice carrying a deletion of the 
Stat5a/b locus specifically in cells expressing NKp46 (76). The 
selective ablation of only one gene (using Stat5a−/− or Stat5b−/− 
mice) highlighted a major role for STAT5B upon STAT5A, in the 
maintenance and in  vitro proliferation of NK  cells (77). Thus, 
the employment of mice carrying only one allele for Stat5a 
(Stat5a+/−Stat5b−/−) or Stat5b (Stat5a−/−Stat5b+/−) represented a 
suitable compromise allowing to interfere with the amount of 
STAT5 without reaching a total ablation (74). As well, RNA-seq 
and ChIP-seq analyses helped to reveal a direct and constitutive 
role for STAT5 in maintaining the expression of genes defining 
the identity of NK cells, beyond its known role in regulation of 
survival and proliferation. Moreover, reduction in STAT5 signal-
ing perturbed other NCR+ ILCs, including ILC1 and NCR+ ILC3, 
while having less of an impact on ILC2 and LTi-like ILC3. This 
preferential, or hierarchical, requirement for STAT5 is explained 
in part by a direct role in regulation of T-BET expression on 
NCR+ ILCs.

Amidst this complexity, what is clear is that there seems to 
be no single “master regulator” for ILCs or ILC subsets (akin to 
MyoD in muscle or Pax5 in B cells); instead, as with T cells, there 
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appears to be complex orchestration of TFs that presumably exert 
their effect in a combinatorial manner and LDTFs act in concert 
with SDTFs (78).

RegULOMeS

The hard-wired effector functions of ILCs have been appreciated 
since the observation of the constitutive transcription of the Ifng 
gene in resting NK  cells, favored by an accessible chromatin 
conformation of its promoter (79, 80). Thousands of accessible 
regions have been defined, which spread throughout the chroma-
tin allowing/restraining access to TFs and other transcriptional 
regulators and determining the final outcome of gene expression. 
These sites include not only promoters, but also non-coding 
regulatory elements (REs), such as enhancers, silencers, repres-
sors, and insulators, and are called, overall, regulomes (81). The 
different types of REs can be discriminated by the presence of 
selective histone modifications or histone modifiers. For instance, 
trimethylation of histone H3 at lysine 4 (H3K4me3) is a histone 
mark enriched at the promoter of active genes; while H3K4me1, 
H3K4me2, acetylation of H3K27 (H3K27ac), and the presence of 
the acetyltransferase p300 are found at enhancer sites (82). Below, 
we will discuss how the ILC epigenomic programs contribute to 
ontogeny and function.

Ontogeny of iLCs
In sharp contrast to T cells, signals from antigen receptors are 
not required for ILC effector function nor development (29–31). 
Instead, multipotent ILC precursors, including the α-lymphoid 
progenitor, early innate lymphoid progenitor, common helper 
innate lymphoid progenitor, and ILC progenitor, are regulated in 
mouse by the programmed expression of several TFs, including 
ID2 (inhibitor of DNA binding-2), TCF1 (encoded by TCF7), 
PLZF (encoded by ZBTB16), TOX, and NFIL3 (27, 83, 84). The 
above-mentioned ILC precursors progressively lose their multi-
potentiality, becoming unipotent ILC precursors, and a new set 
of TFs is required before lineage diversification, such as BCL11B 
for ILC2 or RUNX3 for ILC1 and ILC3 (85–88). However, 
expression of these TFs is not limited to the early stages of dif-
ferentiation, as in the case of the basic helix-loop-helix TF, ID2, 
which is both required for the commitment of the entire ILC 
lineage and homeostasis of mature cells. One of ID2’s primary 
roles is to inhibit the functions of E proteins, blocking T and 
B cell development in favor of the ILC fate (89–94). Unlike PLZF 
which is required for both invariant NKT (iNKT) cell and ILC 
development, deficiency of Id2 does not alter the development 
of iNKT cells, indicating both specific and overlapping require-
ments for innate and innate-like T  cell ontogeny (41, 94, 95). 
The early steps of ILC differentiation are also characterized by 
the requirement of the basic leucine zipper TF, NFIL3 (96–98). 
In Nfil3−/− mice, generation of B, T, and NKT cells is not affected, 
while development of NK cells (99–102) and other ILC subsets 
(35, 61, 98, 103) is highly impacted. However, in the context 
of mouse cytomegalovirus infection, the signals provided by 
the triggering of the activating NK cell receptor Ly49H and by 
the proinflammatory cytokine IL-12 can overcome the require-
ment for this TF, leading to generation of NK cells with intact 

functional properties and ability to mediate memory responses 
(104). The source of these NK cells remains unknown, but their 
origin could be explained by the presence of NFIL3-alternative 
pathways of NK cell generation, as shown for other type 1 ILCs, 
such as salivary gland NK cells (105, 106) and liver ILC1 (107), 
which can develop in the absence of NFIL3. Although during 
lymphoid development, the range of NFIL3 action is restricted 
to ILCs, this TF, as well as ID2, can have a broader role, being 
required for optimal production of IL-13 and IL-10 by adap-
tive and innate T cells and for terminal differentiation of Th17 
(108–110).

How the expression of these and the other TFs expressed dur-
ing ILC development impacts the acquisition of lineage-specific 
REs has not been investigated; although at present, the small 
numbers of such cells represent a technical challenge. However, 
when ILC precursors become unipotent, progressively acquire 
distinctive lineage-specific REs (66). Indeed, after lineage 
specification committed NK and ILC2 precursors show features 
of chromatin accessibility typically found in fully developed 
NK cells and ILC2, including not only loci related to signature 
cytokines but also genes encoding for molecules acquired only 
at late stages of differentiation, as is the case of KLRG1 (66). 
Another important aspect is that chromatin accessibility of 
lineage-specific genes starts to diverge at the precursor stage. 
Consequently, the loci encoding type 2 cytokines are not acces-
sible in NK precursors, whereas the Ifng locus is not accessible 
in ILC2s, indicating that formation of the signature features of 
chromatin accessibility occurs during development, defining 
their effector function as well as restraining their alternative fates. 
In this regard, the lysine methyltransferase G9a, that catalyzes 
the repressive histone mark H3K9me2 (dimethylation of histone 
H3 at lysine 9), plays a key role in preserving the ILC2 fate (111). 
When its deletion is applied to the entire mouse hematopoietic 
system, both development in the bone marrow and homeostasis 
of tissue-resident ILC2 are highly impacted. Evidence of the 
repression of alternative fates mediated by G9a is the increased 
expression of genes associated to the type 3 response occurring 
after its deletion (111). Recently, a human ILC precursor able 
to give rise to all known ILC subsets has been defined in the 
peripheral blood (112). This precursor expresses several TFs 
related to murine ILC development, such as ID2, GATA-3, TOX, 
and TCF7, and its identity has been defined through the analysis 
of the genome-wide distribution of the histone modification 
H3K4me2 (dimethylation of Histone H3 at lysine 4) (112). This 
histone modification is present on both active and poised loci 
(113). Although LDTFs, as EOMES, TBX21, RORC, and other 
molecules present on mature ILCs are not expressed (including 
IL23R, CCR6, and signature cytokines), these genes show the 
presence of H3K4me2, indicating that they are epigenetically 
poised (112). Thus, both in human and mouse, ILC signature 
genes can acquire a complete set of REs at the precursor level, 
while the expression of these genes is induced/upregulated only 
after terminal differentiation.

Lineage Relationships and identity
The elucidation of both mouse and human ILC regulomes has 
provided global molecular evidence for their poised state and also 
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for the current functional classification. Since ILC nomenclature is 
based on the common features with T cells, a compelling question 
is the extent to which ILCs and T cells are appropriately viewed as 
two distinct “lineages” or whether their epigenomic features con-
verge reflecting their effector features. Interestingly, in homeostatic 
conditions, the chromatin accessibility of distinct ILC and T cell 
subsets seems to be divergent, as observed in both human and 
mouse (66, 67). Similar conclusions have been obtained through 
analyses of a class of enhancers highly linked with cell identity, 
called stretched- or super-enhancers (SE) (67). In contrast, the 
patterns of chromatin accessibility of ILCs and T cells converge 
in the infection settings, as a part of the shared transcriptional/
epigenetic programs. Indeed, upon Nippostrongilus brasiliensis 
infection in mouse, the transition from naïve to Th2 cells requires 
a wholesale remodeling of the chromatin but nonetheless, Th2 
regulomes converge with those of ILC2 (66). In the same way, 
after human cytomegalovirus infection, the DNA-methylation 
patterns of adaptive NK cells parallel those of cytotoxic/effector 
CD8+ T cells (114). These NK cells show downregulation of the 
TF PLZF and peculiar functional properties which occur thanks 
to the regulation of the DNA-methylation state of key NK  cell 
genes, including TFs and signaling proteins (114, 115).

When compared with transcriptomes, ILC regulomes are 
reportedly less dependent on acute environmental effects, and 
more sensitive to discriminate lineage identity (66); however, the 
extent to which ILC regulomes are malleable is clearly worthy of 
further investigation. Of note, after microbiota depletion, both 
intestinal ILC1 and ILC2 lose a portion of their signature REs and 
acquire type 3 features; while their global identity is preserved 
(68). Definition of ILC identity relies on the presence of very 
well-defined clusters of enhancers, as shown by the genome-wide 
distribution of p300 and histone marks (66–68). In contrast, our 
understanding of the specific role for single/specific REs in regula-
tion of gene expression in ILCs is largely unknown. Another area 
that is in its infancy is the understanding of the function of cis-REs 
associated with expression of long non-coding RNAs (lncRNAs). 
One lncRNA termed RNA-demarcated regulatory region of ID2 
(Roid) is essential for the expression of ID2 selectively on mature 
type 1 ILCs, in mouse (116). Beyond the initial role in driving 
differentiation of the ILC lineage, ID2 is required for homeostatic 
regulation of differentiated cells, such as type 1 and type 3 ILCs 
(116, 117), while the ectopic expression of ID1 in the thymus 
induces a general increase of the numbers of ILC2 in mice (118). 
Through regulation of the accessibility of the Id2 locus, this cis-RE 
and its related lncRNA, Roid, control identity, differentiation, and 
functions of both NK and ILC1. These data point out that, along 
with TFs and REs, lncRNAs can represent another layer of epige-
netic regulation in ILCs (119). In this context, another lncRNA, 
lncKdm2b, contributes to the maintenance of murine ILC3 by 
promoting the expression of ZFP292, recruiting SATB1, and the 
nuclear remodeling factor complex to the Zfp292 promoter (120).

ReCeNT ADvANCeS FROM  
SiNgLe-CeLL ANALYSeS

The development of new strategies for single-cell analysis has 
made possible the characterization of the expression profiles of 

transcripts and proteins (121). Gene expression at the single-cell 
level can now be profiled by several single-cell RNA-sequencing 
(scRNA-seq) protocols, with different sensitivity, accuracy, 
cost-efficiency, and drawbacks (122, 123). Technical challenges 
notwithstanding, single-cell resolution has revealed substantial 
heterogeneity among ILCs. In mouse, 15 transcriptional states 
have been identified for intestinal CD127+ ILCs, including two 
transcriptional profiles that did not fall in any previously recog-
nized ILC category (68). Similarly, the features of CD127+ ILCs 
and NK cells isolated from tonsils have been dissected in humans 
(124). The scRNA-seq approach has been also a key to clarify 
the heterogeneity of ILC precursors in mouse, which has led to 
establish the relevance of BCL11B in the differentiation process 
and to the identification of PD-1 as an early checkpoint in ILC2 
development (125). Notably, treatment with PD-1 antibodies 
acts on ILCs in mouse models of infection (influenza and N. 
brasiliensis) and papain-induced acute lung inflammation (125, 
126). In the context of fetal development, the requirement of 
NOTCH in lymphoid progenitors has been also dissected, such 
as the lineage relationship between LTi cells and other ILC line-
ages. These findings suggest a clear bifurcation in fetal lymphoid 
progenitors which involves an LTi precursor expressing TCF1 
but not PLZF (127, 128). Despite evidence for such astonish-
ing multiplicity of states of ILCs, what is less clear is whether 
these data are indicative of stable features of the cells or simply 
snapshots of transient states that emerge in many or all of the 
cells in a given population.

Recent methods allow for parallel measurement of single-
cell transcriptomes and protein expression in addition to flow 
cytometry-based scRNA-seq techniques (129, 130). In the con-
text of protein expression, time of flight mass cytometry followed 
by computational techniques has been used to dissect human 
ILCs in several tissues through evaluation of protein expression, 
based on a cytometry panel consisting of 38 transition element 
isotopes-labeled antibodies (131). Although this study contrib-
utes to unravel the complexity of ILCs between individuals and 
tissues, it also questions the existence of the prototypical ILC1 
subset in human [as defined previously in Ref. (132)]. Beyond 
the technical details underlying the failure to reveal T-BET+ ILC1 
in human tissues and the limitations of this approach [explained 
in Ref. (133)], the definition of human type 1 ILC populations 
remains a subject of debate, due to the absence of specific mark-
ers and the expression of molecules associated to T cell biology, 
including intracellular expression of CD3 and surface expression 
of CD5 (134, 135). Despite the increasing awareness of ILC 
heterogeneity, it will be important to clarify to what extent the 
degree of complexity defines truly distinct ILC subpopulations, 
with different functions, or whether reflects a range of activation 
states within a single population.

CONCLUSiON

Given that ILC regulomes are acquired independently of anti-
gen receptor signals, a key unanswered issue is to understand 
how endogenous and exogenous factors function as drivers of 
chromatin organization. To what extent do endogenous TFs 
expressed during development contribute and how to exogenous 
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and environmental factors including the microbiome, diet, and 
cytokines contribute to the development of the epigenomic land-
scape? What factors are common to all lymphocytes and which 
are subset or situationally specific? One prevailing view is that 
lineage-specifying TFs bind to thousands of places in the genome 
and have “pervasive” effects on high-order chromatin structure 
and accessibility of critical loci. We are beginning to understand 
these processes in B  cells and T  cells (136–138). Even for dif-
ferentiated ILCs, it will be important to understand how acute 
activation does or does not continue to modify regulomes to drive 
gene expression. How do epigenomic modifications, chromatin 
looping, and transcription relate? Technical limitations related 
to the small numbers of ILCs limit our understanding of global 
three-dimensional chromatin structure at present; however, 
given the rate of advances in this field it seems unlikely that this 
will remain a barrier for long. Additionally, unraveling the signals 
present within the different bone marrow niches underlying 
acquisition of regulomes and functional specification will help to 
discriminate the signaling pathways involved.

The development of mouse models with conditional deletion 
of genes or cell types has helped to understand how similar ILCs 
and T cells are in terms of differentiation and function, and in 
which contexts they can play distinct roles. In human, primary 
immunodeficiency syndromes have revealed specific functions 
for NK cells in controlling viral infections (139, 140), while evi-
dence for ILC redundancy has been recently provided (141). The 
appearance of distinct ILC subsets can precede that of B and T cells 
during vertebrate evolution (142), suggesting that prototypical 
effector programs have evolved along with the repertoire of effec-
tor lymphocytes. Of consequence, the redundant transcriptional/
epigenetic regulation and, probably, functions of ILCs, innate-
like, and adaptive T cells can be certainly seen as a key factor to 

improve the overall fitness of a species. Interestingly, the different 
effector programs appear to follow different routes of evolution. 
Indeed, type 2 cytokines seem to emerge after type 1 and type 3 
cytokines, despite the early appearance of TFs belonging to the 
GATA family, implying an initial role in lymphoid development 
for GATA-3, above regulation of type 2 response (143, 144). Thus, 
one aspect to evaluate will be the degree of conservation relative to 
the SEs, spreading along cytokine loci, and defining cell identity, 
and the TFs underlying these important switches. The increased 
resolution and sensitivity of NGS technology has been providing 
a pivotal contribution to elucidate the mechanisms of epigenomic 
regulation underlying ILC development/effector functions and 
to identify REs distinctive of each ILC subset. The possibility 
of combining scRNA-seq and clustered regularly interspaced 
short palindromic repeats (CRISPR)-pooled screening will allow 
analysis of genomic perturbation on transcriptomes within the 
same cell (145, 146). Thus, this combination of genome-editing 
and single-cell techniques will enable elucidation of gene func-
tion and its loss-of-function phenotype at single-cell level, but 
also the functions of REs that contribute to identity, development 
and functions of lymphoid cells.
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