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Mucosal epithelia encounter both physicochemical and biological stress during their 
life and have evolved several mechanisms to deal with them, including regulation of 
immune cell functions. Stressed and damaged cells need to be cleared to control local 
inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor 
is one of the most direct mechanisms involved in the recognition of stressed cells by 
the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn 
mediate the activation of lymphocytes of both innate and adaptive arms of the immune 
system. This review focuses on different conditions that are able to modulate NKG2D 
ligand expression on the epithelia. Special attention is given to the mechanisms of 
immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. 
Different types of stress, including viral and bacterial infections, chronic inflammation, 
and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D 
ligand modulation, and the implications for tissue homeostasis are discussed.
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inTRODUCTiOn

Mucosal epithelia represent the frontline of multicellular organisms, and they are continuously 
exposed to several types of stress. Pathogens and environmental stress (thermal, oxidative, and 
chemical) can result in cell damage and loss of tissue function. To control inflammation and pro-
mote tissue repair, different mechanisms for the detection and elimination of stressed cells have 
evolved, including activation of the immune system.

NKG2D is a C-type lectin-like activating/co-stimulatory receptor expressed by innate and adap-
tive lymphocytes, such as natural killer (NK) cells, CD8+ αβ T cells, γδ T cells, and iNKT cells. 
Engagement of NKG2D triggers the cytolytic function of effector CD8+ T cells independently of 
TCR recognition in some circumstances (1–4) while directly activates the effector functions of 
NK cells, namely, cytolytic granule release and IFNγ secretion. Thus, expression of NKG2D ligands 
is strictly linked to the immunosurveillance of stressed cells by innate lymphoid cells, especially 
NK  cells (5–7). In humans, NKG2D ligands are MICA and MICB (MHC class I chain-related 
proteins A and B), encoded by genes in the MHC region, and ULBP1-6 (UL16-binding proteins), 
with the encoding genes located on chromosome 6. Murine NKG2D ligands include five different 
isoforms of RAE-1 (retinoic acid early inducible-1), MULT-1 (murine ULBP-like transcript-1), 
and three different isoforms of H60 (histocompatibility 60) (8). These molecules are present at 
low or undetectable levels on normal cells (9, 10) but are rapidly induced upon cellular stress 
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TABLe 1 | Modulation of NKG2D ligand expression following different types of 
stress and pattern recognition receptor (PRR) involvement.

Type of stress Tissue PRR  
(if any)

nKG2D ligand 
modulation

Reference

Rotavirus Gut TLR3 ↑ RAE-1 (21)

Lactobacillus Gut – ↓ RAE-1 (22)

Salmonella typhimurium Gut TLR9 ↓ RAE-1
↓ MULT-1
↓ H60

(24)

Ischemia Kidney TLR4 ↑ RAE-1
↑ MULT-1

(25)

Crohn’s disease (chronic 
inflammation)

Gut – ↑ MICA (31)

Escherichia coli 
(pathogenic)

Gut – ↑ MICA (32)

Celiac disease (chronic 
inflammation)

Gut – ↑ MICA/B (39)

ER stress Gut – ↑ MULT-1 (40)

Akkermansia muciniphila Gut – ↓ MICA/B (56)

Oxidative Lung – ↑ MICA/B
↑ ULBP2

(59)

Pseudomonas aeruginosa Lung – ↑ RAE-1 (60)

Cigarette smoke Lung TLR3/7/9 ↑ RAE-1
↑ MICA

(62–65)

↑, stands for upregulation; ↓, stands for downregulation on the indicated tissue; ER, 
endoplasmic reticulum.
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and are frequently upregulated in virus-infected and neoplastic 
cells (11–13). Even if it is known that the promoter region of 
the MICA gene contains a heat-shock element able to respond 
to cellular stress (14), only recently the molecular mechanisms 
driving NKG2D ligand expression during cellular stress have 
more deeply been investigated (15).

Expression of NKG2D ligands has been shown in tissues from 
patients with chronic inflammatory diseases, including rheuma-
toid arthritis (16, 17), type 1 diabetes (18), and atherosclerosis 
(19); much less is known regarding NKG2D ligand expression 
and relevance in mucosal epithelia during both normal and stress 
conditions.

This review focuses on different conditions that are able to 
modulate NKG2D ligands on epithelial cells, and, in particular, 
on the role of NKG2D/NKG2D ligands in controlling the homeo-
stasis of the gut and lung epithelia during inflammation. Recent 
findings link toll-like receptor (TLR) signaling to NKG2D ligand 
expression, and we can now think of epithelial and immune cells 
as an integrated system able to deal promptly with environmental 
stress.

SenSinG THe STReSS: inTeRPLAY 
BeTween TLRs AnD nKG2D LiGAnDS

Among the pattern recognition receptors, TLRs play a key role 
in innate immunity, serving as first line sensors of structur-
ally conserved bacterial and viral components, the so-called 
pathogen-associated molecular patterns. It is clear that TLRs can 
be triggered also by endogenous ligands, such as nucleic acids 
released by necrotic cells and matrix components generated dur-
ing tissue injury, collectively called damage-associated molecular 
patterns. As TLR engagement leads to the production of inflam-
matory cytokines and chemokines, which contribute to local 
inflammation and leukocyte recruitment, the recent findings 
showing that TLR signaling is able to modulate the NKG2D axis 
and thus lymphocyte activation are of great interest (Table 1).

Rotaviruses are causative of intestinal alterations leading 
to diarrhea, and it has been reported that in mice viral dsRNA 
from rotavirus genome induces severe intestinal injury via 
TLR3 activation (20). Indeed, upon stimulation, TLR3 forces 
intestinal epithelial cells (IECs) to express both IL-15 and RAE-
1, which promote mucosal damage by activating intraepithelial 
lymphocytes (IELs), in particular CD8αα+ T cells, engaging their 
NKG2D receptor (21). In this scenario, Tada and colleagues have 
shown that probiotics belonging to Lactobacillus strains are able 
to reduce the levels of IL-15 and RAE-1, and at the same time 
to increase the level of IL-10 in the intestine, thus performing 
immunomodulatory activities (22) (Figure 1). Interestingly, the 
NKG2D axis is modulated in an opposite way by TLR9 during 
Salmonella typhimurium infection. S. typhimurium is an impor-
tant food-derived pathogen and unmethylated CpG-containing 
DNA from S. typhimurium is recognized by TLR9 (23). TLR9 
triggering promotes the accumulation of IkBα, resulting in strong 
inhibition of the NF-kB pathway and thus controlling intestinal 
tissue inflammation. On the contrary, in TLR9-deficient mice, 

TLR9 signal deficiency releases its inhibition on NF-kB and leads 
to pro-IL-1β expression in IECs. In addition, lack of TLR9 signal 
causes activation of NLRP3 inflammasomes, resulting in pro-IL-
1β processing and IL-1β secretion. Secreted IL-1β acts in an auto-
crine way stimulating IECs to expose NKG2D ligands (namely, 
RAE-1, MULT-1, and H60) and with a paracrine mechanism 
induces the expression of NKG2D on IELs (24). This positive loop 
augments the susceptibility of IECs to the cytotoxicity of IELs 
leading to the breaking of the epithelial barrier and to the spread 
of S. typhimurium infection (Figure 1).

TLR-dependent NKG2D ligand expression has also been 
observed in mouse kidney during renal ischemia–reperfusion 
injury (25). HMGB1 is a DNA-binding protein showing inflam-
matory function after ischemia–reperfusion injury by binding 
TLR4 (26–28). Chen and colleagues have reported that HMGB1 
can induce RAE-1 and MULT-1 upregulation on injured kidney 
cells through a TLR4/MyD88-dependent signaling (25), suggest-
ing a contribution of the NKG2D axis during tissue damage after 
ischemia. Accordingly, NK cell depletion has been demonstrated 
to ameliorate kidney damage following ischemia, with NK cells 
having a direct role in killing tubular epithelial cells via perforin 
secretion (29).

MODULATiOn OF nKG2D LiGAnD 
eXPReSSiOn DURinG CHROniC 
inFLAMMATiOn: THe GUT MODeL

The gut system represents a peculiar challenge for the immune 
system, as it is continuously exposed to commensal bacteria and 
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FiGURe 1 | RAE-1 modulation in mouse intestinal epithelial cell (IEC) by gut pathogens and commensal bacteria. How RAE-1 (encoded by Raet1) is regulated after 
toll-like receptor (TLR) engagement is schematically depicted. The apical localization of RAE-1 is inferred based on its similarity to human ULBP1–3 structure. The 
mechanisms through which Lactobacillus strains are able to reduce the levels of RAE-1 and IL-15 are only partially known.
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food antigens. IECs constitutively express MICA and MICB, even 
if at low levels (14, 30), while much less is known regarding ULBP 
proteins. In physiological conditions, this expression does not 
lead to an immune response, but during chronic inflammatory 
diseases, MICA/B-expressing cells become target of IELs, namely, 
intraepithelial NK cells, γδ T cells, and CD8+ αβ T cells. Although 
with different etiology, both Crohn’s disease and celiac disease 
are characterized by chronic inflammation. This type of stress 
strongly relies on the relationship between the environment and 
the immune system.

Crohn’s Disease
MICA expression has been found significantly increased on 
IECs isolated from patients with Crohn’s disease, with higher 

levels in the macroscopically affected areas (31). Whether this 
upregulation is causative of the inflammation or a consequence 
of tissue damage is still unclear. Nevertheless, the upregulation 
of MICA has been associated with the expansion of a mucosal 
NKG2D+CD4+ T cell population able to promote a Th1 response, 
thus contributing to tissue inflammation and damage (31). There 
is evidence of a direct link between persistent MICA expression, 
innate lymphocyte activation and Th1 cytokine production in 
a model of pathogenic Escherichia coli infection (32), suggest-
ing that this host–bacteria interaction may be relevant to the 
pathogenesis of Crohn’s disease, as adherent E. coli strains have 
been isolated from inflammatory bowel disease (IBD) patients 
(33, 34). The presence of adherent pathogenic E. coli triggers a 
rapid increase of MICA expression on the surface of intestinal 
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cells after the interaction of the microbial adhesin AfaE with the 
cellular protein CD55, also known as the decay-accelerating fac-
tor (32). This event leads to NK cell activation with production 
of high levels of IFN-γ. As other human enteric pathogens, such 
as enteroviruses, use CD55 for cell entry (35, 36), it is possible to 
speculate that the in loco MICA overexpression occurring during 
chronic inflammation in unresolved infections contributes to 
lymphocyte activation associated with Crohn’s disease. Based on 
these findings, targeting the interaction between NKG2D and 
MICA may be seen as a promising strategy to reduce inflam-
mation. Results of a randomized controlled trial for the use of 
an anti-NKG2D monoclonal antibody (NNC0142-0002) in 
active Crohn’s disease have reported no major improvement, but 
further investigations regarding dose ranging and dose regimen 
are needed (37). Furthermore, NKG2D ligands may have a wider 
role than stress sensors, contributing to the homeostatic control 
of the immune system, since a study by La Scaleia and colleagues 
has shown that NKG2D ligands, namely MICA/B and ULBP1–2, 
are upregulated not only on the epithelium of gut but also on the 
immune infiltrate in IBD lesions (38).

Celiac Disease
Celiac disease is an immune-mediated disease characterized by 
damage to the small intestine in response to gluten exposure. 
Interestingly, there is evidence for a direct link between the 
expression of NKG2D ligands in the inflamed mucosa and cel-
lular stress. Indeed, a similar MICA/B pattern of expression in the 
gut of celiac patients and in different in vitro models of cellular 
stress has been observed. In both cases, MICA/B were located 
in stress granules commonly observed after oxidative and endo-
plasmic reticulum (ER) stress (39). A recent study by Hosomi 
and colleagues has disclosed a molecular mechanism through 
which ER stress is associated with MULT-1 upregulation in IECs. 
In a mouse model of ER stress, the ER stress-related transcrip-
tion factor C/EBP homology protein, a major component of the 
unfolded protein response, induces the transcription of the Ulbp1 
gene leading to MULT-1 cellular surface expression. MULT-1 
upregulation has been linked to the activation of intraepithelial 
group 1 innate lymphoid cells (NK cells and ILC1) and innate-like 
T cells (such as CD8αα+ T cells), which contribute to mucosal 
inflammation in an NKG2D-mediated manner (40). Expression 
of NKG2D ligands in celiac disease can also be induced by 
cytokines, among which IL-15 seems to play a major role (41–45). 
Indeed, IL-15 has been shown to rapidly induce the expression of 
MICA and to relocate it from the cytosol to the surface membrane 
of enterocytes, where can be engaged by NKG2D-expressing IELs 
(3, 46, 47). On the other hand, MICA/B expression has been 
found also in the cytoplasm of intraepithelial and lamina propria 
lymphocytes (39). This intracellular localization of MICA/B in 
T cells during active celiac disease has been postulated to avoid 
overactivated T cell homeostatic regulation, thus contributing to 
tissue inflammation and damage.

An interesting issue to be considered for both Crohn’s disease 
and celiac disease regards NKG2D ligand polymorphism. MICA 

gene is highly polymorphic with more than one hundred alleles, 
which affect both RNA and protein expression levels (48). Some 
studies have assessed the prevalence of specific MICA alleles in 
IBD patients, with contrasting or not conclusive results (49). 
MICA allele*007 was associated with ulcerative colitis but not 
with Crohn’s disease in a British population (50), but this finding 
was not confirmed in a German cohort (51). MICA*008, instead, 
has been found overrepresented in celiac disease patients, but 
this could be ascribed to the linkage disequilibrium between 
HLA-B*08 and MICA*008 (52). Notably, MICA isoforms con-
taining a methionine at position 129 bind NKG2D with high 
affinity, whereas those with a valine bind NKG2D with low affin-
ity (53). Whether this diversity influences IBD is still unclear. A 
higher frequency of MICA-129met/met and a lower frequency 
of MICA-129val/met genotypes was observed in Spanish IBD 
patients compared with healthy controls (54). On the other hand, 
a study conducted in Chinese patients showed a higher frequency 
of the MICA-129val/val genotype in patients with ulcerative 
colitis (55).

The broad expression of NKG2D ligands on both epithelial 
cells and lymphocytes of the intestinal tract not only in patho-
logical but also physiological conditions is intriguing but still 
unexplained. It may represent a state of alert ready to become 
active in response to stress, or, in more general terms, be part 
of tissue homeostasis regulation. On the other hand, it may be 
accountable for the state of permanent mild inflammation that 
characterizes the gut due to microbiota and food antigens. In 
support of the idea that the microbiota can be a main force driv-
ing the expression of NKG2D ligands on IECs is the observation 
that antibiotic administration and feeding are able to strongly 
modify NKG2D ligand expression (56). Germ-reducing condi-
tions, such as ampicillin treatment, induce higher levels of 
NKG2D ligands, while food intake (i.e., xylooligosaccharides) 
or drug treatment supporting gut colonization by Akkermansia 
muciniphila decrease NKG2D ligand expression. An interesting 
association between the above conditions and the intestinal lev-
els of IL-15 has been postulated, once again linking the inflam-
matory milieu to NKG2D ligands (56). Dietary contribution in 
the protection of gut inflammation has been investigated also 
in mice fed with a gluten-free diet. This food regimen leads to a 
reduced expression of NKG2D on DX5+ NK cells as well as to an 
increased number of CD8+ γδ T cells expressing TGF-β and the 
inhibitory receptor NKG2A, thus performing immunomodula-
tory functions (57, 58). Altogether, these findings reveal the 
importance of the NKG2D system in the homeostatic regulation 
of the intestinal mucosa.

ROLe OF nKG2D in THe AiRwAY 
ePiTHeLiUM FOLLOwinG STReSS

The respiratory tract is often under attack of environmental 
pathogens and is equipped with different populations of NKG2D-
expressing lymphocytes. Bronchial airway epithelial cells consti-
tutively express MICA, MICB, and ULBP1–4 transcripts, while 
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cell surface expression is largely absent in normal conditions. 
However, upon oxidative stress, NKG2D ligands become visible 
at the protein level on the cellular membrane, with a molecular 
mechanism based on the ERK pathway (59). The capability of 
stressed airway epithelial cells to rapidly express NKG2D ligands 
suggests that they are able to directly engage and activate the 
immune system. This finding has been confirmed in mice with 
lung Pseudomonas aeruginosa infection. Acute infection stimu-
lates the alveolar epithelium to express RAE-1, and epithelial cell 
death (likely due to the activation of cytotoxic NKG2D-bearing 
lymphocytes) is associated with increased bacterial clearance 
(60). Pulmonary P. aeruginosa infection is also associated with 
increased levels of IL-1β, TNF-α, and IFN-γ, which may be 
another effect of NKG2D engagement. Thus, NKG2D ligand 
expression leads to a competent host response that can be blocked 
with NKG2D-specific antibody (60).

The NKG2D system plays an important role in lung homeo-
stasis also in the event of physicochemical stress, as demonstrated 
in chronic obstructive pulmonary disease (COPD). COPD is a 
severe form of airway epithelium inflammation largely due to 
cigarette smoke exposure. Cigarette smoke is known to induce 
necrotic and apoptotic cell death with concomitant nucleic acid 
release (61). This leads to TLR3/7/9 activation and, with an 
unknown mechanism, to RAE-1 expression on mucosal airway 
epithelial cells. The consequent inflammation and NKG2D-
driven cytotoxicity is responsible for further tissue damage, 
worsening the initial cigarette smoke exposure. NK cells become 
hyperresponsive breaking the balance between injury and repair 
(62–64). Notably, NKG2D ligand overexpression in transgenic 
mice is sufficient to induce pulmonary emphysema, strongly 
suggesting that NKG2D/NKG2D ligand axis via cytotoxic lym-
phocyte activation plays a major role in alveolar epithelial injury 
(65). The strong relationship between NKG2D ligand expres-
sion and COPD has been further confirmed by the finding of 
enhanced MICA expression in the airway epithelium specimens 
from smokers (65).

COnCLUDinG ReMARKS

Expression of NKG2D ligands can be achieved in several 
circumstances, ranging from viral and bacterial infections to 
physiochemical stress (Table 1). This versatility is needed to face 
a plethora of stressful stimuli with common pathways leading to 
the involvement of the immune system. As a result, intracellular 
insults are associated with intercellular responses, with great 
advantage for the whole organism. However, only recently the 
molecular mechanisms underlining these processes have been 
investigated, and many questions remain unanswered:

 I. Which ligand is displayed? Is this choice stress type 
dependent?

 II. Do different ligands engage the receptor in different ways?
 III. What is the contribution of NKG2D ligands to the pathogen-

esis of gut and lung inflammatory diseases? Does NKG2D 
ligand polymorphism play a role in IBD?

Indeed, both NKG2D and NKG2D ligand genes are highly 
polymorphic. This polymorphism has been associated with 
host–pathogen coevolution, with great relevance for viral infec-
tions, but functional consequences have also been described 
during hematopoietic transplantation and cancer immuno-
surveillance (48, 66, 67). The impact of this variability in the 
context of stress response and inflammation still needs to be 
fully elucidated.

Another important point to be considered is the strict polarity 
of epithelial tissues. In the gut, the apical side of the epithelial layer 
displays different functions from the basolateral side, where IELs 
are located. Human ULBP1–3 and murine RAE-1 are anchored 
to the cell membrane via a glycosylphosphatidylinositol molecule 
and thus are supposed to be trapped in the lipid raft-enriched 
apical side of epithelial cells (Figure 1), while MICA presents a 
basolateral-targeting motif in his structure (68). Hence, MICA 
expression is prone to a rapid recognition by NKG2D-bearing 
IELs, while ULBP1–3 and murine RAE-1 become available only 
in the event of epithelial polarity breaking, as result of infection 
or autoimmunity (69). Remarkably, MICA allele*008, due to its 
truncated cytoplasmic tail, lacks the basolateral-targeting motif 
and changes its localization, leading to hypothesize a different 
NKG2D engagement (68, 69). Furthermore, it is now clear that 
NKG2D ligand transcript and even protein expression does 
not always mean cell surface exposure, with obvious functional 
implications (70, 71).

Great interest is growing regarding the role of the micro-
biome in human pathophysiology, as commensal bacteria can 
establish an immune regulatory milieu in the intestine (72, 
73). The articles here reported suggest that, beside the produc-
tion of TGF-β and IL-10, modulation of the NKG2D axis is a 
key function in this context. Indeed, it is now emerging that 
the NKG2D receptor and NKG2D ligands not only function as 
stress sensor molecules but also play a pivotal role in shaping 
innate and adaptive lymphocyte populations, thus contribut-
ing to the homeostatic regulation of the mucosal immune 
system.
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