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Melanoma is a highly aggressive form of skin cancer that frequently metastasizes to 
vital organs, where it is often difficult to treat with traditional therapies such as surgery 
and radiation. In such cases of metastatic disease, immunotherapy has emerged in 
recent years as an exciting treatment option for melanoma patients. Despite unprec-
edented successes with immune therapy in the clinic, many patients still experience 
disease relapse, and others fail to respond at all, thus highlighting the need to better 
understand factors that influence the efficacy of antitumor immune responses. At the 
heart of antitumor immunity are dendritic cells (DCs), an innate population of cells that 
function as critical regulators of immune tolerance and activation. As such, DCs have the 
potential to serve as important targets and delivery agents of cancer immunotherapies. 
Even immunotherapies that do not directly target or employ DCs, such as checkpoint 
blockade therapy and adoptive cell transfer therapy, are likely to rely on DCs that 
shape the quality of therapy-associated antitumor immunity. Therefore, understanding 
factors that regulate the function of tumor-associated DCs is critical for optimizing both 
current and future immunotherapeutic strategies for treating melanoma. To this end, 
this review focuses on advances in our understanding of DC function in the context 
of melanoma, with particular emphasis on (1) the role of immunogenic cell death in 
eliciting tumor-associated DC activation, (2) immunosuppression of DC function by 
melanoma-associated factors in the tumor microenvironment, (3) metabolic constraints 
on the activation of tumor-associated DCs, and (4) the role of the microbiome in shaping 
the immunogenicity of DCs and the overall quality of anti-melanoma immune responses 
they mediate. Additionally, this review highlights novel DC-based immunotherapies for 
melanoma that are emerging from recent progress in each of these areas of investiga-
tion, and it discusses current issues and questions that will need to be addressed in 
future studies aimed at optimizing the function of melanoma-associated DCs and the 
antitumor immune responses they direct against this cancer.

Keywords: dendritic cell, tumor, cancer immunotherapy, melanoma, immune suppression, immunogenic cell 
death, immunometabolism, microbiome

iNTRODUCTiON

Melanoma is responsible for ~10,000 deaths in the United States and ~55,000 deaths worldwide each 
year, making it the cause of over 75% of skin cancer-related deaths (1, 2). Importantly, data collected 
by the SEER Program show that melanoma incidence rates have continually risen the last 40 years 
(3), and a recent study projects melanoma incidence to continue increasing through at least 2022 
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(4). In the U.S. alone, annual costs for treatment and productivity 
losses associated with melanoma are near $3.3 billion (5). These 
numbers are even more staggering when considering the U.S. 
ranks only third in melanoma incidence worldwide (6), thus 
highlighting the need to address melanoma as a global public 
health concern.

Although it is the least common form of skin cancer, mela-
noma is by far the most lethal due to its propensity to metastasize 
to several vital organs, including the brain, lungs, liver, and other 
visceral organs (7). While surgical removal of primary melano-
mas is highly successful in eradicating disease prior to metastasis, 
many melanoma patients are not diagnosed until later stages of 
malignant disease. In these cases, surgery is often not possible or 
is largely ineffective (8). Moreover, traditional therapies such as 
chemotherapy and radiation also exhibit limited efficacy against 
malignant melanoma and are characterized by variable response 
rates, lack of durable responses, toxicity, and minimal impact 
on survival (9, 10). In recent years, important insights into the 
basic biology of melanoma progression have led to the develop-
ment of several targeted therapies that have shown promise in 
the treatment of metastatic melanoma patients. In particular, 
vemurafenib, trametinib, dabrafenib, and other inhibitors of the 
BRAF–MEK signaling pathway that is hyperactive in melanoma 
patients bearing BRAFV600 mutations have proven superior to 
traditional chemotherapy in terms of both antitumor activity 
and clinical outcome (11–13). Unfortunately, drug resistance 
to BRAF or MEK inhibitors often develops within the first year 
of treatment and is accompanied by disease progression in 
many melanoma patients (14–16). While combination therapy 
with BRAF–MEK inhibitors delays melanoma progression 
and improves overall survival as compared to monotherapy, 
development of multi-drug resistance still leads to disease 
relapse in many patients (17, 18). A similar story has unfolded 
with regard to even the most promising immunotherapies for 
melanoma. Checkpoint blockade therapies with monoclonal 
antibodies targeting inhibitory receptors such as CTLA-4 and 
PD-1 on CD8+ T  lymphocytes have been developed to over-
ride cell intrinsic mechanisms that limit overstimulation of 
T cells and have dramatically improved both antitumor T cell 
function and clinical responses in melanoma patients. Both 
monotherapy and combinatorial approaches with nivolumab 
(anti-PD-1), pembrolizumab (anti-PD-1), and ipilimumab 
(anti-CTLA-4) have been promising, with reports of complete 
and objective responses in as high as 22 and 61% of melanoma 
patients, respectively (19–26). Despite these successes, though, 
many melanoma patients do not respond to these therapies, 
and others often experience disease relapse in as early as the 
first few months of treatment (27–29). Likewise, adoptive cell 
transfer (ACT) therapies that employ either naturally occurring 
tumor-infiltrating lymphocytes or genetically engineered T lym-
phocytes have produced complete tumor regression in as high as 
25% of melanoma patients, though many other patients receive 
no clinical benefit from these regimens (30, 31). Therefore, while 
recent advances in the treatment of metastatic melanoma are 
encouraging, it is critical that we continue to explore strategies 
that will expand treatment options and optimize clinical out-
come for patients with this disease.

Dendritic cells (DCs) have long been appreciated for their 
roles in the induction and maintenance of antitumor immune 
responses and are known to be critical regulators of both antitu-
mor immune activation and immune tolerance. This dichotomy 
is highlighted by the variable outcomes of early trials employ-
ing DC-based therapies in melanoma patients. While tumor 
vaccines targeting host antigen (Ag)-presenting cells in  situ or 
utilizing exogenous tumor Ag-loaded DC induced immunogenic 
responses that correlated with clinical benefits in a modest per-
centage of patients (32–35), many patients exhibited no clinical 
response to these therapies, and some immunization maneuvers 
even led to diminished tumor-specific T cell responses and the 
induction of immune tolerance, thereby potentially exacerbating 
disease progression (36, 37). Lessons learned from these first-
generation cancer vaccines guided second-generation vaccina-
tion strategies that aimed to improve upon previous failures by 
(1) targeting tumor Ag to particular DC subsets in  situ or (2) 
employing maturation cocktails to promote the immunostimu-
latory activity of exogenously generated monocyte-derived 
DCs. In addition to pulsing these latter DCs with recombinant 
synthetic peptides or tumor cell lysates, other approaches for 
tumor Ag loading onto exogenous DCs were also explored, 
including RNA/DNA electroporation and fusion of tumor cells 
to DCs. Details of these approaches have been described more 
extensively in recent reviews (38–40), and their translation to the 
clinic is highlighted in a recent Trial Watch (41). In brief, despite 
the improved immunogenicity of many of these approaches, they 
have unfortunately not been met with the success of checkpoint 
blockade and ACT therapies, and objective response rates have 
rarely exceeded 15%. Nevertheless, significant efforts in recent 
years have further improved our understanding of factors that 
regulate DC function in the context of cancer, and insights from 
this work have suggested novel strategies for improving the 
immunogenicity of both endogenous and exogenous DC. At the 
same time, advances in genetic engineering and other approaches 
that enable the manipulation of DC function are spearheading 
the translation of this basic research on DC immunobiology 
into novel clinical applications. Together, these findings have 
reinvigorated the pursuit of cutting-edge approaches that take 
advantage of the potential of DC as potent stimulators of robust, 
targeted antitumor immune responses, offering great promise for 
the future of DC-based cancer immunotherapies.

NeXT-GeNeRATiON DC-BASeD 
iMMUNOTHeRAPY FOR MeLANOMA

Although first- and second-generation DC vaccines, as well as 
other tumor Ag-based vaccines, have not yielded significant 
clinical benefit in a large percentage of melanoma patients to 
date, their relatively good safety profiles and ability to induce 
antitumor immune responses in some patients have encouraged 
the pursuit of next-generation melanoma vaccines that aim to 
improve upon the previous limitations of DC-based immu-
notherapy for this cancer. A major focus of one class of next-
generation DC vaccines is the utilization of naturally occurring 
DC subsets, which differs from the artificial ex vivo generation 
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of monocyte-derived and CD34+ precursor-derived DC that 
predominated both first- and second-generation DC vaccination 
protocols. Though large clinical trials are needed to define which 
DC subsets provide optimal therapeutic efficacy in particular 
settings, early trials with plasmacytoid DC (pDC) and CD1c+ 
myeloid DC (mDC) have both shown promise in melanoma 
patients. Intranodal injection of pDC that had been activated 
and pulsed with melanocyte differentiation Ag-derived peptides 
into tumor-free lymph nodes of patients with distant metastatic 
melanoma-induced Ag-specific CD8+ T cell responses in nearly 
50% of patients, and although the sample size was too small to 
make definitive assessments of clinical efficacy, a comparison 
of clinical outcomes for these patients versus matched control 
patients undergoing dacarbazine chemotherapy suggest vac-
cination benefits for both progression-free survival and overall 
survival (42). Likewise, immunization of stage IIIc/IV melanoma 
patients with autologous, peptide-pulsed CD1c+ mDC promoted 
Ag-specific CD8+ T cell responses in 33% of tested patients and 
induced long-term progression-free survival (12–35 months) in 
nearly 30% of patients (43). Other next-generation vaccination 
approaches currently being explored include immunization 
with tumor-specific neoantigens (either alone or loaded onto 
DC) that promote responses against mutated tumor-specific 
epitopes (44–46) as well as maneuvers that induce local or 
systemic activation of endogenous, tumor Ag-presenting DC 
(47, 48). These next-generation DC-based vaccines and the ways 
in which they might be incorporated as part of combinatorial 
regimens into the current cancer immunotherapy landscape that 
is being dominated by checkpoint blockade and ACT therapies 
have recently been reviewed more thoroughly elsewhere (49). 
Importantly, optimization of these next-generation approaches 
going forward will require careful consideration of the many 
factors that have emerged as regulators of DC function in the 
context of cancer. In this regard, this review highlights recent 
advances in our understanding of factors that influence DC 
function in melanoma immunity, including the immunogenicity 
of tumor cell death, immunosuppressive networks within the 
tumor microenvironment, tumor-altered immunometabolism, 
and microbiome-associated regulation of DC function and 
DC-mediated antitumor immunity. Additionally, particular 
focus is given to therapeutic strategies building on this knowledge 
that aim to improve the quality of next-generation DC-based 
immunotherapies for the treatment of melanoma.

iNDUCTiON OF iMMUNOGeNiC CeLL 
DeATH (iCD) AS A MeANS OF 
PROMOTiNG DC-MeDiATeD ANTiTUMOR 
iMMUNiTY

iCD and DC Activation
As one of the primary mediators of immune surveillance, DC 
function as key sentinels that aim to maintain homeostasis 
within the body, invoking immune tolerance in the steady state 
and immune activation in times of stress, such as that which 
occurs during a pathogenic infection. In the steady state, DCs 
exist as immature, inactivated cells that are highly phagocytic but 

tolerogenic in nature, expressing low levels of the costimulatory 
molecules and proinflammatory cytokines/chemokines neces-
sary to invoke immune activation and effector cell recruitment 
to peripheral tissues. On the other hand, upregulation of these 
cell surface and soluble immunostimulatory molecules during 
DC maturation and activation promotes the induction of adap-
tive immunity capable of eliminating a particular source of Ag 
(50). While it was originally thought that DC maturation and 
activation status, and in turn the ability of DC to induce immune 
tolerance versus activation, was dictated solely by self/non-self 
discrimination (51), more recently, it has become appreciated 
that regardless of how self or foreign a source of Ag is, it is the 
microenvironmental cues within host tissues that are critical 
in driving the “friend or foe” decision made by DC upon Ag 
encounter (52). In this way, immature DC that encounter and 
phagocytose cells dying naturally from normal turnover can 
remove this cellular debris without risking aberrant autoimmune 
activation, while those that encounter cells dying from infection 
or other forms of stress (such as those ultimately imposed on at 
least some of the cancer cells within a growing tumor) receive 
“danger signals” that promote their maturation, activation, and 
ability to stimulate immune responses to combat the source of 
“danger.” In the context of cancer, several of these “danger sig-
nals” have now been identified as damage-associated molecular 
patterns (DAMPs) (53). These include cell surface calreticulin 
and other endoplasmic reticulum (ER) chaperones exposed fol-
lowing the unfolded protein response, autophagy-mediated or 
conventional secretion of ATP, interleukin-1β (IL-1β) secretion 
as a result of inflammasome signaling, release of high-mobility 
group box 1 (HMGB1), and cell surface exposure/release of 
annexin A1, though this latter protein has been shown to promote 
both DC activation (54) and inhibition (55) in different settings, 
and its role as a DAMP is controversial. Nucleic acids released 
from dying tumor cells are another well-characterized DAMP 
that may signal through cytoplasmic sensors such as RIG-I or the 
TLR7/8/9-MyD88 pathway to stimulate DC. Additionally, their 
induction of type I IFN secretion by dying tumor cells can also 
lead to autocrine signals that trigger release of chemokines such 
as CXCL10 that promote recruitment of immune cell popula-
tions to the tumor (53, 56). Ultimately, it is the engagement of 
these types of DAMPs by pattern recognition receptors on DC 
that “alerts” these cells to an ICD and in turn promotes their 
stimulation of immune reactivity against “dangerous” immuno-
gens (Figure 1). With this revised understanding of “danger/no 
danger” discrimination as the key regulator of immune activa-
tion, inducers of ICD in cancer have become a major area of 
investigation because of their potential to promote DC-mediated 
antitumor immunity.

Chemotherapy-Driven iCD and its 
Potential for Activation of endogenous 
Tumor-Associated DC
In recent years, a number of anticancer regimens have been 
investigated for their ability to induce ICD and enhance 
DC-based cancer immunotherapies (57–61). Interestingly, while 
it was once thought to be at odds with cancer immunotherapy 
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FiGURe 1 | The influence of immunogenic versus non-immunogenic tumor cell death on dendritic cell (DC) maturation/activation and DC-mediated antitumor 
immunity. Non-immunogenic tumor cell death does not elicit DC maturation or activation, leaving DC in an immature state in which they either (1) fail to “sense” 
tumor cell death and therefore do not acquire tumor antigen (Ag) for presentation to naïve T lymphocytes or (2) acquire tumor Ag through phagocytosis and induce 
T cell tolerance. On the other hand, immunogenic tumor cell death, which can be elicited by various physical, chemical, and biological modalities, results in the 
release of damage-associated molecular patterns (DAMPs) that are recognized by pattern recognition receptors on DC, resulting in the delivery of “danger” signals 
that promote the maturation and activation of DC capable of stimulating antitumor T cell activation.
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because of its non-specific targeting of rapidly dividing cells 
(which could include not only tumor cells but also lymphocytes 
engaged in an antitumor immune response), chemotherapy has 
recently been revisited as a means of promoting ICD of tumor 
cells. Indeed, a number of chemotherapeutic agents approved 
for the treatment of various cancers, including doxorubicin, 
oxaliplatin, mitoxantrone, and others, are now known to 
induce ICD of some tumor cells (62). Dacarbazine is the only 
FDA-approved chemotherapeutic agent for the treatment of 
melanoma, and though its use in isolation has not produced 
clinical benefits of major significance (63), it has been shown to 
promote the efficacy of a peptide-based vaccine for melanoma 
patients by enhancing repertoire diversity of Melan-A-specific 
CTL (64, 65), suggesting that the benefit of dacarbazine as part 
of combinatorial therapy may be derived from its induction of 
melanoma ICD. Likewise, mitoxantrone has been implicated in 
ICD in an inducible murine model of Braf-driven melanoma, 
where the antitumor effects of this chemotherapeutic were 
both autophagy- and T  lymphocyte-dependent (66). Studies 
with other chemotherapeutic agents have demonstrated either 
direct immunogenicity of killed melanoma cells or expression/

release of ICD biomarkers by melanoma cells exposed to a 
particular drug. In the B16-OVA model, the immunogenicity 
of doxorubicin-induced cell death was shown to be dependent 
on DC, as depletion of these cells by diphtheria toxin treatment 
of mice carrying the diphtheria toxin receptor transgene under 
control of the CD11c promoter prevented the accumulation of 
OVA257-specific CD8+ T  cells that otherwise occurred in the 
lymph node draining the injection site. Although the OVA Ag in 
this model is more akin to a completely foreign oncoviral tumor 
Ag, this same study demonstrated in a humanized model of the 
B16-F10 murine melanoma cell line that tumor cells treated with 
doxorubicin and then injected into HLA-A2 transgenic hosts also 
conferred significant protection against a subsequent challenge 
with live tumor cells (67). Similarly, CD8+ T cell responses were 
also elicited against endogenous gp100 Ag in mice immunized 
with oxilaplatin-treated, but not live, B16-F10 cells (68). Others 
have also shown that lysates from oxaliplatin-treated B16-F10 
melanoma cells were found to be immunogenic, conferring par-
tial protection against subsequent challenge with live tumor cells, 
and this chemotherapy-driven immunogenicity was associated 
with markers of ICD that include cell surface calreticulin and 
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release of ATP and HMGB1 (69). Proinflammatory cytokines/
chemokines and cell surface heat shock protein 90 (HSP90) are 
ICD biomarkers expressed by the human A375 melanoma cell 
line following treatment with melphalan, an alkylating agent 
whose toxicity against A375 cells promoted DC maturation 
in vitro. Similar effects in the murine B78 model were also associ-
ated with bona fide immunogenicity in vivo, as vaccination with 
melphalan-treated tumor cells conferred complete protection 
against re-challenge with live cells in 40% of mice. Interestingly, 
this vaccination effect was independent of HSP90 expression 
and could be augmented by coating of melphalan-treated tumor 
cells with recombinant calreticulin, which was not otherwise 
detectable on the cell surface (70). Together, these data highlight 
(1) the potential for artificial delivery of DAMPs to enhance 
the immunogenic nature of chemotherapy-killed tumor cells 
but also (2) a need to better understand the role of specific ICD 
markers in conferring antitumor immunogenicity. Importantly, 
it should also be emphasized that the immunogenic potential of 
many of these chemotherapeutic agents has been evaluated only 
in prophylactic settings, and in order to achieve clinical translat-
ability it will be necessary going forward to determine whether 
the immunogenicity of these regimens confers any therapeutic 
benefit against established tumors.

Although the expression/release of ICD biomarkers often 
correlates with bona fide immunogenicity, as was shown to be 
the case in many of the aforementioned studies, detection of 
these markers alone is not sufficient to predict immunogenic-
ity of dying tumor cells. For instance, although mafosfamide 
treatment induces HMGB1 release from both EG7 lymphoma 
cells and B16-F10 melanoma, this cyclophosphamide derivative 
promotes vaccine-verified ICD only in EG7 lymphoma (71). 
In fact, rather than simply failing to induce immunogenicity 
in melanoma, cyclophosphamide has actually been suggested 
to promote immune suppression. Studies in the Ret transgenic 
melanoma model show that although low-dose cyclophospha-
mide induced cell surface calreticulin on skin tumor-derived 
Ret cells and enhanced the in  vitro maturation of co-cultured 
DC, this treatment alone did not produce any survival benefit 
in tumor-bearing animals and even led to an accumulation of 
myeloid-derived suppressor cells (MDSC) in primary tumors 
(72). This is in contrast to the adjuvant effect that cyclophospha-
mide has on a DC vaccine in the MC38 colon carcinoma model, 
where its contribution to tumor growth inhibition correlates 
with an increase in cytotoxic effector infiltration of tumors and a 
decrease in both regulatory T cells (Tregs) and MDSC (73). Such 
tumor-specific differences in responsiveness to chemotherapeu-
tic agents remain poorly understood and underscore the need to 
gain new insights into factors that influence tumor cell sensitivity 
to chemotherapy-driven ICD. Moreover, discrepancies in ICD 
biomarker expression and genuine ICD following tumor cell 
exposure to chemotherapy drugs highlight both the importance 
of vaccination assays as a means of verifying bona fide ICD as well 
as the significance of future studies that are necessary to evaluate 
the immunologic effects of DAMPs, both individually and in 
combination, on DC and DC-mediated immune responses so 
that optimal strategies for promoting robust antitumor immu-
nity can be realized.

Non-Chemotherapeutic induction of iCD 
As a Means to enhance Activation of 
endogenous and exogenous DC
While the aforementioned studies suggest potential utility for 
chemotherapy-driven ICD in promoting the immunogenicity 
of endogenous DC, whether this mode of ICD induction can be 
successful in enhancing the vaccination efficacy of exogenous DC 
is less clear. Combination therapy with cyclophosphamide and 
an autologous tumor Ag-pulsed DC vaccine has shown promise 
in a phase II study enrolling metastatic melanoma patients with 
progressive disease, but although cyclophosphamide’s effect was 
shown not to be the result of Treg depletion, whether its adjuvant 
effect was the result of ICD induction is not clear (74). Another 
recent phase I study has demonstrated that intratumoral injection 
of IFNα-differentiated unloaded autologous DC 1 day following 
dacarbazine treatment is associated with induction of tumor-
specific CD8+ T cell responses and stabilization of disease in a 
small cohort of stage IV melanoma patients (75). Despite these 
hints of success, though, there is concern by many investigators 
that multiple cycles of chemotherapy are incongruent with the 
potential immunologic benefits of DC vaccination due to the 
lymphoablative effects of such drugs. Moreover, chemotherapeu-
tic induction of ICD in tumor cells prior to Ag loading of DC 
during the production of vaccines has the potential for cytotoxic-
ity against DC and could lead to the unintended administration 
of residual chemotherapeutics to vaccinated patients (49).

A number of non-chemotherapeutic interventions that over-
come these limitations have been investigated for their ability 
to induce ICD of melanoma. Various antimicrobial/oncolytic 
peptides have been shown to trigger DAMP release by killed 
melanoma cells and promote antitumor immune responses (76, 
77). Oncolytic virus therapies that take advantage of the tumori-
cidal potential of measles virus, vaccinia virus, and reovirus have 
all been shown to induce melanoma ICD as well. Specifically, 
studies with these oncolytic viruses have shown that infected 
human melanoma cells or tumor-conditioned media from these 
cells promote the maturation of mDC in vitro (78–80), and Zhang 
et al. have shown in a murine model that an oncolytic adenovirus 
co-expressing IL-12 and GM-CSF enhances the immunogenicity 
and antitumor efficacy of a bone marrow-derived DC (BMDC) 
vaccine (81). Although ICD in the context of targeted therapy 
for melanoma has not been thoroughly investigated, one study 
has shown that vemurafenib can promote cell surface exposure 
of calreticulin and HSP90 on various human melanoma cell 
lines. This same study also demonstrated that MEK inhibition 
could trigger exposure of these ICD biomarkers on the surface 
of vemurafenib-resistant melanoma cells, and tumor cells pre-
treated with these targeted drugs were able to promote the matu-
ration of co-cultured DC (82). Based on these findings, it will 
be of interest going forward to assess how cancer immunization 
strategies might be coupled with targeted therapy to invoke anti-
melanoma immune responses following drug-induced tumor 
cell death, an outcome that could result in immune-mediated 
eradication of tumor cells that might otherwise eventually 
acquire drug resistance. Finally, physical modalities that disrupt 
tumors, such as radiation, photodynamic therapy (PDT), high 
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TABLe 1 | Inducers of immunogenic cell death (ICD) in melanoma.

Model system iCD biomarker(s) Bona fide iCDa Reference

Chemotherapies
Doxorubicin B16-F10 Not determined Yes (67)
Oxilaplatin B16-F10 Calreticulin, ATP, high-mobility group box 1 (HMGB1) Yes (68, 69)
Melphalan A375 IL-8, CCL2, heat shock protein 90 (HSP90) Not tested (70)

B78 HSP90 Yes
Lidamycin B16-F1 Calreticulin Yes (207)
R2016 heterocyclic quinone B16-F10 Calreticulin, HMGB1, HSP60, HSP70, HSP90 Not tested (208)
Ginsenoside Rg3 B16-F10 Calreticulin, HSP60, HSP70, HSP90 Not tested (209)

Antimicrobial/oncolytic peptides
LTX-315 B16-F1 HMGB1 Not tested (76)
LTX-401 B16-F1 HMGB1, ATP, cytochrome c Not tested (77)

Oncolytic viruses
Measles virus Primary melanoma cells IL-6, IL-8 Not tested (78)

Mel888, Mel624, MeWO, SkMel28 IL-6, IL-8, type I IFN, HMGB1
Vaccinia virus SK29-MEL HMGB1, calreticulin (strain-dependent) Not tested (79)
Reovirus (type 3 Dearing strain) Mel888, Mel624, MeWO, SkMel28 Proinflammatory cytokines (cell line-dependent) Not tested (80)

Targeted therapies
Vemurafenib A375, 451-LU, M1617 Calreticulin, HSP90 Not tested (82)
U0126 (MEK inhibitor) A375, 451-LU, M1617 Calreticulin, HSP90 Not tested (82)
Bortezomib A375, 451-LU, M1617 Calreticulin, HSP90 Not tested (82)

Physical modalities
Hyperthermia ± ionizing radiation B16-F10 HMGB1, HSP70 Not tested (210)

aBona fide ICD can be verified only in murine tumor models, as it is determined by vaccination assays in which tumor cells killed by a particular agent in vitro are tested for their ability 
to invoke protective immunity against subsequent re-challenge with live tumor cells. ICD biomarkers are indicated only if detected in a context appropriate for ICD (i.e., cell surface 
calreticulin and heat shock proteins, secreted ATP and HMGB1, etc.).
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hydrostatic pressure, and hyperthermia, have been investigated 
for their ability to induce ICD-mediated activation of DC. Many 
of these approaches have been incorporated into DC vaccination 
setups and are currently being assessed in clinical trials for pros-
tate cancer, ovarian cancer, and head and neck squamous cell 
carcinoma (83). However, melanoma resistance to many of these 
modalities has made their incorporation into combinatorial 
DC-based therapies a particular challenge. Melanoma’s relative 
resistance to radiotherapy is well-documented (84), and many 
melanomas are also resistant to PDT as a result of optical inter-
ference by melanin in pigmented tumors, the antioxidant effect 
of melanin, sequestration of photosensitizers in melanosomes, 
and other mechanisms (85). Nevertheless, interest remains in (1) 
exploring strategies that might sensitize melanoma cells to these 
physical modalities and (2) identifying particular patient popu-
lations whose melanomas might be more susceptible to these 
types of physical disruptions. For instance, there is evidence that 
depigmented melanomas are more susceptible to PDT, meaning 
that at least a subset of melanoma patients might benefit from 
PDT/DC-based combination therapies, and interventions that 
result in even temporary depigmentation of melanomas have 
the potential to increase the percentage of patients who may 
benefit from such combinatorial regimens (86). Along with the 
diverse repertoire of ICD inducers known to be effective against 
melanoma (Table 1), ongoing efforts to refine the use of physi-
cal modalities for tumor destruction will increase the array of 
weapons that exhibit not only direct antitumor activity but also 
the ability to boost immune reactivity against living melanoma 
cells, thus doubling the impact of therapy. Importantly, further 

optimization of therapeutic strategies with these and newly dis-
covered ICD inducers in the future offers promise for enhancing 
not only naturally generated antitumor immune responses in 
melanoma patients but also DNA/RNA- and peptide/protein-
based melanoma vaccines whose immunogenicity relies on 
endogenous DC to process and present Ag to tumor-specific 
T  lymphocytes. Moreover, as is already being done with some 
of the aforementioned inducers of melanoma ICD, investigat-
ing how ICD inducers might maximize the immunogenicity of 
exogenous DC, either through ex vivo activation of these cells 
prior to immunization or through in vivo maintenance of their 
immunogenicity following infusion, will likely improve the qual-
ity and outcome of antitumor immune responses achieved by DC 
vaccines in future melanoma patients.

iNTeRFeRiNG wiTH 
iMMUNOSUPPReSSive NeTwORKS THAT 
iMPAiR THe FUNCTiON OF TUMOR-
ASSOCiATeD DC

Melanoma-Associated Suppression  
of DC Differentiation
A significant body of evidence now exists demonstrating that 
tumor cells as well as other immunosuppressive cell populations 
that accumulate within the tumor microenvironment produce a 
variety of factors that alter the function of DC (87). In the context 
of melanoma, such factors have been shown to interfere with the 
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development of DC from hematopoietic precursors, to suppress 
the maturation and activation of already-differentiated DC, and 
to induce the differentiation of regulatory DC with tumor-pro-
moting functions. In terms of DC development, hyperactivation 
of the STAT3 and MAPK signaling pathways has been observed 
in progenitors that fail to differentiate into DC in the presence of 
melanoma-derived factors (88), and several groups have identi-
fied specific inhibitors contributing to melanoma-associated sup-
pression of DC differentiation. Cyclooxygenase (COX)-derived 
prostanoids in primary melanoma-conditioned media have been 
shown to inhibit the differentiation of DC from both mono-
cytes and CD34+ progenitors (89). Likewise, gangliosides from 
human melanoma tumors impair the differentiation of DC from 
monocytic precursors and promote the apoptosis of monocyte-
derived DC (90). A similar apoptotic effect of melanoma-derived 
gangliosides has also been observed on epidermal Langerhans 
cells (91). In addition to inhibiting the generation and viable 
maintenance of distinct DC subtypes, melanoma-derived factors 
can also skew the differentiation of DC precursors toward other 
myeloid populations with immunosuppressive function. For 
instance, TGFβ1 in B16-F10 tumor-conditioned media is capable 
of preventing DC differentiation from bone marrow precursors 
and instead drives MDSC differentiation through upregulation of 
the Id1 transcriptional regulator (92). COX-2-driven prostaglan-
din E2 (PGE2) in supernatants of cultured human melanoma cell 
lines can also promote MDSC differentiation from monocytes 
(93). Alternatively, macrophages capable of suppressing CD4+ 
and CD8+ T  cell proliferation have been differentiated from 
monocytes cultured in conditioned media from both metastatic 
and non-metastatic human melanoma cell lines (94), and IL-10, 
which can be secreted at high levels by melanomas (95), has been 
shown to promote the trans-differentiation of monocyte-derived 
DC into tolerogenic CD14+ BDCA3+ macrophage-like cells simi-
lar to those known to be enriched in melanoma metastases (96). 
As immunosuppressive M2-like tumor-associated macrophages 
often accumulate in melanoma-bearing hosts (97–99), it is inter-
esting to speculate that these cells may arise from an influence of 
tumor-derived factors on the differentiation of DC in vivo as well. 
Taken together, these influences of melanoma-derived factors on 
DC differentiation cannot only interfere with Ag presentation 
and the induction of anti-melanoma immune responses, but they 
can also lead to active suppression of such immune responses 
against melanoma.

Melanoma-Associated Suppression  
of DC Maturation and Activation
In addition to its influence on the differentiation of DC, mela-
noma has also been shown to modulate the maturation/activa-
tion of already-differentiated DC as well. Importantly, although 
the presence of mature DC within tumors and tumor-draining 
lymph nodes is a positive prognostic factor in melanoma patients, 
immature DC are often enriched in both melanoma lesions and 
tumor-draining lymph nodes of hosts with progressive disease 
(100–104), thus highlighting the significance of DC matura-
tion status as a key determinant of the immunologic control of 
melanoma progression. Immune dysfunction stemming from 
melanoma-associated effects on DC maturation and activation 

may result from defects in Ag processing and presentation (103, 
105, 106) as well as diminished expression of costimulatory 
molecules and immunostimulatory cytokines, such as IL-12 
(107–109). While an immature phenotype of tumor-associated 
DC may reflect a simple failure of tumor cells to support DC 
maturation and activation, active regulation of these processes by 
melanoma-derived factors has also been documented by several 
investigators. We have shown that tumor-conditioned media from 
murine melanoma cell lines suppresses costimulatory molecule 
expression and alters cytokine/chemokine expression profiles of 
multiple LPS-treated DC lines (110, 111), and our recent work has 
extended these observations to tissue-resident DC as well (99). 
This latter study has shown that the extent to which DC func-
tion is altered by melanoma-derived factors is tumor-dependent, 
such that LPS-induced costimulatory molecule expression on 
splenic DC-stimulated ex vivo as well as on lung tissue-resident 
DC in mice harboring melanoma lung metastases is suppressed 
by the rapidly progressing B16-F1 melanoma but not the poorly 
tumorigenic D5.1G4 melanoma. Moreover, we found that altera-
tions to cytokine/chemokine expression profiles by DC in these 
systems also correlated with melanoma tumorigenicity and were 
partially driven by tumor-derived TGFβ1 and VEGF-A. Others 
have reported that immature tumor-infiltrating DC isolated from 
B16-F0 tumors are refractory to ex vivo stimulation with a cock-
tail of maturation stimuli but can be induced to undergo matu-
ration following stimulation in the presence of an anti-IL-10R 
neutralizing antibody (112). Recently, Zelenay et  al. employed 
CRISPR-Cas9 gene editing technology to demonstrate that COX-
derived PGE2 in a BRAFV600E melanoma cell line also suppresses 
costimulatory molecule expression on CD103+ and CD103−, 
CD11b+ tumor-infiltrating DC as well as IL-12p40 expression by 
the CD103+ DC subset (113). In addition to these studies that 
have elucidated roles for extrinsic tumor-derived factors in the 
regulation of DC maturation and activation, studies from oth-
ers have provided insights into dysregulated signaling pathways 
within tumor-associated DC that impact these processes as well. 
Upregulation of β-catenin, which has been reported in DC that 
mature but that fail to fully activate and secrete proinflammatory 
cytokines (114), has been observed both in DC from lymph nodes 
draining B16-F10 tumors and in splenic DC cultured with B16-
F10-conditioned media, and its induction in tumor-associated 
DC suppresses their ability to cross-prime CD8+ T  cells (115). 
Similarly, impaired DC activation as measured by IL-12 secretion 
has been associated with hyperactivation of both the STAT3 and 
MAPK signaling pathways in monocyte-derived DC exposed to 
conditioned media or tumor lysates from human melanomas (108, 
116). Most recently, upregulation of the microRNA miR148-a in 
tumor-associated DC was shown to impair TLR-mediated matu-
ration by suppressing expression of the DNA methyltransferase 
DNMT1, which in turn led to hypomethylation of the Socs1 gene 
and upregulation of the SOCS1 TLR signaling suppressor (117).

Melanoma-Associated induction  
of Regulatory DC Function
Beyond limitations on the Ag processing/presentation and 
maturation/activation capacity of DC that can preclude induc-
tion of antitumor immunity and lead to tumor immune tolerance, 
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respectively, melanoma-derived factors have also been shown 
to trigger development of regulatory DC with various tumor-
promoting functions. Such DCs have been shown to contribute 
to tumor angiogenesis (118), the development and recruitment 
of immunosuppressive Tregs (119–121), and the direct suppres-
sion of CD4+ and CD8+ T cells (122, 123). Importantly, several 
studies have now provided mechanistic insights into both the 
induction of regulatory DC and the tumor-supporting activities 
mediated by these cells. One study has reported upregulation 
of the PD-L1 co-inhibitor that dampens CD8+ T  cell effector 
function on tumor-infiltrating DC in the B16-F10 model (124). 
Another study has shown that melanoma-derived IL-10 and 
other unidentified factors contribute to an IL-12low, IL-10high 
phenotype in monocyte-derived DC capable of inducing CD4+ 
CD25+ FOXP3+ Treg development (125), and tumor-derived 
IL-6, VEGF, and TGFβ1 have all been implicated in the induc-
tion of IL-12low, IL-10high DC in the spontaneous Ret murine 
melanoma model (126). Differentiation of IL-10-producing 
regulatory DC has also been shown to be driven by autocrine 
IL-6/IL-10 signaling through STAT3 in DC, which is initiated 
by melanoma-derived factors that activate the TLR2 signaling 
pathway in these cells (127). Additionally, Treg expansion in 
melanoma can also be driven by TGFβ1-producing regulatory 
DC (128). Still others have found that regulatory DCs produce 
enzymes that diminish the availability of metabolites crucial for 
T cell activation, thereby inducing metabolic suppression of anti-
melanoma immunity. In particular, mDC that were imprinted by 
ER stress in melanoma cells suppressed CD8+ T cell proliferation 
via secretion of the arginine-depleting enzyme arginase I (123), 
and melanoma-educated regulatory DCs have also been found 
to suppress CD4+ T cell proliferation in an arginase-dependent 
manner (122). Likewise, tryptophan catabolism by indoleamine 
2,3-dioxygenase (IDO)-producing regulatory pDC recovered 
from melanoma-draining lymph nodes is associated both with 
suppression of CD8+ T cells (129) and with activation of CD4+ 
Tregs (130). In addition to this IDO-mediated regulation of 
anti-melanoma immunity, regulatory pDC have also been shown 
to drive TH2 and Treg differentiation of CD4+ T  cells through 
cell–cell interactions via OX40L and ICOSL, respectively (131).

Strategies to Overcome Melanoma-
Associated Dysregulation of DC Function
While the previously described studies highlight diverse mecha-
nisms by which melanoma may subvert DC-mediated antitumor 
immunity, insights into melanoma-altered DC function have 
suggested novel strategies for improving DC-based immuno-
therapies for this cancer (Figure 2). To overcome the paucity and 
poorly immunogenic nature of DC within melanoma lesions, 
strategies to increase tumor infiltration by DC and promote their 
activation in situ have shown promise in murine melanoma mod-
els. Salmon et al. recently demonstrated that systemic administra-
tion of Flt3L expanded and mobilized CD103+ DC progenitors 
from the bone marrow and led to the accumulation of immature 
CD103+ DC within tumor masses, and subsequent injection of 
polyI:C intratumorally induced local maturation of these cells and 
enhanced their ability to recruit and activate melanoma-specific 

effector CD8+ T cells, leading to tumor regression (47). Similar 
findings were recently reported by Sánchez-Paulete et  al., who 
demonstrated that Flt3L-mobilized Batf3-dependent DC acti-
vated by poly-ICLC synergized with anti-CD137 and anti-PD-1 
monoclonal antibody therapy to promote Ag-specific CD8+ T cell 
cross-priming and tumor control (132). Likewise, Tzeng et  al. 
found that administration of IFNα (as well as other DC matura-
tion stimuli) after treatment of melanoma-bearing mice with a 
combination therapy that mediates tumor Ag release enhanced 
the cross-presentation and cross-priming activities of CD8α+ DC 
in tumor-draining lymph nodes (133). Importantly, although this 
maneuver led to complete regression of established tumors in a 
large percentage of mice, minimal benefit was observed when IFNα 
was administered either before or concomitantly with combina-
tion therapy, as the loss of phagocytic capacity that accompanied 
CD8α+ DC maturation at these early times limited the ability of 
these cells to acquire tumor Ag later released as a result of therapy. 
These data thus highlight the importance of treatment schedule 
and the temporal programming of DC maturation/activation in 
combinatorial approaches that rely on endogenous DC to trigger 
therapy-associated antitumor immune responses. Early clinical 
studies demonstrating that it is also possible to directly manipu-
late the frequency and maturation status of endogenous DC in 
melanoma patients have also reinforced the need for optimizing 
strategies to maximize the immunogenicity of these cells. For 
instance, local administration of a mix of CpG-B and GM-CSF at 
the site of primary melanoma excision resulted in the maturation 
of both pDC and conventional DC as well as an increase in the 
frequency of cross-presenting BDCA3+ CD141+ DC in sentinel 
lymph nodes, and this approach enhanced the frequency of 
melanoma Ag-specific CD8+ T cells in these nodes and reduced 
the frequency of lymph node metastasis (134, 135). At the same 
time, though, this approach also enhanced the suppressive activ-
ity of CD4+ Tregs in sentinel lymph nodes, suggesting that further 
optimization of this regimen may enable more robust antitumor 
immunity and even better clinical results. The identification of 
optimal DC stimulation cocktails and the implementation of 
combinatorial regimens that offset the deleterious activities of 
in situ-stimulated DC are therefore critical areas of investigation 
that may drive the development of more efficacious anti-mela-
noma immune therapies in the future. Moreover, advances in 
targeted delivery of therapeutics to endogenous DC, such as those 
that have already been achieved with IDO siRNA-encapsulated 
mannosed liposomes (136) and polypeptide micelle-based 
nanoparticles incorporating an miRNA148-a inhibitor (117), 
will enable selective reprogramming of melanoma-associated 
DC into potent stimulators of antitumor immune responses and 
likely improve the outcome of immunotherapy for melanoma 
patients going forward.

In contrast to strategies aimed at improving the immuno-
genicity of endogenous melanoma-associated DC, approaches 
to enhance the immunostimulatory capacity of exogenous DC 
have also improved the efficacy of many melanoma vaccines. For 
example, strategies that provide immune stimulating support 
for exogenous DC, such as the introduction of IL-6 or IL-21 
transgenes into BMDC (137, 138) or the co-administration of 
oncolytic adenovirus engineered to express immune stimulators 
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such as IL-12 and GM-CSF (64, 119), have been shown to sig-
nificantly improve vaccine efficacy, resulting in complete regres-
sion of established melanomas in some cases. Combinatorial 
approaches that aim to neutralize the effects of tumor-derived 
factors on exogenously administered DC, such as local siRNA-
mediated silencing of TGFβ1 at the tumor site (139), have also 
been effective. Alternatively, manipulation of exogenous DC prior 
to immunization by gene-silencing approaches can promote the 
immunostimulatory capacity of these cells in two ways. First, 
silencing the expression of genes involved in signaling pathways 
that limit the immunostimulatory function of melanoma-associ-
ated DC can prevent their immunosuppression by tumor-derived 

factors. In this regard, vaccines employing SOCS1-silenced DC 
improve the control of established B16 melanoma (140, 141), a 
finding that offers exciting proof-of-principle for this approach 
and that suggests the silencing of other immunosuppressive sign-
aling molecules often dysregulated in melanoma-altered DC, such 
as STAT3 and β-catenin, may also improve the antitumor efficacy 
of DC vaccines for melanoma. Second, silencing the expression of 
suppressive factors known to be released by melanoma-induced 
regulatory DC can prevent conversion of exogenous DC from 
immune activating cells to immunosuppressive ones. Indeed, vac-
cination of mice with IDO-silenced DC confers partial protection 
against B16 melanoma (142), and a recent case report has revealed 
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immunologic and clinical benefits of an IDO-silenced DC vac-
cine in a melanoma patient (143). Similarly, in vitro studies have 
shown that IL-10-silenced human mDC are better able to elicit 
CTL activation against an antigenic epitope of MART-1 (144), 
suggesting that immunization with such DCs might improve 
antitumor immunity in melanoma patients as well. Altogether, 
these and related strategies for improving the function of DCs 
in the context of melanoma offer exciting promise for DC-based 
immunotherapies designed to overcome melanoma-imposed 
limitations on these cells and the antitumor immune responses 
they mediate.

OveRCOMiNG MeTABOLiC 
CONSTRAiNTS ON DC FUNCTiON wiTHiN 
THe TUMOR MiCROeNviRONMeNT

Metabolic Reprogramming of DC and 
Tumor Cells
The emerging role of immunometabolism in the regulation of DC 
function in recent years has revealed new mechanisms by which 
tumors may subvert DC-mediated antitumor immunity. Indeed, 
beyond the aforementioned mechanisms of tumor-associated 
immunosuppression of DC, metabolic suppression of DC in 
the tumor microenvironment is now recognized as a significant 
barrier to DC function, which is controlled by key metabolic 
pathways regulating the bioenergetic and biosynthetic needs 
of these cells. While immature DC in the steady state rely on 
fatty acid oxidation and oxidative phosphorylation (OXPHOS) 
as their primary modes of metabolism, TLR-stimulated DC 
undergo a metabolic switch to aerobic glycolysis within minutes 
of the maturation and activation process (145). This early switch 
to glycolytic metabolism provides a source of carbon for the 
pentose phosphate pathway and tricarboxylic acid (TCA) cycle, 
both of which produce intermediates for fatty acid synthesis 
needed to support the expansion of membrane mass for the ER 
and Golgi apparatus, thus allowing DC to meet the demands of 
protein synthesis, transport, and secretion that are associated 
with maturation/activation (146). Long-term commitment to 
glycolytic metabolism in activated DC then fuels ATP production 
and survival in the face of decreasing mitochondrial metabolism, 
which results from OXPHOS inhibition by nitric oxide in inflam-
matory DC (147) and from autocrine type I IFN induction of the 
HIF1α transcription factor that blocks mitochondrial respiration 
in conventional DC (148). Interestingly, metabolic suppression 
of tumor-associated DC is often a consequence of metabolic 
reprogramming in tumor cells themselves, which are driven by 
the activation/deactivation of oncogenes/tumor suppressor genes 
and harsh environmental conditions (such as hypoxia) to switch 
from OXPHOS to glycolysis as the primary mode of metabolism, 
in this case to support the energy and biosynthetic demands of 
rapidly proliferating cells. Indeed, even under normoxic condi-
tions, tumor cells are reprogrammed for a primarily glycolytic-
based mode of energy production (aerobic glycolysis, otherwise 
known as the “Warburg effect” in tumor cells), thus allowing 
intermediates of the glycolytic pathway to function as important 
metabolites for macromolecule biosynthesis by mitochondria no 

longer relied as heavily upon for OXPHOS (149–151). Therefore, 
as metabolically reprogrammed tumors grow, their increasing 
demand for glucose consumption contributes to an environment 
that is metabolically hostile to infiltrating DC and other immune 
cell populations, with competition for limiting nutrients and 
accumulation of toxic metabolic byproducts released by tumor 
cells into the extracellular space both impairing immune system 
function.

Metabolic Suppression of DC in the 
Context of Melanoma
In melanoma, metabolic rewiring for glycolysis may be driven 
by multiple signaling pathways, including BRAF-driven MAPK 
hyperactivation that negatively regulates OXPHOS (152) and 
PI3K/AKT/mTOR/HIF1α signaling that positively regulates 
glycolysis (153). These signaling pathways induce expression 
of glucose transporters as well as enzymes that favor glycolytic 
metabolism, such as lactate dehydrogenase A (LDHA) that con-
verts the glycolysis end-product pyruvate into lactic acid, thus 
diverting pyruvate from utilization in the TCA cycle as fuel for 
OXPHOS (154). Importantly, depletion of glucose in the tumor 
microenvironment by melanomas exhibiting high glycolytic 
activity may impair glycolysis, and in turn ATP production, 
in tumor-infiltrating DC. Such effects may alter the AMP:ATP 
ratio in DC and lead to AMP-mediated activation of the nutri-
ent/energy sensor AMPK (155), which is known to promote 
OXPHOS and suppress mTOR and HIF1α signaling (156–158), 
thus further contributing to the negative regulation of glycolysis 
in these cells. Beyond the effects of glucose deprivation in the 
tumor microenvironment on DC function, buildup of lactic acid 
in the extracellular space of glycolytically active melanomas can 
also suppress DC. In this regard, melanoma-derived lactic acid 
inhibits the differentiation of monocyte-derived DC and sup-
presses IL-12 production by previously differentiated monocyte-
derived DC stimulated with LPS in  vitro (159). Although the 
mechanism by which lactic acid influences tumor-associated 
DC function has yet to be elucidated, there is speculation that 
altered membrane transport in the lactate-rich tumor microen-
vironment might contribute to its suppressive effect (160, 161). 
Because lactate is transported passively by facilitated diffusion 
through monocarboxylate transporters, high levels of extracel-
lular lactate within the tumor microenvironment might promote 
import of melanoma-derived lactic acid into DC while at the 
same time precluding export of lactic acid produced within DC 
also undergoing aerobic glycolysis, leading to a buildup of lactate 
within DC that impairs the glycolytic flux necessary to maintain 
an activated phenotype. Alternatively, lactate was recently shown 
to inhibit macrophage activation by binding to the GPR81 lactate 
receptor and suppressing TLR signaling (162), and it is possible 
that this pathway might also contribute to lactate-associated 
suppression of DC stimulated by tumor-derived DAMPs. Finally, 
evidence is emerging that suppression of glycolysis in DC is not 
merely a consequence of the metabolic limitations imposed by 
glycolytically active tumor cells, as tumor-derived immunosup-
pressive cytokines have also been shown to alter DC metabolism. 
For instance, IL-10 was found to suppress the metabolic switch 
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to aerobic glycolysis in LPS-stimulated DC by antagonizing 
TLR ligand-mediated hypophosphorylation of AMPK (145). 
Similarly, IL-10 is known to promote Socs3 gene expression 
(163), and melanoma-associated DC have been found to exhibit 
SOCS3-mediated inhibition of the M2 pyruvate kinase (PKM2) 
that catalyzes conversion of phosphoenolpyruvate into pyruvate 
in the final step of glycolysis (164).

In addition to the key role played by glycolytic metabolism in 
the activation of DC, the metabolism of fatty acids has also been 
shown to be an important regulator of DC function. Although 
lipid synthesis is important for ER and Golgi biogenesis during 
DC activation, the accumulation of lipids in DC in the context 
of cancer is often associated with immune dysfunction. In 
particular, Herber et  al. demonstrated that several species of 
triglycerides accumulate in DC cultured with various tumor 
explant supernatants, including that of B16-F10 melanoma, and 
that high lipid content in tumor-associated DC impaired tumor 
Ag processing and cross-presentation (165). Interestingly, 
DC cultured with tumor-derived supernatant also exhibited 
increased expression of the scavenger receptor MSR1, suggest-
ing that the accumulation of lipids in these DCs might arise from 
tumor-derived factors that promote DC uptake of fatty acids in 
the form of lipoproteins, as triglycerides are typically not taken 
up by DC but can be synthesized from lipoprotein precursors 
within cells. Subsequent studies revealed that lipid accumulation 
in tumor-associated DC defective in cross-presentation resulted 
from an increase in polyunsaturated fatty acids, particularly 
linoleic acid and to a lesser extent arachidonic acid, and that 
DC isolated from tumor-bearing mice or exposed to tumor 
explant supernatants in  vitro exhibited significantly higher 
levels of oxidized free fatty acids and oxidatively truncated 
triglycerides (166). Of note, these DC did not exhibit oxidation 
of phospholipids that would be a major component of ER and 
Golgi membranes. These data may therefore explain the appar-
ent discrepancy between the need for DC to undergo de novo 
lipogenesis to support ER and Golgi biogenesis during activation 
and the dysfunction that results from lipid accumulation in the 
context of tumors, suggesting that it is the nature and oxidation 
status of the fatty acids accumulating in tumor-associated DC 
that is detrimental to their function. Indeed, oxidized fatty acids 
have been shown to inhibit DC maturation through binding 
and activation of the peroxisome proliferator-activated receptor 
PPARγ, which promotes fatty acid synthesis and storage (167). 
Additionally, others have reported that lipid peroxidation by 
reactive oxygen species within tumor-associated DC yields 
byproducts that upregulate the ER stress sensor XBP1, which 
activates genes involved in the biosynthesis and accumulation 
of triglycerides known to be linked with DC dysfunction (168). 
Altogether, these studies reveal the complex regulation of lipid 
metabolism that controls DC function, and they highlight how 
factors in the tumor microenvironment can alter this process to 
ultimately promote tumor immune escape.

While alterations to glycolysis and lipid metabolism impair 
tumor-associated DC function by influencing how major macro-
molecules necessary for cell survival and activation are utilized, 
other metabolites that frequently accumulate in the tumor 
microenvironment are also known to compromise the function 

of DC and DC-mediated immune responses. Adenosine is a par-
ticularly well-characterized metabolite that accumulates in the 
extracellular space of many tumors, including melanoma (169). 
Although ATP released from tumor cells may serve as a DAMP 
to promote DC activation (see Induction of Immunogenic Cell 
Death (ICD) as a Means of Promoting DC-Mediated Antitumor 
Immunity), melanoma cells often express on their surface the 
CD39 and CD73 ectonucleotidases that hydrolyze ATP into 
adenosine (170–172), thereby leading to its buildup in the tumor 
microenvironment. In addition to its role in the suppression of 
T cell signaling (173) and immunosuppressive activity of Tregs 
(174), adenosine has also been shown to impair DC function. 
In vitro studies with LPS-stimulated human monocyte-derived 
DCs have shown that adenosine promotes IL-10 secretion while 
suppressing IL-12 and TNFα secretion as well as the capacity of 
DC to promote TH1 differentiation (175). Others have shown that 
DC differentiated from monocytic precursors in the presence of 
adenosine acquire several tumor-promoting functions that are 
dependent on signaling through the A2B adenosine receptor. 
These pro-tumor functions include increased expression of 
angiogenic factors, immunosuppressive cytokines, and proteins 
that disrupt immunometabolism such VEGF, TGFβ, IDO, and 
arginase 2, among others (176). In the context of melanoma, 
in vivo studies in B16-F10 tumor-bearing mice have shown that 
adenosine signaling through the A2A adenosine receptor on DC 
is associated with a slight decrease in MHC II and IL-12 expres-
sion and a significant increase in the expression of IL-10 (177). 
Interestingly, recent studies have shown that adenosine receptor 
signaling in DC also promotes accumulation of intracellular 
cAMP (178), suggesting that adenosine may ultimately suppress 
DC activation by influencing AMPK activity and decreasing gly-
colytic metabolism in these cells. Finally, whereas melanoma cells 
are one of the major sources of adenosine in the tumor micro-
environment, immunoregulatory metabolites that compromise 
DC function may also be produced by other cell types known to 
infiltrate tumors. For instance, arginase I-producing cells such as 
MDSC produce ornithine as a byproduct of arginine metabolism, 
and ornithine decarboxylation yields polyamines that enhance 
IDO-1 expression in DC, thus conditioning these cells for 
immunosuppressive activity (179). Even melanoma-associated 
DC themselves can contribute immunosuppressive metabolites 
to the extracellular milieu of progressive tumors. Specifically, 
melanoma-induced activation of β-catenin signaling in DC from 
tumor-draining lymph nodes promotes expression of enzymes 
involved in vitamin A metabolism, leading to DC secretion of 
the vitamin A metabolite retinoic acid that in turn promotes 
differentiation of immunosuppressive Tregs (120). Collectively, 
these studies highlight the metabolically hostile nature of the 
tumor microenvironment that must be overcome in order for 
DC to elicit and maintain effective antitumor immune responses.

Metabolic interventions to Promote DC 
Function in the Context of Melanoma
Just as insights into melanoma-associated immune suppres-
sion of DC have informed therapeutic strategies to enhance 
the immunogenicity of these cells, so too have insights into the 
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preclinical studies, as described in the text. Red inhibition symbols with red question marks indicate targets that have been associated with both immune activating 
and immune suppressing functions in different models and whose inhibition may therefore be appropriate only in certain contexts, as is discussed in more detail in 
the text.
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metabolic suppression of melanoma-associated DC (Figure 3). 
To overcome the immune dampening effects of retinoic acid 
signaling, a retinoic acid receptor α antagonist has been used to 
enhance the efficacy of a peptide-pulsed DC vaccine against B16 
melanoma. In addition to enhancing DC production of IL-12 
and lowering DC production of TGFβ and IL-10, this antagonist 
reduced the number of FOXP3+ IL-10+ Tregs that infiltrated 
tumors (180). Pharmacologic inhibition of the β-catenin/TCF 
pathway that promotes melanoma-associated DC production 
of retinoic acid has also been shown to reduce the expression 
of vitamin A-metabolizing genes in DC isolated from tumor-
draining lymph nodes, and the antitumor activity associated with 
this inhibition correlated with reduced Treg and increased effec-
tor CD8+ T cell infiltration of subcutaneous melanomas (120). 
Likewise, inhibition of adenosine in the tumor microenvironment 

may be approached in a number of ways to prevent its deleteri-
ous effects on DC function. Pharmacological antagonists of the 
A2B receptor block the effects of adenosine on DC differentia-
tion in vitro, and DC from both A2A and A2B receptor knockout 
mice are resistant to the suppressive effects of adenosine (176, 
177). Therefore, neutralization of adenosine signaling in DC via 
pharmacologic agents or gene-silencing approaches that knock 
down expression of adenosine receptors on either endogenous or 
exogenous DC might improve the antitumor immunogenicity of 
these cells. Alternatively, strategies that interfere with the CD73 
ectonucleotidase on melanoma cells have already been shown to 
improve antitumor immunity in preclinical models (169, 181), 
and this outcome is likely due to a reduction in the immunoregu-
latory effects of adenosine on multiple immune cell populations, 
including DC.
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In addition to overcoming the suppressive effects of extracellu-
lar metabolites on DC in the tumor microenvironment, maneuvers 
that interfere with the metabolism of macromolecules in mela-
noma cells and/or DC may also restore metabolic and immune 
function in tumor-associated DC. Pharmacologic regulation of 
lipid levels in DC using an inhibitor of acetyl-CoA carboxylase 
that blocks fatty acid synthesis improved the antitumor efficacy of 
a peptide vaccine against B16-F10 melanoma (165). It is also pos-
sible to regulate lipid levels in DC by targeting the MSR1 scavenger 
receptor that promotes lipid uptake or the IRE1α/XBP1 pathway 
that triggers triglyceride synthesis in tumor-associated DC. To 
this point, immunization of tumor-bearing mice with MSR1 
gene-silenced BMDC improved vaccine-induced CD8+ T  cell 
responses against multiple melanoma antigens and enhanced 
immunologic control of established B16 melanomas in both sub-
cutaneous and lung metastasis models (182). Likewise, targeted 
delivery of nanoparticles encapsulating siRNA has been used to 
silence in tumor-associated DC the expression of either XBP1 or 
the IRE1α endoribonuclease that cleaves Xbp1 mRNA into a form 
that encodes functional protein during ER stress. In a murine 
model of ovarian cancer, this approach reduced triglyceride lev-
els in tumor-associated DC, augmented the activation of tumor 
Ag-specific T  cells, and improved tumor immune control and 
overall survival of tumor-bearing mice (168). As triglycerides are 
also known to accumulate in dysfunctional melanoma-associated 
DC (165), silencing of IRE1α or XBP1 expression in these cells 
might also improve DC-mediated immune responses against 
this cancer in certain contexts. It is worth noting, however, that 
overexpression of XBP1 in BMDC actually improves DC survival, 
activation, and T cell stimulatory capacity, leading to enhanced 
immune control of established B16 melanoma following vac-
cination (183). Additionally, in an inducible BRAFV600E/PTEN-
driven melanoma model, a DNA vaccine that promotes XBP1 
expression in endogenous DC conferred CD8+ T cell-mediated 
immune control of small established tumors (184). While tumor 
microenvironment-specific differences in these ovarian cancer 
and melanoma models may explain differences in the impact of 
XBP1 on DC function, it is also possible that these discrepancies 
are due to differences in the particular DC under study, including 
the endogenous/exogenous nature of these cells and the extent of 
ER stress in the DC in which XBP1 is active. It is interesting to 
speculate that in DC which have not previously been exposed to 
the hostile tumor microenvironment (i.e., exogenous BMDC) or 
which are found in the context of early stage tumors and have not 
yet accumulated the types of fatty acids associated with immune 
dysfunction, XBP1 promotes DC immunogenicity by protecting 
these cells against ER stress as they increase protein synthesis dur-
ing their activation. On the other hand, in endogenous DC that 
have incorporated significant polyunsaturated fatty acids within 
the microenvironment of late-stage tumors, XBP1 activation may 
lead to the generation of oxidized triglycerides that impair DC 
function. Future studies will be necessary to test this hypothesis 
and define the parameters under which XBP1 activation versus 
inactivation in DC is appropriate for optimizing the antitumor 
activity of these cells.

Finally, glycolytic metabolism in both melanoma cells and 
DC can be targeted to enhance the immunostimulatory capacity 

of DC. Recent studies have demonstrated that silencing of the 
GLUT1 glucose transporter or the CD147 gene product that 
regulates its expression in melanoma cell lines impairs the 
growth and metastasis of transplanted tumors (185, 186). In 
addition to having direct antitumor effects, interfering with gly-
colysis in melanoma cells may have pro-immune consequences 
as well, resulting in enhanced DC-mediated antitumor immune 
responses by increasing glucose availability and decreasing lactic 
acid concentration in the tumor microenvironment. Therefore, 
targeting glucose transporters and other enzymes (such as 
LDHA) that are involved in glycolytic metabolism in melanoma 
cells is a potentially attractive therapeutic option for the treat-
ment of melanoma. While selective targeting of such therapies 
specifically to tumor cells might be difficult for some cancer 
types and could lead to compromised function of DC and other 
immune cell populations that also rely on glycolysis for induction 
and maintenance of an activated phenotype, the identification of 
tissue-specific genes in melanoma (such as those involved in the 
melanin deposition pathway) opens up the possibility of DNA-
based therapies in which siRNA/shRNA expression is driven off 
of tissue-specific promoters active only in melanoma cells. Such a 
strategy would overcome issues with selective delivery of siRNA/
shRNA to tumor cells and instead would rely on selective activa­
tion of a gene-silencing therapeutic specifically in melanoma cells. 
Alternatively, it is also possible to minimize the reliance of DC on 
glycolysis as the sole bioenergetic mode of metabolism during 
activation. Although signaling through mTOR is associated with 
a metabolic switch to aerobic glycolysis during DC activation as 
described above, this switch results less from a preference for 
glycolytic metabolism and more from a requirement for glyco-
lysis as a means of generating ATP in the face of mitochondrial 
suppression by reactive oxygen species. Interestingly, it has been 
reported that inhibition of mTOR in DC does not preclude 
ATP synthesis in these cells and instead extends the lifespan of 
activated DC by reducing reactive oxygen species and preserving 
mitochondrial function, thus allowing flexibility in the metabolic 
pathways utilized by DC for bioenergetic purposes (187). Indeed, 
multiple groups have shown that interfering with mTOR function 
in BMDC enhances vaccine-induced CD8+ T cell responses and 
immunologic control of established B16 melanomas (188, 189). 
Together, these data highlight how metabolic interventions may 
shift the profile of tumor-associated DC from tolerogenic to 
immunogenic, and they suggest great promise for metabolism-
based therapies, either alone or in combination with immuno-
therapies, in the treatment of melanoma.

MODULATiNG THe MiCROBiOMe TO 
AUGMeNT DC-MeDiATeD ANTiTUMOR 
iMMUNiTY

Gut Microbiome influences on Natural 
Antitumor immunity to Melanoma
As data have emerged demonstrating that the microbiota and 
dysbiosis play significant roles in both cancer progression and 
the efficacy of anticancer therapies (190), there has been consid-
erable interest in understanding how the microbiome regulates 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


14

Hargadon DC-Based Immunotherapy for Melanoma

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1594

the quality of antitumor immune responses. In the context of 
melanoma, altering the composition of the gut microbiota has 
been shown to impact both natural and therapy-associated 
antitumor immunity, and in many cases, regulation of these 
responses has been associated with microbial influences on DC 
activation. Antibiotic treatment with a mixture of ampicillin, 
vancomycin, and neomycin sulfate (which leads to a decreased 
frequency of gut bacteria belonging to the Bacteroidetes phylum 
and an increased frequency of gut bacteria belonging to the 
Firmicutes phylum) prior to B16-F10 challenge enhances tumor 
outgrowth and is associated with defects in natural antitumor 
immunity that include a decrease in the frequency of DC among 
tumor-infiltrating leukocytes and a reduced expression of genes 
associated with DC maturation and immune activation within 
tumor tissue (191). Addition of metronidazole to the aforemen-
tioned cocktail of antibiotics yields a different type of gut dysbio-
sis in treated mice (decreased frequency of both Firmicutes and 
Bacteroidetes phyla members and increased frequency of mem-
bers of the Proteobacteria phylum), and this alteration also leads 
to impaired immune control of B16-F10 lung metastases (192). 
This latter effect results from an antibiotic-associated decrease 
in IL-17+ γδT  cells in the lungs of treated mice. Although the 
mechanism by which microbial dysbiosis influences γδT  cell 
function remains to be elucidated in this model, the authors 
speculated that a lack of DC stimulation by PAMPs in antibiotic-
treated mice could contribute to the observed decrease in gene 
expression in the lungs of IL-6 and IL-23, cytokines known to 
activate IL-17 production by γδT cells.

Gut Microbiome influences on Therapy-
Associated immunity to Melanoma
The first study to report microbial influences on the outcome of 
immune therapy for cancer demonstrated that the therapeutic 
benefit of total body irradiation prior to adoptive T cell transfer 
arises in part from activation of the innate immune system fol-
lowing radiation-induced damage to the GI tract and subsequent 
translocation of gut microbiota (Enterobacter cloacae, Escherichia 
coli, Lactobacillus, and Bifidobacterium) to mesenteric lymph 
nodes (193). In addition to mobilizing the gut microbiome, total 
body irradiation also led to elevated serum LPS levels and an 
increase in the absolute number of CD86hi DC in the spleen and 
lymph nodes, which in turn correlated with enhanced activa-
tion of adoptively transferred gp100-specific CD8+ T  cells and 
improved control of established B16-F10 tumors. Interestingly, 
when mice were administered the broad-spectrum antibiotic 
ciprofloxacin beginning two days prior to irradiation, microbial 
translocation to lymph nodes was not observed, nor was any 
elevation in serum LPS levels. Likewise, the immunologic and 
antitumor benefits of DC and CD8+ T cell activation were also 
abrogated following ciprofloxacin depletion of gut microbiota. 
Additional experiments with the LPS-blocking antibiotic poly-
myxin B as well as TLR4−/− mice revealed that the therapeutic 
effect of gut microbiota translocation following total body 
irradiation resulted from LPS stimulation of innate immune 
cells that support the activation of adoptively transferred CD8+ 
T cells. In related work, Iida et al. showed that treating mice with 

a cocktail of antibiotics (vancomycin, imipenem, and neomycin) 
abrogated the antitumor effects of combination immunotherapy 
with anti-IL-10 receptor antibody and intratumoral CpG-
oligodeoxynucleotides (ODN) in B16-F10 tumor-bearing mice 
(194). Though the mechanistic basis for these findings was not 
further studied in the B16 melanoma model, the authors reported 
analogous findings in the MC38 colon adenocarcinoma model, 
where antibiotic treatment decreased both the frequency of TNF-
producing tumor-infiltrating DC (and other leukocytes) as well as 
CD86 expression and IL-12p40 production by tumor-associated 
DC. Similar results were also observed following combination 
immunotherapy of germ-free MC38-bearing mice, suggesting 
that commensal microbes are necessary to prime DC and other 
myeloid cell populations for inflammatory cytokine production 
in response to this immune therapy.

More recently, the microbiome has been shown to influence 
DC function and antitumor immunity in the context of check-
point blockade therapies for melanoma as well. In the B16-SIY 
melanoma model, the success of α-PD-L1 Ab therapy was 
shown to rely on the presence within the intestinal microbiota 
of Bifidobacterium species that enhance the antitumor effects of 
therapy (195). Specifically, the presence of natural Bifidobacterium 
species in C57Bl/6 mice from The Jackson Laboratory (JAX) or 
the introduction of Bifidobacterium species by oral gavage into 
C57Bl/6 mice from Taconic (TAC), which do not naturally harbor 
these bacteria, correlated with tumor-specific CD8+ T cell respon-
siveness to α-PD-L1 Ab therapy and tumor control. Of note, the 
presence of intestinal Bifidobacterium species in these mice was 
also associated with an increase in the frequency of intratumoral 
DC expressing high levels of MHC class II, and genome-wide tran-
scriptional profiling of these cells revealed elevated expression of 
several genes known to play roles in DC maturation, Ag process-
ing and presentation, costimulation, and chemokine-mediated 
recruitment of immune effectors. Moreover, DC isolated from 
lymphoid tissues of JAX mice and Bifidobacterium-fed TAC mice 
induced higher levels of IFNγ production by CD8+ T cells than 
did DC from untreated TAC mice that had not been exposed to 
Bifidobacterium species. In other work investigating microbial 
influences on checkpoint blockade therapy, pretreatment of mice 
with a cocktail of broad-spectrum antibiotics blocked the efficacy 
of α-CTLA-4 Ab therapy for established Ret murine melanomas 
(196). Interestingly, in mice not treated with antibiotics, CTLA-4 
blockade promoted T  cell-mediated destruction of intestinal 
epithelial cells and was associated in general with a decrease 
in Bacteroidales and Burkholderiales member species and an 
increase in Clostridiales member species in the feces, suggesting 
that induction of immunity to members of the Bacteroidales 
and Burkholderiales orders may be linked to the induction of 
antitumor T cell responses. In this regard, antibiotic-treated or 
germ-free mice that otherwise failed to exhibit any antitumor 
effects following α-CTLA Ab therapy were able to control 
tumors when fed with Bacteroides thetaiotaomicron, Bacteroides 
fragilis, Burkholderia cepacia, or a combination of B. fragilis and 
B. cepacia shortly after therapy, and this response was associated 
with enhanced maturation of intratumoral DC and TH1 immune 
responses in tumor-draining lymph nodes. Moreover, fecal 
transplantation studies in which feces from ipilimumab-treated 
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metastatic melanoma patients clustered by stool microbial com-
position were transferred to germ-free mice two weeks prior to 
tumor challenge and α-CTLA-4 Ab therapy supported a role for 
Bacteroides species in promoting responsiveness to therapy. In 
these studies, feces from only one cluster of melanoma patients 
promoted colonization of immunogenic B. thetaiotaomicron 
and B. fragilis in mice, and these animals were the only fecal 
transplant recipients to mount effective antitumor responses 
following α-CTLA-4 Ab treatment. While these data suggest that 
the presence of commensal Bacteroides species in the gut may be a 
useful prognostic indicator for identifying patients most likely to 
benefit from checkpoint blockade therapy, it should be noted that 
confounding data on the influence of Bacteroides species on ther-
apeutic efficacy in metastatic melanoma patients have emerged 
from recent clinical studies. Indeed, in a prospective study of 
metastatic melanoma patients receiving ipilimumab therapy, a 
high proportion of baseline gut Bacteroides actually correlated 

with poor clinical benefit, whereas long-term benefit (progres-
sion-free and overall survival) was associated with enrichment of 
Faecalibacterium species and other Firmicutes phylum members 
(unclassified Ruminococcaceae, Clostridium XIVa, and Blautia) 
(197). Similarly, Bacteroidales family members were found to be 
enriched in the gut microbiome of metastatic melanoma patients 
classified as non-responders to α-PD-1 therapy, while responders 
were found to exhibit greater microbial diversity in the gut and 
enrichment of members belonging to the Clostridiales order 
(198). It is possible that the differences reported in these clinical 
studies versus the study by Vetizou et al. (196) are due either to 
species-specific differences between mouse and man or to biased 
reconstitution of gut microbiota following fecal transplantation 
from humans to mice. However, it is worth noting that another 
clinical study comparing the baseline gut microbiota of responders 
versus non-responders to various checkpoint blockade regimens 
reported data from melanoma patients similar to that described 

FiGURe 4 | Multifactorial influences on the function of melanoma-associated dendritic cells (DC). A variety of complex factors contribute to the immunoregulation of 
DC in the context of melanoma. Elements that control the immunogenicity of tumor cell death, the balance of immunostimulatory versus immunosuppressive signals 
in the tumor microenvironment, metabolic influences on DC function, and the microbiome all interact to dictate the immune stimulatory capacity of melanoma-
associated DC. Mechanistic insights into each of these layers of DC immune regulation provide opportunities for therapeutic interventions to enhance the 
immunogenicity and antitumor function of melanoma-associated DC as described in more detail in the text.
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by Vetizou et al.—that is, that enrichment of Bacteroides species 
correlated positively with patient response to therapy (199). 
In this most recent study, gut microbiome diversity was not 
significantly different in responders versus non-responders, but 
metagenomic shotgun sequencing analysis of pretreatment fecal 
samples identified enrichment of particular species in respond-
ing patients that was unique for each therapeutic regimen under 
study. When comparing responders versus non-responders to 
all checkpoint blockade regimens under study, both Bacteroides 
caccae and Streptococcus parasanguinis were enriched in the gut 
microbiomes of responders. When analyzing patients respond-
ing to ipilimumab/nivolumab combination therapy, Firmicutes 
phylum members (Faecalibacterium prausnitzii and Holdemania 
filiformis) and the Bacteroidetes phylum member B. thetaiotaomi­
cron were enriched in responders. Finally, the Firmicutes phylum 
member Dorea formicigenerans was enriched in responders to 
therapy with pembrolizumab. Based on these collective data, 
it is clear that additional studies with larger cohorts of patients 
are necessary to resolve these early discrepant findings and 
determine how particular gut microbiota regulate both natural 
antitumor immune responses as well as responsiveness to various 
tumor immunotherapies. Additionally, as evidence is accumulat-
ing that the gut microbiome also influences immunometabolism 
(200) as well as the metabolism and antitumor activity of chemo-
therapeutic drugs (201), future studies are needed to investigate 
how particular microbial species and their metabolites regulate 
chemotherapy-driven ICD and the function of DC and other 
immune cell populations in the context of melanoma. Together, 
these insights will be important for the optimization of strategies 
to manipulate the gut microbiome in ways that enhance antitumor 
immune reactivity while also minimizing adverse events such as 
therapy-associated colitis (202).

The Role of the Skin Microbiome in 
immunity to Melanoma?
While a number of studies have been initiated to gain insights 
into the gut microbiome’s influence on the progression of mela-
noma and other cancers, little is currently known about how the 
skin microbiome might impact immunologic protection from 
either the development of primary melanomas or the recurrence 
of melanoma in the skin or surrounding/distant tissues. To date, 
only one study has compared the skin microbiome of cutane-
ous melanomas and benign melanocytic nevi (203). While the 
cutaneous microbial diversity of melanomas was found to be 
slightly lower than that of melanocytic nevi, these differences did 
not reach statistical significance, and no differences were found 
in the relative abundance of bacterial genera between patients 
from these groups. However, the limited sample size of this study 
(15 cutaneous melanoma cases versus 17 melanocytic nevi cases) 
precludes any strong conclusions that the skin microbiome has no 
impact on melanoma progression or anti-melanoma immunity 
in the skin. With regard to microbial influences on cutaneous 
immunity, others have reported associations between the skin 
microbiome and patient susceptibility to inflammatory skin 
conditions such as atopic dermatitis (204), and dysbiosis of the 
skin microflora has recently been linked to autoimmune vitiligo 

as well (205, 206). As vitiligo results from immune-mediated 
destruction of melanocytes, microbial species that influence 
this process may be of particular relevance to melanoma. In this 
light, a recent study comparing bacterial communities in lesional 
versus non-lesional skin of vitiligo patients revealed a decrease in 
microbial diversity in vitiliginous lesions, and intra-community 
network analyses showed that Actinobacterial species predomi-
nate the microbial interaction network of non-lesional skin, while 
members of the Firmicutes phylum exhibit the highest degree of 
interactions in lesional skin (205). Future studies will be necessary 
to determine the cause–effect relationship of these alterations in 
cutaneous microbial communities during cases of vitiligo and 
whether such alterations might also impact immune reactivity 
against melanoma cells. Answers to these questions and others 
that address how the cutaneous microbiota might influence the 
maturation/activation of Langerhans cells and other skin-resident 
DC populations may suggest microbial interventions that support 
the promotion of robust, DC-mediated anti-melanoma immune 
responses. Coupled with an improved understanding of the gut 
microbiome’s influence on DC-mediated immune responses 
against melanoma, these findings may identify appropriate 
dietary modifications, prebiotic/probiotic supplements, antibi-
otic regimens, and/or fecal transplantation strategies that can be 
implemented to support DC-based and other immune therapies 
for the treatment of melanoma.

CONCLUSiON AND FUTURe DiReCTiONS

As highlighted throughout this review, DC function at the center 
of antitumor immunity and play major roles in determining 
immune activation versus tolerance against cancer. Regulation 
of immunity to melanoma by DC is controlled by a variety of 
intrinsic and extrinsic factors, and it is the collective interplay 
between these factors that ultimately shape the quality of 
DC-mediated antitumor immune responses (Figure 4). Advances 
in our understanding of the ways in which DC function is influ-
enced by ICD, immunosuppressive networks within the tumor 
microenvironment, tumor-altered immunometabolism, and 
the microbiome have provided crucial insights into the immu-
noregulation of tumor-associated DC, and these insights have 
informed novel strategies for improving the immunogenicity of 
DC in the context of melanoma and other cancers. Some of these 
strategies have already reached patients and have improved the 
immunologic control of melanoma, and many others have shown 
great promise in murine models and in preclinical settings. It 
will therefore be exciting to follow the translation of these and 
related strategies for enhancing the immunostimulatory function 
of melanoma-associated DC into the clinic in the future. As we 
continue to build on these findings, the challenge going forward 
will be to dissect the complex interplay between the regulatory 
mechanisms discussed herein and discern how these diverse 
factors act in concert to control DC function. In this regard, in 
what ways does the microbiome impact the induction of ICD 
in melanoma cells? Can particular microbes provide metabolic 
support for DC by removing toxic byproducts from the tumor 
microenvironment, and how do microbe-derived metabolites 
themselves contribute to the metabolic milieu and its influence 
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