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Hemophilia A (coagulation factor VIII deficiency) is a debilitating genetic disorder that is 
primarily treated with intravenous replacement therapy. Despite a variety of factor VIII 
protein formulations available, the risk of developing anti-dug antibodies (“inhibitors”) 
remains. Overall, 20–30% of patients with severe disease develop inhibitors. Current 
clinical immune tolerance induction protocols to eliminate inhibitors are not effective in 
all patients, and there are no prophylactic protocols to prevent the immune response. 
New experimental therapies, such as gene and cell therapies, show promising results 
in pre-clinical studies in animal models of hemophilia. Examples include hepatic gene 
transfer with viral vectors, genetically engineered regulatory T cells (Treg), in vivo Treg 
induction using immune modulatory drugs, and maternal antigen transfer. Furthermore, 
an oral tolerance protocol is being developed based on transgenic lettuce plants, which 
suppressed inhibitor formation in hemophilic mice and dogs. Hopefully, some of these 
innovative approaches will reduce the risk of and/or more effectively eliminate inhibitor 
formation in future treatment of hemophilia A.

Keywords: factor viii, hemophilia A, immune tolerance, regulatory T cell, oral tolerance, rapamycin, gene therapy, 
AAv vectors

iNTRODUCTiON

Hemophilia A, or factor VIII (FVIII) deficiency, is one of the most prevalent genetic bleed-
ing disorders, which affects 1:5,000 male births. It is inherited as an X-linked recessive trait, 
although it can also be acquired in advanced age as a result of autoimmunity, cancer, or various 
metabolic disorders affecting both males and females (1). Both inherited and acquired forms of 
hemophilia are manifested by frequent bleeding episodes, hemorrhages into the skin and body 
cavities, pain, orthopedic disability, and significant morbidity (2).

Classification and severity of hemophilia has been based on circulating levels and residual 
activity of coagulation factors in plasma. Residual factor activity levels of <1%, compared to 
normal plasma are classified as severe, 1–5% moderate, and 5–40% mild (3). Patients with large 
deletions in the F8 gene, or inversion mutation in intron 22 (I22I), have no circulating FVIII, 
suffer from severe hemophilia and are most likely to develop an adverse immune reaction to 
exogenous FVIII infusions (4). Patients with a missense or disruption mutation may express 
various amounts of non-functional or partially functional FVIII protein. Patients with milder 
forms of hemophilia A respond better to treatment and are at a lower risk of developing adverse 
inhibitory antibodies (5).

Factor VIII is a 280-kDa glycoprotein that circulates in the blood at ~200 ng/ml (where it is 
closely associated with von Willebrand factor) and, upon activation, serves as a co-factor to the 
serine protease factor IX (FIX), which catalyzes a critical step in the intrinsic pathway of the 
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coagulation cascade. FVIII is initially synthesized as a 2,351-
aa polypeptide that is organized into A1–A2–B–A3–C1–C2 
domains and processed into non-covalently linked heavy and 
light chains prior to secretion. Since FVIII is critical for the 
enzymatic function of FIX, mutations in either protein can cause 
the bleeding phenotype that is characteristic for hemophilia. 
The majority of hemophilic patients have mutations in their F8 
gene (resulting in hemophilia A), while mutations in F9 result in  
hemophilia B.

It is estimated that up to 30% of patients with severe 
hemophilia A and 5% of patients with milder forms of the 
disease form anti-drug antibodies, termed “inhibitors.” These 
inhibitors are detected and measured in the Bethesda assay, 
with 1  Bethesda unit representing 50% residual coagulation 
activity in normal plasma after incubation with a patient’s test 
plasma. That fact that potent antibody responses occur despite 
FVIII being given intravenously at low antigen doses illustrates 
the immunogenicity of this protein. Patients with >5  BU/
ml typically fail to respond to factor replacement therapy, 
requiring the use of bypass agents. Recent clinical studies have 
demonstrated that genetic variables and F8 gene mutation type 
are important determinants of an individual’s risk for inhibitor 
formation, as is ethnicity and intensity of early treatment (6). 
While clinical protocols have been available to restore hemo-
stasis in inhibitor patients and to reverse the inhibitor response, 
these methods are suboptimal, expensive, and not successful 
in all patients. Moreover, there are no prophylactic protocols 
to prevent inhibitor formation. These limitations have fueled 
recent diverse pre-clinical developments of alternative strate-
gies for immune tolerance induction (ITI) to FVIII, which are 
based on emerging technologies such as gene therapy, regula-
tory T-cell (Treg) therapy, and transgenic crop plants for oral 
tolerance, among others (7).

CURReNT AND FUTURe TReATMeNTS  
OF HeMOPHiLiA AND THeiR iMMUNe 
iMPLiCATiONS

Currently, hemophilia A is treated with an intravenous infusion 
of plasma-derived or recombinant clotting FVIII concentrates, 
which can be on demand or prophylactic (8, 9). However, the 
half-life of infused FVIII concentrate is very short, only 10–12 h, 
and thus, it must be administered frequently, an inconvenience 
for the patient. Also, these frequent infusions create the possi-
bility of introducing infections through the indwelling catheter 
as well as a risk of micro bleeds. Therefore, the development 
of longer acting FVIII concentrates became the next step in 
clinical care for HA patients (10). Longer lasting, or extended 
half-life clotting factors have been recently introduced for 
therapeutic and prophylactic treatment of hemophilia A. These 
include Fc and albumin fusion proteins as well as PEGylated 
FVIII (11–15). However, half-life extension of these products 
has been modest (more than twofold increase) (10, 16). Based 
on older observations on tolerogenic effects of immunoglobulin 
conjugation, it is hoped that Fc-FVIII may have reduced immu-
nogenicity, which is supported by some pre-clinical data (17). 

Clinical evaluation in previously untreated patients (PUPs) 
should answer this question.

As opposed to generating less immunogenic FVIII molecules 
or employing ITI, an alternative strategy to avoid the effects 
of inhibitors against FVIII altogether is to develop bypassing 
agents that promote coagulation through pathways that either 
do not require FVIII or that mimic the function of FVIII. Novel 
drugs that fall into this category include Emicizumab (Chugai 
Pharmaceutical, Chuo, Tokyo, Japan), a human monoclonal 
bi-specific antibody, which is administered subcutaneously 
once per week (18, 19) and binds to both activated coagulation 
FIX and FX, mimicking the function of FVIII (20). Fitusiran 
is an experimental RNAi-based drug developed by Alnylam 
Pharmaceuticals (Cambridge, MA, USA) that targets endog-
enous anticoagulant antithrombin expression in the liver (21). 
As a result, Fitusiran improves homeostasis by promoting 
thrombin generation. Both drugs are currently undergoing 
extensive clinical testing.

Rather than treating hemophilia with more or less frequent 
drug administrations, gene therapy has the potential to cure 
the disease. Multiple Phase I/II clinical trials are testing hepatic 
in vivo gene transfer with adeno-associated viral (AAV) vectors 
in patients with severe hemophilia A, in some cases achieving 
normal FVIII levels (22). In pre-clinical large animal studies, 
sustained expression for >1 decade had been observed with this 
approach. While FVIII is normally produced by liver endothe-
lial cells, these gene therapies target transgene expression to 
the more abundant hepatocytes. In these trials, patients must 
have demonstrated extensive prior treatment with FVIII protein 
without having formed inhibitors. Nonetheless, a large body of 
studies in animal models of hemophilia has demonstrated the 
potential of hepatic gene transfer to induce immune tolerance 
to the transgene product, which is discussed in further detail 
below.

iNHiBiTOR FORMATiON AND  
CLiNiCAL iTi

In traditional intravenous FVIII replacement therapy, the 
appearance of inhibitors is usually observed in PUPs, i.e., young 
pediatric patients, during the first 50 days of exposure to FVIII 
(23). However, increased incidence of inhibitor development 
was also reported in older patients (50+ years), with previous 
exposure to FVIII (24). Inhibitor formation is a serious compli-
cation in the treatment of hemophilia. These antibodies make 
replacement therapy ineffective, thereby substantially compli-
cating treatment, increase risks of morbidity and mortality, 
and substantially elevate costs of treatment. The mechanism of 
inhibitor formation is multifactorial and not entirely understood. 
Several predisposing risk factors have been identified. Genetic 
risk factors include F8 mutation types (such as large deletions, 
nonsense mutations, and intron 22 inversions), which are 
associated with a higher rate of inhibitor development. Patients 
of African-American and Hispanic ethnicity have a higher 
risk for inhibitor formation. Family and sibling history, major 
histocompatibility complex class II alleles, and polymorphisms 
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in immune regulatory genes coding for cytokines (IL-10, TNFα) 
and other molecules such as CTLA-4 are likely important 
contributors (25, 26). Other modifiers include production of 
indoleamine-pyrrole 2,3-dioxygenase (IDO) enzyme, inflam-
mation, and age and intensity of first exposure to FVIII (27, 28).

B-cell activation, leading to inhibitor formation, is CD4+ 
T-helper cell dependent, and several CD4+ T-cell epitopes have 
been mapped in humans (29). Co-stimulation via CD80/86-CD28, 
CD40-40L, and ICOS-ICOSL pathways is required, which can be 
exploited for tolerance induction using co-stimulation blockers 
such as anti-CD40L/CTLA-4-IgG combination or anti-ICOS 
monoclonal antibody (30). A related strategy is based on inter-
ference with T-cell receptor (TCR) signaling using anti-CD3, 
which appears to favor induction of CD4+CD25+FoxP3+ Tregs 
(31). Inhibitors target various parts of FVIII, although the A2 
and C2 domains are believed to be the most immunogenic. 
Marginal zone macrophages have been found to be important 
for the capture and accumulation of FVIII in the spleen (32). 
Otherwise, remarkably little is known about the roles of profes-
sional antigen-presenting cells (APCs), such as dendritic cells 
(DCs) in the events that lead to FVIII-specific B-cell activation. 
Memory T cells may be re-activated by innate immune signaling 
through toll-like receptors 7 or 9 (33, 34).

Current clinical protocols for ITI are designed to eradicate 
inhibitors. The most commonly used form of ITI employs 
frequent (daily), high dose (up to 200 IU/kg/day) infusions of 
FVIII to eliminate inhibitors (35, 36). To date, there is no defini-
tive mechanistic explanation as to how high doses of FVIII can 
induce tolerance. One of the proposed theories is that repetitive, 
high doses of antigen can suppress activated T-cell responses 
by overstimulation with antigen, followed by anergy and dele-
tion (37). ITI also targets FVIII-specific memory cells and may 
assist in the induction of Treg (38). ITI is considered successful 
if inhibitor titers fall below 0.6  BU/ml, and FVIII function is 
normalized (39). Duration of ITI varies among patients from 9 
to 48 months, according to the International Immune Tolerance 
Registry and the North American Immune Tolerance Registry. 
Therefore, ITI protocols often cost >$1M to complete. Outcomes 
of ITI therapies are variable as well. Only 50–70% of patients 
benefit from “traditional” ITI protocols. Some patients, who 
initially respond to ITI therapy, may experience anamnesis 
(inhibitor re-appearance) with repeated exposure to FVIII. 
Taking in consideration the high cost, moderate success rate, 
long duration, inconvenience of daily infusions, and a risk 
of anamnesis, ITI protocols can be modified to include other 
therapies and immunomodulation (Figure 1).

NOveL APPROACHeS TO iMMUNe 
TOLeRANCe iN HeMOPHiLiA—IN VIVO 
Treg iNDUCTiON vS Treg THeRAPY

Over the past decade, strong evidence has emerged that 
Tregs are an integral part of immune tolerance to coagulation 
factors in gene and protein replacement therapies (40–42).  
It should therefore be possible to promote tolerance to FVIII 
by enhancing in  vivo Treg induction or by development of a 

Treg-based cell therapy. Thymic-derived and peripherally 
induced CD4+CD25+FoxP3+ Tregs are critical immune regula-
tors to prevent autoimmune disease and for tolerance to “non-
self ” antigens. Treg may suppress immune responses via diverse 
mechanisms that include direct cell to cell contact, release of 
suppressive cytokine such as IL-10 and/or TGF-β cytokines, and 
modulation of APC maturation and function, thus preventing 
differentiation of T cells into effector cells and promoting their 
conversion into Tregs (43). One potent approach to shifting 
the balance from an effector T-cell to a Treg response to an 
exogenous protein is co-administration of the antigen with the 
mTOR inhibitor rapamycin (44) (Figure 1).

Cell cycle progression in activated T cells upon stimulation of 
the IL-2 receptor requires signaling through the mTOR pathway 
in conventional T  cells. Activation of mTOR also promotes 
glycolysis, a metabolic pathway that effector T  cells heavily 
depend on. Therefore, antigen presentation combined with 
blockage of the mTOR pathway by rapamycin results in apop-
tosis of activated T cells. However, Treg induction is enhanced 
in the presence of rapamycin. Treg heavily depend on IL-2 but 
preferentially utilize alternative downstream signaling pathways 
(via Stat5) and lipid metabolism, allowing these cells to expand 
in the presence of rapamycin. Hence, a 1-month oral regimen of 
rapamycin, combined with low-dose intravenous FVIII admin-
istration, resulted in long-term tolerance to therapeutic FVIII 
administration in hemophilia A mice (45). Antigen-specific 
tolerance was maintained for months after general immune 
suppressive effects had waned. This outcome correlated with the 
induction of FVIII-specific CD4+CD25+FoxP3+ Treg. To further 
enhance efficacy and reduce systemic immune suppressive 
effects, rapamycin may be packaged into polymeric synthetic 
nanoparticles. Transient co-administration of FVIII and 
rapamycin-nanoparticles similarly induced lasting tolerance 
in the hemophilia A mouse model and also diminished pre-
existing inhibitors (46, 47). The tolerogenic effect of rapamycin 
can be further enhanced by addition of cytokines such as IL-10 
or Flt3L (44, 45, 48). Flt3L is widely used for in vivo expansion 
of DCs. Interestingly, in the presence of rapamycin (within a 
certain dose range), Flt3L selectively expands plasmacytoid DCs 
(pDCs), resulting in further increased Treg induction compared 
to antigen/rapamycin alone (48). In contrast to other DCs, pDCs 
uniquely express a microRNA (miRNA) that indirectly causes 
a more active mTOR pathway (48, 49). Hence, pDCs are more 
resistant to mTOR inhibition. Evidence has been presented  
that pDC enhances Treg induction through expression of IDO, 
which has effects on signal transduction but also catalyzes the 
first step in tryptophan catabolism, resulting in degradation 
products that may promote Treg induction (50).

An alternative method to enrich for Treg in vivo is the use of 
IL-2 complexed with a monoclonal antibody against IL-2 (IL-2/
IL-2 mAb complexes), thereby aiding in the rapid expansion of 
CD4+CD25+FoxP3+ Treg. Pretreatment with these complexes 
have been shown to produce activated and highly suppressive 
Treg in mice that prevented autoimmunity and showed long-term 
acceptance in transplant rejection studies (51). In hemophilia 
A mice, this regimen robustly suppressed inhibitor formation 
to either FVIII replacement therapy or plasmid-mediated gene 
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FigURe 1 | Major in vivo approaches for tolerance induction and suppression of inhibitor formation in hemophilia. (A) Administration of the widely used clinical 
immunosuppressant, rapamycin, results in the selective deletion of CD4+ T-helper cells and enrichment of FoxP3+ regulatory T cell (Treg), exploiting differential  
use of the mTOR pathway. (B) Oral tolerance by lettuce encapsulated clotting factor leads to the suppression of inhibitors by at least two subsets of Treg: 
CD4+CD25−LAP+FoxP3− and CD4+CD25+FoxP3+ Treg. Antigen presentation by gut resident CD103+ dendritic cell (DC), as well as plasmacytoid DCs (pDCs), 
supports Treg induction. (C) Hepatic gene transfer by adeno-associated viral (AAV) or lentiviral vector induces tolerance by multiple mechanisms, which include 
programmed cell death of CD4+ T-helper cells and the induction of FoxP3+ Treg. An important role for initial antigen presentation in the liver draining portal/celiac 
lymph nodes by professional as well as liver resident antigen-presenting cells (APCs) is indicated.
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therapy of FVIII. Long-term tolerance to FVIII, which resisted 
subsequent re-challenge with FVIII protein, was observed and 
was attributed to TGF-β1-dependent conversion of FVIII-specific 
CD4+CD25− conventional T cells into Treg (52, 53).

A different approach to utilizing Treg to suppress inhibitor 
formation is that of a cell therapy (Figure  2). For example, 
ex vivo expanded polyclonal CD4+CD25+FoxP3+ Tregs are 
successfully used in hematopoietic stem cell transplants to 
prevent graft vs host disease are also evaluated in the treat-
ment of autoimmune disease (54). Methods for the expansion 
of clinical-grade human Treg are well established and continu-
ously further optimized (55). Ex vivo expanded Tregs highly 
up-regulate CTLA-4, enabling them to down-regulate the co-
stimulatory signaling molecules CD80/CD86 upon interaction 
with DCs, thereby promoting tolerogenic antigen presentation 
(56, 57) (Figure 2). In the hemophilia A mouse, transplant of 
polyclonal Tregs, which had been ex vivo expanded with anti-
CD3/-anti-CD28 beads and IL-2, suppressed inhibitor forma-
tion against FVIII protein therapy even after the transferred 
cells become undetectable (56). Adoptive transfer and in vitro 
studies revealed the ability of the expanded non-specific Treg 
to enhance induction of endogenous, antigen-specific Treg by 
facilitating conversion of conventional specific CD4+ T cells to 
CD4+CD25+FoxP3+ Treg (56) (Figure  2). This approach has 
the advantages of availability of clinical protocols and reagents 
and of not requiring genetic manipulation of patient cells. 
However, large cell numbers are likely required, and therefore, 

there is a risk of general immune suppression early after cell 
transplant (Table 1).

Hence, efforts are directed at generation of FVIII-specific 
Treg. This can be accomplished by redirecting antigen-
specificity through TCR or chimeric antigen receptor (CAR) 
gene transfer to Treg (Figure 2). FVIII-specific Tregs generated 
by engineering Tregs to express a single human TCR (upon  
ex vivo retroviral gene transfer) have been found to suppress 
CD4+ T-cell and B-cell responses and to be suppressive in 
hemophilia A mice expressing human HLA (58). Although these 
Tregs only recognized a single epitope, suppression of responses 
against the entire FVIII molecule occurred. Nonetheless, because 
of differences in HLA, translation of this strategy would require 
cloning of multiple TCRs. In contrast to transferring a TCR, the 
CAR approach is that it is not MHC restricted. Therefore, one 
construct could theoretically be used for all patients. CAR T cells 
are engineered by introducing antigen recognizing variable 
region (single-chain variable fragment) antibody domains, fused 
to primary and co-stimulatory signaling molecules. Antigen 
recognition and cell signaling by CAR expressing T lymphocytes 
are therefore independent of APCs and is not MHC restricted 
(59, 60). Successful trials of CAR T-cell immunotherapies for the 
treatment of leukemia have created possibilities of engineering 
FVIII-specific CAR Tregs, with antigen-specific suppression  
(61, 62). Experimentally generated FVIII-specific human CAR 
Tregs suppressed antibody formation in  vitro and in  vivo in 
hemophilia A mice (58, 63). CAR T  cells typically recognize 
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FigURe 2 | Emerging cell therapy-based approaches to eliminate inhibitor formation. These proposed treatments are based on the ex vivo expansion/engineering 
of autologous lymphocytes, followed by adoptive transfer back into the patient. (A) Lentivirally transduced, gene modified B cells expressing an IgG fusion protein 
can induce tolerance by MHC II presentation of the clotting factor product, which results in the deletion of effector CD4+ T cells and induction of CD4+CD25+FoxP3+ 
regulatory T cell (Treg). Tolerance induction is dependent on IL-10 production. (B) Ex vivo expanded, polyclonal CD4+CD25+FoxP3+ Treg highly up-regulate CTLA-4, 
promoting antigen-presenting cell (APC) tolerization by binding to co-stimulatory CD80/86 molecules. This facilitates the conversion of CD4+ T helper cells into 
induced Treg by a process of infectious tolerance, subsequently leading to antigen-specific suppression. (C) Treg can be engineered to express a factor VIII-specific 
T-cell receptor (TCR), redirecting antigen recognition to a specific, MHC II-restricted epitope of the clotting factor. They can suppress CD4+ T-cell and B-cell 
responses by multiple mechanisms. (D) Chimeric antigen receptor (CAR) Treg is engineered by introducing antigen recognizing single-chain variable fragment (scFv) 
antibody domains, fused to primary and co-stimulatory TCR signaling molecules. CAR Treg can recognize clotting factor bound to the surface of APC, leading to 
their activation and suppressive mechanisms, which include APC tolerization and CD4+ T-cell inhibition. It is yet unknown whether CAR Treg can directly suppress 
antigen-specific B cells.

5

Sherman et al. Immune Tolerance to FVIII

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1604

antigens of cell surfaces. The mechanism of suppression of 
responses to a soluble protein such as FVIII is, therefore, not 
entirely clear. For in  vitro suppression, APCs were required, 
suggesting that cell surface association is needed (Figure  2).  
A related question is whether CAR Treg may be able to directly 
suppress B cells. Prior to translation of the approach, questions 
regarding the in vivo persistence, durability of suppression, and 
safety need to be addressed.

DiReCTLY TARgeTiNg B CeLLS FOR 
TOLeRANCe

Upon activation, B cells differentiate into memory cells or anti-
body secreting cells, including plasma cells. However, B  cells 
also play a role in antigen presentation (64). Interestingly, gene-
modified primary B cells have the capacity to induce immune 
tolerance upon retroviral or lentiviral gene transfer (while TLR9 
activation during plasmid gene transfer generates immunogenic 
B cells) (65–67). Skupsky et al. showed that the expression of 

IgG fusion proteins (IgG-A2 and IgG-C2 domains of FVIII) in 
primary B cells is a particularly powerful tool to induce toler-
ance (65). Gene-modified B  cells route the expressed fusion 
protein through the endosomal compartment, resulting in 
MHC II presentation, deletion of effector T cells, and induction 
of CD4+CD25+FoxP3+ Treg (Figure 2) (68). Adoptive transfer 
of a mixture of retrovirally transduced B cells, expressing IgG 
fusion of FVIII A2 or C2 domain, suppressed inhibitor forma-
tion in hemophilia A mice (69). Similarly, IgG-F9 gene transfer 
prevented and reversed inhibitor formation and anaphylaxis 
against FIX in mice with hemophilia B (FIX deficiency) (66). 
A major limitation of this approach had been a lack of suitable 
gene transfer vectors for human B  cells. Recent development 
of lentiviral vectors (LV) targeted to human CD20 through 
inclusion of a single chain antibody fragment in the viral 
envelope protein has overcome this bottle neck (67). Primary 
B cells transduced with such a LV to express IgG-FIX prevented 
inhibitor formation in hemophilia B mice (67). However, clini-
cal translation is still not straightforward because of relatively 
low titers of this vector.
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TABLe 1 | Summary of main approaches currently being developed for tolerance induction to factor VIII (FVIII).

Approach Mechanism Advantages Disadvantages

Hepatic gene transfer Induction of FoxP3+ regulatory T cells (Tregs) 
and deletion of effector T cells

Combines treatment with immune tolerance 
induction; potential for inhibitor reversal; 
already in advanced clinical development  
as a therapy for adults

Requires gene transfer to pediatric patients; 
immune responses to viral vectors have been 
observed clinically

Co-administration of 
FVIII with rapamycin 
(potentially combined 
with cytokines)

In vivo induction of FoxP3+ Treg combined 
with deletion of effector T cells by inhibition 
of mTOR pathway 

Lasting tolerance induction after transient 
regiment

Transient general immunosuppression 

Ex vivo expansion of 
polyclonal Treg

Down-regulation of co-stimulatory molecules 
CD80/CD86, promoting tolerogenic antigen 
presentation and endogenous Treg induction 

Clinical protocols already established Transient immune suppressive effects/initial lack of 
antigen-specificity, large number of cells required

Ex vivo gene-modified 
Tregs

FVIII-specific suppression by FoxP3+ Treg 
with specificity redirected by T-cell receptor 
(TCR) or chimeric antigen receptor (CAR) 
gene transfer

Reduced cell numbers for therapy, antigen-
specificity, no MHC restrictions for CAR 
approach

Genetic manipulation of patient cells required, 
MHC restriction for the TCR approach, durability, 
and costs unclear

Ex vivo gene modified 
B cells 

Treg induction and effector T-cell deletion via 
MHC II presentation by transduced B cells

Highly effective in animal models Use of integrating vectors required, large number 
of cells required, limitations to titers of current 
lentiviral vectors that transduced human B cells

B-cell depletion with 
rituximab (anti-CD20)

Depletion of CD20+ B cells Reduces inhibitors in some patients 
that failed traditional immune tolerance 
induction, can potentially be combined with 
rapamycin to induce tolerance in  
such patients

Does not target plasma cells, inhibitors tend to 
relapse (although the outcome may be improved 
by combination with other drugs such as 
rapamycin)

Oral tolerance Bioencapsulation and targeting of antigen to 
immune system of small intestine, induction 
of FoxP3+ and LAP+ Tregs

Could be considered prophylactically, 
antigen-specific tolerance without 
immunosuppression or genetic 
manipulation, low production cost

Repeat oral delivery appears required for lasting 
tolerance
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Theoretically, protocols directed at elimination of memory 
B  cells should benefit patients with persistent inhibitors, in 
particular those who fail to respond to traditional ITI. Hence use 
of the monoclonal antibody rituximab, which eliminated CD20+ 
cells in the human body through a variety of mechanisms, has 
been tested for this purpose (70). A recent Phase II safety study 
demonstrated that the anti-CD20 antibody rituximab showed a 
modest affect in reducing inhibitors and preventing anamnes-
tic responses to repeated exposures to FVIII, albeit relapse of 
the inhibitor response remains a problem (71). B-cell depletion 
by itself may not be effective for tolerance induction, which 
likely requires tolerance induction in the T-cell compartment. 
Therefore, combination therapy with additional drugs may be 
needed. Interestingly, a recent study showed that combining 
anti-CD20-mediated B-cell deletion with rapamycin and FVIII 
antigen substantially improved reversal of inhibitor formation 
in hemophilia A mice (72). Such a protocol was superior to 
anti-CD20 or rapamycin alone or to polyclonal Treg therapy. 
B-cell depletion was also shown to enhance tolerance induction 
to FVIII in the context of hepatic gene transfer, when transgene 
expression was low and thus ineffective in Treg induction (73).

HePATiC geNe THeRAPY FOR 
TOLeRANCe iNDUCTiON

In contrast to protein replacement therapy, gene therapy has 
the potential for a lasting cure of hemophilia. A first successful 

gene therapy for hemophilia B, utilizing in vivo gene transfer to 
the liver with an AAV vector, was documented in recent years 
(74). Currently, there are multiple clinical trials using liver-
directed AAV vectors to treat hemophilia A and B (75). Some 
of these are achieving levels of FVIII or FIX activity at or near 
normal, and are thus expected to progress to Phase III trials (76).  
AAV vectors are comprised of a DNA genome (that is either 
single-stranded or modified to be self-complementary) pack-
aged into a protein capsid. These vectors, derived from a small 
non-pathogenic parvovirus, lack viral coding sequences and 
effectively transfer genes in vivo. Viral capsids with a tropism for 
the liver are utilized in current trials, and the therapeutic gene is 
under transcriptional control of a hepatocyte-specific promoter. 
Given the limited packaging capacity of the vector (~5  kb),  
B domain-deleted FVIII (BDD-FVIII) is expressed. The B domain 
is dispensable for FVIII activity, and several recombinant FVIII 
products are BDD. The liver is an ideal target organ for gene 
therapy for hemophilia. FVIII and FIX are normally synthetized 
by liver sinusoidal endothelial cells (LSECs) and hepatocytes, 
respectively (77). Both cell types can efficiently secrete proteins 
into circulation.

From an immunological point of view, hepatic gene transfer 
has the major advantage that transgene expression in the hepatic 
environment can induce immune tolerance (78) (Figure  1). 
Given their hepatotropism, low innate immunity (resulting in 
limited tissue inflammation at the time of gene transfer), and 
the inefficiency in transducing professional APCs, AAV vectors 
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derived from several serotypes are ideal to achieve immune 
tolerance by hepatic gene transfer. Higher expression levels, as 
determined by vector serotype, dose, and the transgene expres-
sion cassette, favor tolerance induction (61, 79). High expression 
of the antigen enhances Treg induction and direct inhibition of 
memory B cells (80).

Constitutive exposure to FIX by hepatic gene transfer has 
been associated with CD4+ and CD8+ T-cell unresponsiveness 
and deletion by programmed cell death using both extrinsic 
and intrinsic mechanisms (79, 81, 82). In mice injected with 
AAV expressing the model antigen ovalbumin (AAV8- 
OVA), transgene-specific CD8+ T cells transiently up-regulated 
nega tive checkpoint markers, e.g., the programmed death 1 
receptor, leading to inefficient killing of transduced hepato-
cytes. Tolerance induction to FVIII or FIX has been shown to 
rely on the induction and enrichment of CD4+CD25+FoxP3+ 
Tregs, which suppressed CD8+ T cells and antibody formation 
in both mice and non-human primates (79, 83–85). Studies in 
Fas-deficient mice suggested that Treg induction and T-cell 
deletion were both required for robust tolerance induction  
(79, 84). Intrahepatic IL-10 expression further enforced sup-
pression of CD8+ T cells, without affecting antibody levels, while 
TGF-β expression was required for both Treg induction and to 
control transgene antibody formation in AAV-hFIX transduced 
hepatocytes (86). Engagement of the transmembrane protein 
GITR enhanced the proliferation and suppressive capacity of 
induced Tregs (84, 87, 88).

Antigen presentation in the tolerogenic liver environment 
by both professional APCs and liver resident cells is not fully 
understood but orchestrates a balance between immune regula-
tion and immune surveillance (89). Administration of hepato-
tropic AAV8-OVA identified CD11c+ DC and macrophages as 
APCs that are required for MHC II presentation of the transgene 
product, which primarily occurs in liver draining lymph nodes, 
such as the portal and celiac lymph nodes, although the liver 
itself may also contribute to Treg induction (Figure  1) (90). 
Liver-induced Treg rapidly disseminated through the circula-
tion into multiple lymphoid organs, which resulted in systemic 
regulation of the response to the AAV gene product.

There have been concerns regarding the potential for cellular 
stress in the liver by over-expression of FVIII in hepatocytes. 
Improvements such as codon optimization of the F8 gene 
and deletion of the B domain have, however, resulted in only 
a mild activation of the unfolded protein response in mice, 
which did not impact liver pathology or FVIII immunogenic-
ity (91, 92). Codon optimization of the F8 gene yielded higher 
hepatic expression levels that sustained therapeutic expression 
and improved tolerance induction (73). Translation of these 
studies in a large animal model for hemophilia A showed that 
AAV-mediated liver gene transfer of canine FVIII was not only 
effective in long-term sustained expression of FVIII but may 
also eradicate pre-existing inhibitory antibodies in two strains 
of hemophilia A dogs, with indications for improving outcomes 
in patients with established inhibitors (93–95).

The capacity of liver-directed gene transfer to induce immune 
tolerance to transgene products has also been demonstrated 
for LV. The large gene carrying capacity of LV makes them 

attractive candidates for hemophilia A gene therapy. Improved 
safety profiles have been reported with the development of 
hepatocyte-targeted, integrase-defective LV, which resulted in 
a sustained expression of FIX, tolerant to neutralizing antibody 
induction in hemophilia B mice, and without the risk of inser-
tional mutagenesis (96). LV more efficiently transduce a variety 
of APCs, leading to innate immune responses, including TLR7 
and TLR9 activation, and the induction of type I interferon and 
pro-inflammatory cytokines (97, 98). Ultimately, this immune 
activation drives CD8+ T-cell and antibody responses against  
the transgene product. Transcriptional and post-translational 
engineering of the LV, using a combination of cell-specific 
promoters and miRNA target sequences to eliminate transgene 
expression in professional APCs (miR-142-3p), while restricting 
high levels of therapeutic expression to hepatocytes, has been 
shown to induce tolerance in both hemophilia A and B models 
and correction of disease phenotype (99–102).

A recent study has shown that directing LV-mediated 
FVIII gene expression to LSECs (which are the physiological 
source of FVIII synthesis) by using an endothelial cell-specific 
promoter, similarly resulted in stable and therapeutic levels of 
FVIII in mice (103, 104). Interestingly, using a CD11b myeloid 
cell-specific promoter and a target sequence for miR-126, 
which is highly expressed in endothelial and pDCs, resulted 
in the prevention of inhibitory antibodies to FVIII. Even after 
subsequent challenge of these mice with FVIII in adjuvant, they 
remained tolerant for up to 24 weeks. Therefore, an important 
contribution of gene transfer to pDCs in driving an immune to 
the FVIII antigen in LV gene therapy was proposed.

ORAL TOLeRANCe iNDUCTiON USiNg 
TRANSgeNiC CROP PLANTS

The immune system of the small intestine has evolved to promote 
tolerance to food antigens (105, 106). This phenomenon can be 
exploited in tolerance induction through oral antigen delivery. 
This concept has multiple advantages, since no immune sup-
pressive drugs, genetic manipulation of host cells, or expensive 
cell therapies are required. Oral tolerance has been studied for 
more than half a century and is defined as a systemic immu-
nological unresponsiveness or hyporesponsiveness to an orally 
administered antigen. Several recent successes in prevention of 
food allergies illustrate relevance for human treatment (107, 108). 
In experimental models of autoimmune diseases, orally admin-
istered antigens suppressed autoimmunity in animal models 
of experimental autoimmune encephalomyelitis, diabetes, and 
rheumatoid arthritis (109–111).

The mammalian digestive system has a rich and complex 
immune network that has evolved to maintain a delicate bal-
ance between tolerance and immunoreactivity (112, 113). The 
gut-associated lymphoid tissue consists of intestinal epithelial 
lymphocytes, concentrated within the intestinal epithelial barrier, 
Peyer’s patches, and mesenteric lymph nodes (MLNs) (114, 115).  
The majority of the incoming food proteins get digested and 
degraded in the stomach and upper intestine. Proteins that 
escape degradation pass through the gut epithelial barrier and are 
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sampled by APCs. Antigen loaded APCs subsequently migrate 
to the MLNs (116, 117), where APCs activate and prime naïve 
antigen-specific T  lymphocytes (118). Lillicrap and colleagues 
initially tested this mucosal tolerance concept for treatment of 
hemophilia A. Mice exposed to the immunogenic C2 domain 
of FVIII (FVIII-C2) via oral or nasal route developed partial 
tolerance to systemic challenges with FVIII-C2 and full-length 
FVIII. This tolerance persisted after adoptive transfer of CD4+ 
splenocytes from FVIII-KO mice that received intranasal antigen 
administration (119).

However, for the concept to go forward, one had to develop 
a technology for cost effective production of the FVIII antigen, 
protection from degradation in the stomach, and effective 
delivery to the gut immune system. Answers to these chal-
lenges came with advancements in plant genetics, resulting 
in high levels of expression of human therapeutic proteins in 
the chloroplast (120, 121) of crop plants for the production of 
edible biopharmaceuticals (122). Initial experiments conducted 
in hemophilia B mice using frozen and ground tobacco leaves 
demonstrated robust suppression of inhibitor formation and 
of fatal anaphylactic reactions against intravenous FIX (123). 
In subsequent studies in hemophilia A mice, using a mixture 
of frozen tobacco leaves expressing either C2 domain or the 
heavy chain of human BDD-FVIII, effective suppression of 
inhibitor formation was documented in two different strains of 
hemophilia A mice (124). In both studies, the bioencapsulated 
antigens were given by oral gavage twice per week, starting 
1 month prior to initiation of traditional replacement therapy. 
This method could also reverse FIX inhibitors and desensitize 
from the allergic reactions to FIX in hemophilia B mice, as 
well as accelerate the decline of pre-existing FVIII inhibitors in 
hemophilia A mice (124, 125).

Toward an oral tolerance protocol that is feasible in humans, 
transgenic lettuce plants were developed. This became feasible 
after identification of lettuce chloroplast-specific posttran-
scriptional elements that ensure high expression (126, 127). 
Furthermore, chloroplast genomics tools were developed for 
the identification of ribosomal stall sites and optimization of 
codon usage (128). In addition, growth of the transplastomic 
lettuce in a hydroponic system suitable for GMP production 
was developed, as well as a lyophilization process to generate 
leaf material for stable long-term storage at ambient tempera-
ture. When tested in hemophilia B mice, lyophilized lettuce 
containing human FIX was effective in tolerance induction 
over a wide range of antigen doses (127). To prove that the 
method is not limited to rodent models, a study in hemophilia 
B dogs was performed. These animals are similar in size to 
pediatric patients and reproducibly form antibodies against 
human FIX after repeated intravenous delivery. Three of the 
four dogs that received the oral tolerance regimen at an antigen 
dose of 0.3 mg/kg showed robust suppression in IgG and IgE 
formation against human FIX, correlating with a lack of inhibi-
tor formation, lack of anaphylactic reactions, and restoration 
of blood clotting times after each of 8 weekly FIX injections 
(129). Extensive serum chemistry, hematological, and general 
health evaluations showed absence of toxicity even after several 
months of oral delivery.

The mechanism of plant induced oral tolerance is complex. 
The plant cell wall provides bioencapsulation for the antigens, 
which are released in the small intestine through degradation by 
enzymes produced by intestinal microbes. For efficient delivery 
across the gut epithelium, FVIII and FIX antigens are expressed 
in chloroplasts as N-terminal fusions to cholera toxin B (CTB) 
subunit. CTB is an effective transmucosal carrier that, in the 
form of a pentamer, binds to the GM1 receptor on the surface of 
epithelial cells (and other cell types, including DCs), resulting in 
uptake and translocation through transcytosis/retrograde traf-
ficking (130). Inclusion of a furin cleavage sites assures release 
of FVIII or FIX sequence from CTB. Immunohistochemistry 
showed delivery to DCs in the lamina propria and in Peyer’s 
patches (125). These include CD103+ DC (Figure  1). Upon 
intravenous challenge with antigen, increases in the frequencies 
of CD103+ DC and pDCs are observed, especially in MLNs. 
CD103+ DC are critical APCs in oral tolerance induction, since 
they transport antigen to the MLN, where they effectively induce 
Treg. The plant cell-based oral tolerance protocol induces two 
subsets of Treg that systemically suppress antibody formation 
against FVIII or FIX, namely CD4+CD25+FoxP3+ and CD4+CD25− 
FoxP3−LAP+ Treg (124, 125, 127) (Figure  1). The latter are 
most robustly induced and produce IL-10 and TGF-β cytokines 
(125). LAP+ Tregs express latency-associated peptide (LAP) 
on the cell surface and suppress through a TGF-β dependent 
mechanism (131). Future work may show whether FoxP3+ and 
LAP+ Tregs have redundant or synergistic roles in oral tolerance 
induction to coagulation factors. Interestingly, there was also 
evidence for induction of type 1 Tregs in the lamina propria. 
These may locally contribute to tolerance induction through 
IL-10 expression. In fact, the oral tolerance mechanism was 
found to be IL-10 dependent, consistent with the notion that 
IL-10 is a key component of immune tolerance on mucosal 
interphases (125).

OTHeR APPROACHeS

Maternal antigen transfer may offer hope for many genetic 
disorders that are diagnosed in  utero. The advantages of this 
method are as follows: immaturity of immune system, absence 
of pre-existing antibodies, and early, antigen-specific tolerance 
induction (132, 133). A recent study in hemophilia A mice 
found that intravenous administration of Fc fusions of FVIII 
A2 and C2 domains resulted in effective antigen transfer into 
the developing fetal immune system via the neonatal Fc recep-
tor (132). Moreover, the offspring of injected females showed 
robust tolerance to repeated challenges with FVIII when 
compared with offspring of non-treated mothers. A window for 
tolerance induction during gestation was identified, resulting 
in development of thymic-derived and peripherally induced 
antigen-specific Treg. A potential limitation for this approach is 
the large antigen dose that may be required for effective transfer 
to the fetus. Interestingly, Fc-conjugated FVIII is in advanced 
clinical development as a method to increase the half-life of 
FVIII during replacement therapy (12, 134). Building on the 
tolerogenic properties of Fc sequences, these molecules may be 
superior antigens for ITI in general (17).
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In other studies, neonatal AAV gene transfer to hemophilia 
A mice directed sustained therapeutic FVIII expression (~5% 
of normal) and immunological unresponsiveness, with no 
antibodies being detected against AAV or FVIII. Mice also 
remained tolerant to a subsequent FVIII challenge in adjuvant, 
performed 8 weeks after gene transfer (135). Alternatively, acti-
vated platelets can serve as a vehicle to deliver FVIII to the site 
of vascular injury in patients with inhibitors. Transplantation 
of modified hematopoetic stem cells (HSCs) with FVIII under 
megakaryocyte-specific promoter restored hemostasis in 
hemophilia A mice with inhibitors (136). Here, FVIII is stored 
in α-granules, which protects FVIII from elimination by inhibi-
tors, which would occur for FVIII that circulates in plasma. 
Activated platelets release FVIII containing α-granules at the 
site of vascular injury, thereby restoring hemostasis. Similarly, 
LV-modified autologous canine megakaryocytes (precursors 
of platelets) expressing FVIII in α-granules prevented bleeding 
episodes in hemophilia A dogs (137). These large animal studies 
further support that platelet-derived FVIII may potentially ben-
efit hemophilia patients with inhibitors. This approach combines 
autologous HSC gene transfer with bone marrow conditioning 
and has also been shown to tolerize the transplant recipient 
animals to FVIII (138).

In conclusion, a large number of diverse innovative approaches 
to induce immune tolerance in the treatment of hemophilia A  

and thus prevent and/or reverse inhibitor formation to FVIII 
are currently in pre-clinical development (Table 1). Mechanistic-
ally, these primarily aim at tipping the balance of the immune 
response to Treg induction. Each approach has conceptual 
advantages and disadvantages, which have to be factored into 
decisions about translation studies in humans (Table 1). Since 
inhibitors form in young boys with hemophilia, an acceptable 
level of immune suppression or genetic manipulation would have 
to be determined for some of these approaches. Nonetheless, 
new superior technologies for antigen-specific ITI hold much 
promise to finally reduce inhibitor formation in the treatment of 
hemophilia A patients.
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