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Stress refers to a dynamic process in which the homeostasis of an organism is chal-
lenged, the outcome depending on the type, severity, and duration of stressors involved, 
the stress responses triggered, and the stress resilience of the organism. Importantly, the 
relationship between stress and the immune system is bidirectional, as not only stressors 
have an impact on immune function, but alterations in immune function themselves can 
elicit stress responses. Such bidirectional interactions have been prominently identified 
to occur in the gastrointestinal tract in which there is a close cross-talk between the gut 
microbiota and the local immune system, governed by the permeability of the intestinal 
mucosa. External stressors disturb the homeostasis between microbiota and gut, these 
disturbances being signaled to the brain via multiple communication pathways consti-
tuting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain 
function. In view of these relationships, the present article sets out to highlight some of 
the interactions between peripheral immune activation, especially in the visceral system, 
and brain function, behavior, and stress coping. These issues are exemplified by the way 
through which the intestinal microbiota as well as microbe-associated molecular patterns 
including lipopolysaccharide communicate with the immune system and brain, and the 
mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective 
behavior, pain sensitivity, and stress coping. The interactions between the peripheral 
immune system and the brain take place along the gut–brain axis, the major commu-
nication pathways of which comprise microbial metabolites, gut hormones, immune 
mediators, and sensory neurons. Through these signaling systems, several transmitter 
and neuropeptide systems within the brain are altered under conditions of peripheral 
immune stress, enabling adaptive processes related to stress coping and resilience to 
take place. These aspects of the impact of immune stress on molecular and behavioral 
processes in the brain have a bearing on several disturbances of mental health and 
highlight novel opportunities of therapeutic intervention.

Keywords: gut–brain axis, gut microbiota, immune–brain axis, immune stress, intestinal inflammation, 
lipopolysaccharide, mental health, neuropeptide Y

iNTRODUCTiON

In a general context, stress is considered to be a dynamic process in which the physical and/or mental 
homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration 
of stimuli (stressors) involved, the stress responses triggered and the stress susceptibility/resilience 
of the organism. Homeostatic disturbances can be triggered by both exogenous and endogenous 
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stressors. There is abundant evidence that the immune system 
is involved in stress responses, given that both physical and 
psychosocial stressors have an impact on immune function. It 
needs to be emphasized, however, that the interaction between 
stress and immune system is a bidirectional process, implying 
that alterations in immune function themselves can elicit stress 
responses. Such bidirectional interactions have been identified to 
occur in the gastrointestinal (GI) tract in which there is a close 
cross-talk between the gut microbiota and the local immune 
system (1–4), governed by the permeability of the GI mucosa. 
On the one hand, external stressors impact on the gut microbiota 
and its relationship with the GI mucosal, immune, endocrine, 
and nervous system. On the other hand, this disturbance of gut 
homeostasis is signaled to the central nervous system (CNS) via 
multiple communication pathways constituting the gut–brain 
axis, ultimately eliciting stress responses and perturbations of 
brain function (5).

It has been known for some time that infection-related as 
well as infection-independent immunological stimuli can evoke 
stress responses as reflected by an increased activity of the hypo-
thalamic–pituitary–adrenal (HPA) axis, resulting in enhanced 
plasma concentrations of adrenocorticotropic hormone 
(ACTH) and cortisol/corticosterone (6, 7). Pathogen-associated 
molecular patterns (PAMPs) such as bacterial lipopolysac-
charide (LPS) have been extensively studied in their ability to 
stimulate the innate immune system via binding to toll-like 
receptor-4 (TLR4), cause the formation of proinflammatory 
cytokines, activate the HPA system (8–10), and alter brain 
function and behavior. Cytokines generated in response to, 
e.g., LPS trigger a complex behavioral response, encompassed 
in the terms “sickness behavior” or “illness response,” which 
comprise fever, anorexia, somnolence, decrease in locomotion, 
exploration and social interaction, hyperalgesia, and delayed 
depression-like behavior (11–15). These cerebral effects are 
brought about by multiple signaling mechanisms: direct access 
of cytokines to the brain, activation of vagal afferent neurons, 
and neuroinflammatory processes in the brain (11, 12, 14, 16). 
Once acute sickness subsides, depression-like behavior may 
ensue, in which cytokine-induced HPA axis hyperactivity plays 
a particular role (17).

Given the abundance of the gut microbiota (18), it is com-
monly assumed that a large part of the circulating levels of LPS 
and related PAMPs derive from bacteria in the GI tract (19) 
and that the effects of intraperitoneally (IP) administered LPS 
replicate primarily the reactions to increased translocation of 
LPS from the gut lumen under conditions of enhanced mucosal 
permeability. The intestinal mucosal barrier is subject to many 
influences that regulate its cellular and paracellular permeabil-
ity, among which stress is an important factor. de Punder and 
Pruimboom (19) hypothesize that the stress-induced increase 
in mucosal permeability serves to meet the enhanced metabolic 
demand under conditions of stress. At the same time, a persistent 
increase in the translocation of LPS to the circulation is associ-
ated with pathologies such as chronic GI inflammation (20) and 
non-alcoholic fatty liver disease (21) but also with chronic fatigue 
syndrome (22), depression (23), and autism spectrum disorder 
(24). A minor part of circulating PAMPs may also derive from 

other microbe-colonized organs, such as oral cavity, respiratory 
system, and genitourinary tract as well as from food (19). It has, in 
addition, been argued that there are dormant bacterial reservoirs 
in the blood and certain tissues, including the brain, and that 
PAMP production in these reservoirs may contribute to chronic 
inflammatory disease (25).

In view of these facts and conditions, the present article sets out 
to highlight some of the interactions between peripheral immune 
activation, especially in the visceral system, and brain function, 
behavior, and stress coping. These issues are exemplified by the 
way the intestinal microbiota and its metabolites communicate 
with the immune system and CNS, on the one hand, and the 
mechanisms whereby overt inflammation in the GI tract impacts 
on brain function, pain sensitivity, and stress coping, on the other 
hand. As the interactions between the peripheral immune system 
and the brain take place along the gut–brain axis, the major 
pathways of this communication system are also briefly dealt 
with. Furthermore, novel insights into the molecular signaling 
processes in the brain that occur under conditions of peripheral 
immune stress are discussed, and adaptive processes related to 
stress coping and resilience are considered. In concluding, these 
novel aspects of immune–brain interaction are put into perspec-
tive with disturbances of mental health that become manifest 
under conditions of stress and with emerging opportunities of 
therapeutic intervention.

MULTiPLe COMMUNiCATiON PATHwAYS 
ALONG THe GUT–BRAiN AXiS

The communication network between GI microbiota, mucosa, 
endocrine system, immune system, and enteric nervous system, 
on the one hand, and the brain, on the other hand, uses at least 
five information carriers (Figure  1): gut microbiota-derived 
molecules, immune mediators, gut hormones, vagal afferent neu-
rons, and spinal afferent neurons (5). As the interaction between 
gut and the brain is bidirectional, there are also at least four 
information carriers that signal from the CNS to the GI tract: 
parasympathetic efferent neurons, sympathetic efferent neurons, 
neuroendocrine factors involving the adrenal medulla, and neu-
roendocrine factors involving the adrenal cortex (5). Additional 
relays include the blood–brain barrier (BBB) and distinct brain 
circuits that process the information the CNS receives from the 
periphery.

It is important to note that these circulation-based (endo-
crine) and neuronal communication routes do not operate in 
isolation but are closely interrelated with each other. Microbial 
metabolites, microbe-associated molecular patterns (MAMPs), 
and PAMPs can act both on GI endocrine and/or immune cells 
and sensory neurons. This is exemplified by the short-chain fatty 
acids (SCFAs) comprising acetic, n-butyric, and propionic acid, 
which are generated from otherwise indigestible carbohydrate 
fibers through microbial fermentation. SCFAs are multi-target 
messengers that act on GI endocrine, mucosal, and immune 
cells as well as on brain microglia (26, 27). SCFAs are important 
energy sources for the microbiota and mucosa, exert antiinflam-
matory effects through their action on macrophages, neutrophils, 
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FiGURe 1 | Pathways involved in the behavioral disturbances associated with visceral immune activation and inflammation. There are multiple communication 
pathways between gut and brain: microbiota-derived signals, immune cell-derived signals, gut hormones, and vagal and spinal afferents. In the course of 
experimental colitis or microbe-evoked peripheral immune activation, signaling along these pathways is altered, ultimately influencing brain functions, such as 
anxiety, depression-like behavior, learning, and memory.
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dendritic, and regulatory T cells, and have a fortifying influence 
on the GI epithelial barrier (27) as well as BBB (28).

Most of the cellular effects of SCFAs are mediated by G 
protein-coupled receptors (GPRs), such as GPR41 (also known 
as FFAR3), GPR43 (also known as FFAR2), and GPR109A (also 
known as HCAR2) (26, 27). This is also true for the impact SCFAs 
have on enteroendocrine cells in the GI mucosa. By stimulating 
GPR41 and GPR43 on L cells in the distal ileum and colon, 
SCFAs release the gut hormones peptide YY (PYY), glucagon-
like peptide-1 (GLP-1), and GLP-2 (29–31). Through this route, 
enteroendocrine cells convey messages of the gut microbiota 
within the digestive system as well as to distant organs, including 
the brain. Following their release from L cells, PYY and GLP-1 
inhibit gastric motility, improve glucose homeostasis, induce 
satiety (29, 32), and alter behavior (33, 34). It is likely that other 
appetite-regulating hormones, such as ghrelin, cholecystokinin, 
and leptin, are also under the influence of the gut microbiota 
(35–37). Gut hormone activity may be coupled with intestinal 
immune processes, as proinflammatory prostaglandins (PGs) 
acting via EP4 receptors enhance the release of GLP-1, GLP-2, 
and PYY (38), and enteroendocrine cell activity is increased in 
Crohn’s disease affecting the small bowel (39). In addition, enter-
oendocrine cells may be involved in hormone-independent ways 
of gut–brain communication, given that misfolded α-synuclein 

could be transferred to the brain through direct connections 
between enteroendocrine cells and neural circuits, thus contrib-
uting to the pathogenesis of Parkinson’s disease (40).

A number of gut hormones including PYY, GLP-1, and ghrelin 
signal to the brain to affect appetite and energy homeostasis but 
also impact on mood and emotional-affective behavior (29, 
32–34). This messaging is not only accomplished via a circula-
tory route but also through activation of vagal afferent neurons 
(5, 41). The vagus nerve appears in fact to play a particular role 
in the signaling of microbial, endocrine, and immune signals 
to the brain, which is consistent with its predominant sensory 
nature, given that the vast majority (80–90%) of the axons in the 
vagus nerve are afferent nerve fibers (42–44). Vagal afferents are 
thought to tonically deliver information from visceral organs to 
the brain, this massive sensory input being relevant not only to 
the autonomic regulation of digestion and energy balance but 
also to interoception (45, 46). Also termed the “sixth sense” (45), 
interoception refers to the integrated sense of the physiological 
condition of the body (46) and the representation of the internal 
state in the brain (47). GI interoception includes a wide range 
of conscious sensations, such as pain, nausea, GI discomfort, GI 
tension, hunger, and thirst, as well as signaling processes that go 
virtually unnoticed although they impact on emotional-affective 
and cognitive processes (48–50).
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iMMUNe STReSS SiGNALiNG FROM THe 
GUT TO THe BRAiN

immune Signaling via Microbial Factors
The gut microbiota is a rich source of potential messenger 
molecules: primary metabolites generated by microbial cells, 
MAMPs, and PAMPs shed from microbial cells, and secondary 
metabolites generated by microbial fermentation of food com-
ponents or transformation of host molecules such as bile acids 
(27, 51–55). Apart from the MAMPs and PAMPs, many of the 
other microbial metabolites, such as SCFAs, trimethylamine-
N-oxide, p-cresol, aryl hydrocarbon receptor ligands, formyl 
peptides, flagellin, polyamines such as spermidine, 4-ethyl 
phenol sulfate (4-EPS), and polysaccharide A produced by 
Bacteroides fragilis (27), have an effect on the immune system, 
may influence sensory nerve activity or travel by the blood 
stream to distant organs including the brain (Table 1). While we 
know many factors that govern the composition, diversity, and 
function of the gut microbiota, we still lack a full comprehension 
of the signaling systems that govern the homeostatic interaction 
between the gut microbiota and the local immune system as 
well as the resilience of this homeostatic cross-talk. In a wider 
perspective, a dysbalance in the micobiota–immune relationship 
represents itself a stress scenario which, if this “immune stress” 
is transmitted to the brain, will elicit a systemic stress response. 
As alluded to before, the intestinal mucosal barrier (27) plays 
an important role in the interaction between the gut microbiota 
and the intestinal immune system. Spadoni and colleagues (56) 
have recently characterized some of the structural and functional 
characteristics of the gut–vascular barrier in mice and humans 
that controls the translocation of microbial macromolecules 
into the bloodstream and denies entry of microbial cells. They 
identified Wnt/β-catenin signaling in gut endothelial cells as an 
important control mechanism which, when downregulated, may 
enable certain pathogenic bacteria such as Salmonella typhimu-
rium to enter the bloodstream (56).

Although the list of identified chemical messengers derived 
from the gut microbiota is steadily increasing, only a limited 
number of these molecules have been investigated in their effects 
on gut–brain and immune–brain signaling: PAMPs such as LPS, 
lipoteichoic acid (LTA), and peptidoglycan components, SCFAs 
and 4-EPS (Table 1). The latter metabolite is markedly increased 
in a mouse model of autism spectrum disorder which is caused 
by maternal immune activation and characterized by enhanced 
gut permeability, altered microbial composition, altered serum 
metabolomic profile, and defects in communicative, stereotypic, 
anxiety-like, and sensorimotor behaviors (57). Some of these 
behavioral abnormalities are reproduced by 4-EPS, while treat-
ment with the human commensal Bacteroides fragilis has a 
beneficial effect (57).

immune Signaling Across the Blood-Brain 
Barrier (BBB)
The BBB is an important checkpoint for the entry of molecules 
and cells into the brain and in this capacity shares many similari-
ties with the gut–vascular barrier (56, 58). Both boundaries are TA
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PAMP/metabolite Main receptor Dose Species (sex) Behavioral effects Additional effects Reference

1.0 ng/kg IV Healthy human 
volunteers (male)

Sickness symptoms Microglial activation throughout the brain, increased 
circulating levels of proinflammatory cytokines

(91)

FK565, MDP, LPS NOD1, NOD2, 
TLR4

3, 3, 0.1 mg/kg IP C57BL/6 mice (male) NOD agonists alone without effect, 
synergism with LPS in eliciting 
sickness

Hypothermia, upregulated levels of proinflammatory 
cytokines in plasma (proteins) and brain (mRNA), 
increased circulating corticosterone levels

(10)

Poly I:C TLR3 6 mg/kg IP Sprague–Dawley rats 
(male)

Reduced locomotor activity (6 h), 
anxiety-like behavior (24 h), reduced 
saccharin preference (24–72 h)

Decreased body weight gain (24 h), molecular 
changes in frontal cortex and hippocampus: increased 
proinflammatory cytokine and IDO expression (mRNA, 
6 h), reduced BDNF and TrkB expression (mRNA, 
6, 24, 48 h), increased tryptophan (6, 24, 48 h), and 
kynurenine (24, 48 h) levels 

(174)

2, 6, 12 mg/kg IP C57BL/6 mice (female) Dose-dependent acute sickness 
observed in OFT (4, 8, 12 h) and 
burrowing (6, 10, 26 h) 

Upregulation of proinflammatory cytokines in plasma 
(protein) and brain (mRNA), biphasic core body 
temperature change

(96)

12 mg/kg IP C57BL/6J mice (male) Deficit in contextual memory 
consolidation (24 h)

Diminished BDNF mRNA expression (4 h) (176)

4-EPS 30 mg/kg IP for 3 weeks C57BL/6N mice Increased anxiety and startle reflex Increase in 4-EPS levels in response to maternal 
immune activation by Poly I:C

(57)

SCFAs GPR41 25 mM sodium propionate, 40 mM 
sodium butyrate plus 67.5 mM sodium 
acetate in drinking water for 7 weeks

BDF1 mice 
overexpressing 
α-synuclein

Motor deficits α-Synuclein-mediated neuroinflammation (82)

GPR43 25 mM sodium propionate, 40 mM 
sodium butyrate plus 67.5 mM sodium 
acetate in drinking water for 4 weeks

Germ-free C57BL/6 
mice (male and female)

Normalization of microglia density, morphology and 
immaturity (altered in germ-free mice)

(26)

Sodium butyrate GPR41 1 g/kg by oral gavage for 3 days Germ-free C57BL/6J 
mice (male)

Normalization of blood–brain barrier 
permeability which is enhanced in 
germ-free mice

Normalization of occludin expression in frontal cortex 
which is decreased in germ-free mice, increase of 
histone acetylation in brain lysates

(28)

GPR43 1.2 g/kg IP in single injection or for 
4 weeks

C57BL/6J mice Antidepressant-like effect Increase of histone acetylation in hippocampus (83)

1.2 g/kg IP Aged (24 months) 
Wistar rats (male)

Rescue of aging-associated memory 
impairment

(84)

Propionic acid GPR41 4 µl of 0.26 M solution, ICV Adolescent (41 days) 
Long–Evans rats (male) 

Restricted behavioral interest in 
a specific object, impaired social 
behavior, impaired reversal in T-maze 
task

Neuroinflammatory response (85)

GPR43 4 µl of 0.26 M solution ICV for 8 days Long-Evans rats Increase of locomotor activity Change in molecular phospholipid species in blood 
and brain

(86)

BDNF, brain-derived neurotrophic factor; 4-EPS, 4-ethyl phenol sulfate; FSL-1; fibroblast-stimulating lipopeptide-1; ICV, intracerebroventricular; IDO, indoleamine 2,3-dioxygenase; IL, interleukin; IP, intraperitoneal; IV, intravenous; 
LTA, lipoteichoic acid; LPS, lipopolysaccharide; MALP-2, macrophage-activating lipopeptide-2; MDP, muramyl dipeptide; 1-MT, 1-methyltryptophan; NOD, nucleotide-binding and oligomerization domain; OFT, open field test; PAMP, 
pathogen-associated molecular pattern; poly I:C, polyinosinic:polycytidylic acid; POMC, proopiomelanocortin; SCFA, short-chain fatty acid; TLR, Toll-like receptor; TNF, tumor necrosis factor; TrkB, tropomyosin-related kinase B.
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innervated by vagal afferents (70), and appear to act as chemosen-
sory accessory cells (16). Furthermore, vagal afferents innervate 
abdominal lymph nodes that represent another interface with the 
visceral immune system (16). Unlike endocrine signaling via the 
bloodstream, sensory neurons are, thus, in a position to enable 
rapid propagation of immune signals to the brain.

The sensitivity of vagal afferent nerve fibers to PAMPs such as 
LPS and proinflammatory cytokines has been corroborated by 
electrophysiological recordings and c-Fos mapping in the central 
projection areas of sensory neurons. In addition, it has been 
shown that both vagal and spinal afferent neurons do not only 
respond to these microbial and immune messengers but can also, 
under their influence, undergo sensitization to other stimulants. 
For instance, both LPS and tumor necrosis factor-α (TNF- α) are 
capable of directly activating vagal afferent neurons in culture 
(71). In addition, LPS can stimulate sensory neurons via activa-
tion of the transient receptor potential ankyrin-1 (TRPA1) ion 
channel (72) and sensitize afferent fibers in mesenteric nerves to 
serotonin, bradykinin, and gut distension, an effect in which mast 
cells and cyclooxygenase-2 play a role (73). In a similar manner, 
IL-1β is able to increase action potential firing in vagal afferents 
(74, 75), to induce c-Fos expression in the nucleus tractus 
solitarii, the central projection area of vagal afferent nerve fibers 
in the medullary brainstem (76), and to sensitize vagal afferent 
pathways to gastric acid (77). The expression of IL-1 receptors 
by nodose ganglion cells makes it likely that the cytokine is 
capable of exciting vagal afferents by a direct action on the axons, 
although PGs acting via EP3 receptors and cholecystokinin act-
ing via CCK1 receptors have also been implicated (75, 78). Spinal 
afferent neurons supplying the murine colon are also responsive 
to proinflammatory cytokines, such as IL-1β and TNF-α, and the 
mechanical hypersensitivity of mouse colonic nerve fibers evoked 
by TNF-α is inhibited by a TRPA1 blocker (79).

iMPACT OF iMMUNe STReSS SiGNALiNG 
FROM THe PeRiPHeRY ON BRAiN 
FUNCTiON AND BeHAviOR

As discussed before, microbial and immune messages originating 
from the visceral system reach the brain either by an endocrine or 
neuronal route, the BBB being an important checkpoint for those 
messengers that arrive via the bloodstream. Sensitization of CNS 
pathways as well as long-term alterations in brain circuitry, con-
nectivity, and activity are ultimately responsible for the mental 
disturbances in which immune activation and chronic inflam-
matory disease appear to play a role. The impact of MAMPs and 
PAMPs, particularly LPS, on the brain via particular immune 
pathways has been most extensively studied in this respect, 
although a contribution of other factors, such as 4-EPS (57), sper-
midine (80), and SCFAs is also emerging (Table 1). Apart from 
disturbances of brain function and behavior, PAMPs acting via 
the pattern recognition receptor (PRR) TLR4 (such as LPS) also 
seem to contribute to the pathogenesis of cerebrovascular disease 
(81). Specifically, Gram-negative bacteria of the gut microbiota 
and TLR4 activation stimulate the formation of cerebral cavern-
ous malformations (CCMs) that are risk factors for stroke and 

built by a cellular layer that controls the movement of molecules 
and cells and closely interacts with neighboring immune and 
other cells that provide functional support to the barrier (56, 58). 
In the present context, it is particularly worth noting that SCFAs 
play not only a role in the gut epithelial barrier but also in the 
development and maintenance of the BBB. This implication has 
been disclosed in germ-free mice in which increased BBB perme-
ability is associated with reduced expression of the tight junction 
proteins occludin and claudin-5 in frontal cortex, striatum, and 
hippocampus (28). A decrease in the expression of these tight 
junction proteins in the murine hippocampus, but not amygdala, 
prefrontal cortex, and hypothalamus, has likewise been found 
after antibiotic-induced disruption of the gut microbiota (54). 
Re-colonization of the intestine of germ-free adult mice with 
a normal gut microbiota normalizes BBB permeability and 
upregulates the expression of tight junction proteins, an effect 
that is reproduced by butyric acid (28). The microbial control 
of BBB development and function has very likely a bearing on 
gut–brain and particularly immune–brain signaling, because the 
transfer of immune-relevant factors (e.g., cytokines, chemokines, 
PGs) and even immune cells across the BBB depends on the 
functional status of the barrier and its regulatory mechanisms 
(14, 59). Given that the BBB is essential for brain development, 
function, and homeostasis, the control of BBB permeability is 
probably an important mechanism whereby the gut microbiota 
controls brain activity and behavior.

immune Signaling via the vagus Nerve
As alluded to before, immune signaling from the gut to the 
brain can also take a neuronal route, particularly via the vagus 
nerve. Microbial as well as immune factors appear to alter the 
excitability and activity of both enteric sensory as well as vagal 
afferent neurons, which appear to be connected with each other 
via junctions involving nicotinic acetylcholine receptors (60, 61). 
One such factor is polysaccharide A derived from Bacteroides 
fragilis which stimulates sensory neurons of the myenteric plexus 
(62) while components of Lactobacillus rhamnosus (JB-1) have 
a similar stimulant effect on vagal afferent neurons (63). Such 
microbe-driven neuronal processes are likely to participate in 
the vagus nerve-dependent effects of probiotics on brain function 
and behavior (64, 65).

The role of the abdominal vagus in transmitting microbial 
and immune messages to the brainstem is related both to the 
proximity of vagal afferent nerve fibers to immunologically 
relevant structures in the abdominal cavity (11, 16) and to the 
sensitivity of these nerve fibers to messengers derived from the 
microbiota and immune system. It has been shown, for instance, 
that IP administered LPS is primarily transported to the liver 
where it induces the release of interleukin (IL)-1β from Kupffer 
cells (macrophage-like cells to screen blood and lymph) (11, 16). 
The cytokine, in turn, is thought to excite afferent nerve fibers in 
the hepatic branch of the vagus nerve or to enhance their afferent 
signaling (11, 66). In addition, the abdominal vagus is associated 
with paraganglia and connective tissue containing macrophages 
and dendritic cells that respond to IP administration of LPS with 
synthesis of IL-1β (67, 68). The abdominal paraganglia of the vagus 
nerve contain glomus-like cells that have IL-1 receptors (69), are 
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seizure. Activation of TLR4 by LPS accelerates CCM formation 
in mice, which in turn is prevented by genetic or pharmacological 
blockade of TLR4 signaling (81).

Short chain fatty acids can enter the brain through uptake by 
monocarboxylate transporters at the BBB (53). In the brain, SCFAs 
support the maturation and function of microglial cells which 
are the resident macrophages of the CNS (26). In a transgenic 
mouse model of Parkinson’s disease, however, SCFAs trigger a 
microglia-dependent immune response, enhance α-synuclein 
aggregation, and elicit movement disturbances (82). Injected 
systemically to mice, butyrate induces an antidepressant-like 
behavioral response which is associated with an increased expres-
sion of brain-derived neurotrophic factor (BDNF) (83). Butyrate 
is also able to ameliorate the memory decline that develops in 
aging rats (84), while administration of propionate to rodents 
has been shown to evoke behavioral abnormalities reminiscent 
of autism spectrum disorder (85, 86). These findings indicate that 
microbiota-derived signaling molecules can have both beneficial 
and deleterious effects on brain function and behavior, the out-
come depending very likely on both microbe and host factors.

While most information on the cerebral impact of PAMP/
MAMP-evoked immune stimulation has been derived from ani-
mal studies, select microbial metabolites, such as LPS, have also 
been tested in humans. For instance, intravenous LPS injection in 
healthy human volunteers increases the circulating levels of IL-6, 
IL-10, TNF-α, soluble TNF receptor, IL-1 receptor antagonist, 
and cortisol, which is associated with enhanced body tempera-
ture, anxiety, negative mood, decreased memory performance, 
and hyperalgesia (87–90). While these effects are similar to those 
observed in rodents, the potency of LPS in terms of dose per body 
weight is >100 times higher in humans (88). Mechanistic studies 
have shown that the sickness response elicited by intravenous LPS 
injection in healthy male humans is associated with microglial 
activation throughout the brain as observed by positron emission 
tomography (91).

Table 1 summarizes a number of studies in which the effects 
of PAMPs, MAMPs, and some other microbial metabolites on 
behavior and related molecular changes have been investigated in 
rodents and humans. In judging the relevance of these effects it 
is important to take account of the doses studied and the species, 
strain, and sex of the subjects tested. Males and females differ in 
both innate and adaptive immune responses (92) and these sex 
differences also extend to PAMP/MAMP reactions. For instance, 
macrophages of male mice express higher levels of TLR4 on their 
cell surface than those of females, which may explain why male 
mice respond to LPS with formation of more IL-6 than females 
(93). The additive effect of LPS and muramyl dipeptide (MDP) 
to attenuate locomotion is likewise more pronounced in female 
than male rats (94). Similar observations have been made in 
humans, given that women react to LPS with enhanced release 
of proinflammatory cytokines, cortisol, and prolactin compared 
to males (90). Despite these sex differences, men and women do 
not differ in LPS-evoked anxiety, mood depression, and sickness, 
which points to compensatory mechanisms that balance the 
cerebral impact of the exaggerated immune response in women 
(90). Sex differences may also influence the pharmacokinetics 
and pharmacodynamics of immune responses to microbial 

metabolites (95), and the molecular targets and mechanisms of 
action of PAMPs/MAMPs may considerably differ with dose 
(10, 14, 96, 97). This is true for LPS that at the lower dose range 
induces various dimensions of the sickness reponse as well as 
depression-like behavior (10, 14) whereas, at a higher dose range, 
it causes septic shock.

Cytokines As Mediators of LPS-induced 
effects on the Brain
Immune stress signaling across the BBB evokes a neuroinflam-
matory reaction in the CNS, which contributes to the behavioral 
disturbances associated with peripheral immune activation. The 
underlying processes have been most extensively studied with 
LPS, a PAMP known to target a variety of immune and other 
cells via stimulation of TLR4. At doses <1 mg/kg, LPS reproduc-
ibly evokes acute sickness which may evolve into depression-like 
behavior about 24  h after its injection (13, 98, 99). Chronic 
exposure to LPS for 8  weeks exerts similar behavioral effects 
(100). There is some evidence that LPS may induce neuroinflam-
mation also by a mechanism involving NOD-like receptor pyrin 
domain-containing protein-3 (NLRP3) inflammasome activation 
and in this way cause long-term deficits in affective and cognitive 
behavior (101). Although the NLRP3 inflammasome inhibitor 
Ac-Tyr-Val-Ala-Asp-chloromethylketone prevents the LPS-
induced effects on brain and behavior (101), the high dose of LPS 
used (5 mg/kg) may have caused sepsis-like effects that limit the 
interpretation of the findings.

Through activation of TLR4, peripheral administration of 
LPS leads to increased expression of proinflammatory cytokines 
in the periphery and brain (10, 102, 103). Among these proin-
flammatory cytokines, IL-1β and TNF-α are considered to be 
the predominant mediators of LPS-induced sickness behavior, 
while other cytokines, such as IL-6 and IFN-γ, are thought to 
primarily amplify the effects of IL-1β and TNF-α (14, 104). 
Circulating TNFα and IL-1β interact with their receptors on 
cerebral endothelial cells (CECs), induce the production of 
cytokines and other secondary messengers, such as PG and nitric 
oxide (NO), and thereby modulate CNS function and behavior 
(105–107). Proinflammatory cytokines can also access the brain 
via structures that lack a BBB, such as the circumventricular 
organs and the choroid plexus, and thus alter brain function 
(108). Furthermore, monocyte chemoattractants such as mono-
cyte chemoattractant protein-1 (MCP-1/CCL2), which can be 
expressed by circumventricular organs or activated microglia in 
response to proinflammatory cytokines, can promote monocyte 
migration into the brain (103).

Peripheral administration of LPS, IL-1β, or TNF-α induces 
cytokine expression within the brain and leads to the full spec-
trum of sickness behavior (109, 110). However, when both IL-1β 
and TNF-α are blocked, LPS-induced sickness is attenuated 
(104, 111). IL-1β and TNF-α have been demonstrated to exert 
their behavioral effects via activation of the IL-1 receptor of 
type I (111) and TNF receptor of type 1 (112), respectively. Both 
receptors are expressed on neurons and other cell types of the 
CNS and have been proposed to impact on behavior ultimately 
through direct effects on neuronal activity (104). However, type-1 
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TNF receptor signaling on astrocytes has been shown to modify 
hippocampal excitatory synapses and impair contextual learning/
memory through an astrocyte–neuron signaling cascade involv-
ing presynaptic N-methyl-d-aspartate (NMDA)-type glutamate 
receptors containing the NR2B subunit (113). On the neuronal 
level, prolonged exposure to TNF-α is able to inhibit long-term 
potentiation in hippocampal slices (114). In hippocampal 
neuronal cultures, TNF-α is able to evoke neuronal excitation 
through activation of sphingomyelin phosphodiesterase 3 and 
production of ceramide, an intracellular signaling molecule that 
leads to NMDA receptor-mediated calcium influx (115). This 
process enhances the insertion of NMDA receptors containing 
NR1 subunits into the cell membrane and increases the rate 
and amplitude of NMDA-receptor-mediated calcium bursts. In 
addition, the mitogen-activated protein kinase (MAPK) signaling 
pathway is stimulated by TNF-α, given that inhibition of c-jun 
N-terminal kinase blocks TNF-α-induced sickness (116). The 
MAPK pathway may also be responsible for the effect of TNF-α to 
induce depression-like behavior at intracerebroventricular (ICV) 
doses that are too low to induce signs of sickness (117, 118).

The transduction mechanisms operated by IL-1β in the 
CNS comprise the MAPK pathway (119, 120) and inhibition of 
neuronal long-term potentiation by inhibiting calcium channels 
(121, 122) but also induction of neuronal hyperexcitation via for-
mation of ceramide (123). Moreover, activation of the IL-1 recep-
tor stimulates the mTOR pathway and leads to synaptic defects 
through increased levels of the epigenetic regulator methyl-CpG 
binding protein 2 (124). Some of the adverse effects of IL-1β in 
the brain may also result from its ability to impair long-distance 
signaling of BDNF by attenuating retrograde endosome traffick-
ing (125). Unlike IL-1β, acute ICV injection of IL-6 does not 
induce sickness behavior, although it is able to induce fever and 
activate the HPA axis (126). In addition, IL-6 is required for the 
manifestation of a full sickness response, and genetic deletion of 
IL-6 blunts the sickness response to LPS and IL-1β (127). The 
differences in the behavioral effects of IL-1β and IL-6 have been 
attributed to the apparent inability of IL-6 to stimulate ceramide 
synthesis (104) although IL-6 is able to activate similar signal-
ing pathways as IL-1β and TNF-α, leading to a reinforcement of 
proinflammatory cytokine formation. There is also information 
that the induction of IL-6 by LPS may differ from that of other 
cytokines. Thus, while LPS causes an early stimulation of nuclear 
factor κB (NF-κB), activation of the transduction factor NF-IL-6, 
which contributes to the expression of IL-6 (128), reaches its peak 
only 8 h post-treatment (129). An involvement of NF-IL-6 in the 
delayed inflammatory and behavioral response to LPS has been 
confirmed by genetic deletion of NF-IL-6, the response being 
reversed 24 h after LPS treatment (130).

When used as a treatment for cancer or hepatitis C, IFN-α 
induces signs of sickness (fatigue, decreased motivation, reduced 
appetite, altered sleep) in nearly all patients within the first week, 
later followed by the development of symptoms of major depres-
sion (sadness, decreased mood, anhedonia, impaired cognitive 
function) in 30–50% of the patients (131). Analysis of potential 
vulnerability factors has shown that the patients at risk to 
develop major depression experience a threefold higher increase 
of circulating ACTH and cortisol levels in response to the first 

administration of IFN-α than resilient patients (17). Peripheral 
(132) and central (133) administration of IFN-α to mice causes 
depression-like behavior (133), and long-term administration 
of LPS to rats produces a specific cytokine response in the 
brain characterized by increased IL-1β and IFN-γ levels (100). 
Inoculation of mice with Bacille Calmette–Guérin, an attenuated 
form of Mycobacterium bovis, induces depression-like behavior, 
an effect that is absent in IFN-γ receptor knockout mice while an 
acute episode of sickness behavior persists (134).

Behavioral effects of Bacterial PAMPs and 
MAMPs Other Than LPS
In its effect on the brain, LPS is joined by many bacterial, viral, 
and fungal PAMPs and MAMPs (Table  1). Peptidoglycan, for 
instance, is a cell wall constituent of many bacteria that has 
been demonstrated to stimulate the innate immune system and 
modulate behavior. While peptidoglycan is a TLR2 agonist, its 
fragments γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) 
and MDP activate the intracellular nucleotide-binding and oli-
gomerization domain (NOD) innate immune receptors NOD1 
and NOD2, respectively (135). Furthermore, the family of 
antibacterial pattern recognition molecules termed peptidogly-
can recognition proteins (PGRPs) typically binds the muramyl 
pentapeptide, or tetrapeptide fragment of peptidoglycan (136). 
In a mechanistic perspective, it is relevant to know that TLR2 
can heterodimerize with TLR1 and TLR6, forming TLR2/1 and 
TLR2/6 heterodimers, respectively. IP injection of the TLR2/6 
agonists macrophage-activating lipopeptide-2 or the synthetic 
analog fibroblast-stimulating lipopeptide-1 induces cytokine 
release and sickness behavior in rats (137). Similarly, ICV injec-
tion of the TLR2/1 agonist Pam3CSK4 evokes sickness which can 
be attenuated by NF-κB or COX inhibition with indomethacin 
(138). In addition, TLR2/1 activation causes hypothalamic inflam-
mation and microglia activation, increases physical contacts 
between microglia and proopiomelanocortin (POMC) neurons, 
and stimulates the activity of POMC neurons (138). In line with 
these hypothalamic effects, Pam3CSK4-induced anorexia can be 
reversed by ICV administration of a melanocortin receptor 3/4 
antagonist (138).

Exposure to peptidoglycan early in life, either during preg-
nancy or postnatally, has adverse effects on the brain. Intravenous 
injection of peptidoglycan into pregnant dams traverses the 
placenta and reaches the fetal brain where it causes marked 
neuronal proliferation through TLR2/6 agonism (139). This 
fetal neuroproliferative response which involves the neuronal 
nuclear transcription factor FoxG1 is associated with abnormal 
cognitive behavior in the pups following birth (139). Exposure 
of the postnatal mouse brain to the TLR2/1 agonist Pam3CSK4 
or TLR2/6 agonist fibroblast-stimulating lipopeptide-1 has a 
life-long effect on learning and memory, spatial memory being 
impaired by the TLR2/1 agonist only, while contextual and 
cued fear learning in adult mice is enhanced by both agonists 
(140). Peptidoglycan derived from the gut microbiota can also 
translocate into the brain and activate cerebral PRRs (141). 
Specifically, the levels of peptidoglycan in the developing brain 
parallel the postnatal microbial colonization of the gut, while 
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peptidoglycan-sensing molecules (TLR2, NODs, PGRPs) are  
expressed during early postnatal brain development and altered  
in response to perturbation of the gut microbiota (141). Knockout  
of the PGRP 2 is associated with enhanced sociability and altera-
tions in the expression of the autism risk gene c-Met, the synap-
togenesis marker Synaptophysin and Bdnf (141). Germ-free mice 
are likewise more sociable as reported by the same laboratory 
(142), whereas Desbonnet et al. (143) find decreased sociability 
in germ-free mice. Besides acting on the brain, peptidoglycan 
derived from the gut microbiota also impacts on the systemic 
immune system, given that it stimulates and primes bone 
marrow-derived neutrophils through NOD1 (144).

Lipoteichoic acid is a cell wall component of Gram-positive 
bacteria, which activates primarily TLR2 and in this way causes 
peripheral immune activation and initiates neuroinflammatory 
processes in the mouse brain that are associated with downregula-
tion of BBB components and activation of the HPA axis, although 
emotional behavior is not affected (97). Many commercial LTA 
preparations are potentially contaminated with LPS, in which case 
the biological effects of LTA preparations can in part be attributed 
to the presence of LPS or a particular interaction between TLR2 
and TLR4 activation (97). Such positive or negative interactions 
between different PAMPs in their effects on immune system and 
brain are of pathophysiological relevance because bacteria are 
usually equipped with a multitude of PAMPs. NOD agonists, for 
instance, evoke only mild immune stimulation on their own but 
synergize with LPS and lead to aggravated cytokine expression 
and sickness behavior (10). In the colon, however, the interaction 
of NOD and TLR4 is antagonistic, with NOD2 activation attenu-
ating TLR4-dependent cytokine production and experimental 
colitis (145).

While activation of PRRs induces behavioral disturbances, 
inactivation of these receptors can also cause behavioral deficits. 
Thus, TLR4 knockout mice exhibit reduced novelty-seeking 
and social interaction in an approach-avoidance conflict situa-
tion, a deficit that can be reversed by administration of GABA 
into the nucleus accumbens shell which appears to be hyper-
activated in response to behavioral testing of TLR4 knockout 
mice (146). TLR2 knockout mice display reduced exploratory 
behavior, impaired spatial learning, and enhanced contextual 
and cued fear learning (140). While Park et  al. (147) likewise 
report cognitive impairment in TLR2 knockout mice, they also 
observe schizophrenia-like symptoms, such as hyperlocomotion, 
anxiolytic-like behavior, prepulse inhibition deficits, and social 
withdrawal. These behavioral perturbations and the associated 
biochemical alterations (increased p-Akt and p-GSK-3α/β 
expression) are reversed by antipsychotic drug administration 
(147). Double deletion of the Tlr2 and Tlr4 genes is associated 
with decreased exploratory behavior and impaired performance 
in a visual discrimination reversal task (148).

Behavioral effects of viral PAMPs
While research on the impact of immune stress on the brain has 
thus far been focused on bacterial immune stimulants, interest 
in the contribution of viral immune stimulants is also increas-
ing. It is well recognized that psychological stress can adversely 
influence the outbreak and recurrence of Herpes simplex 

virus, human immunodeficiency virus (HIV), and hepatitis C 
virus (HCV) infections (149, 150) via activation of the HPA 
axis and sympathetic adrenomedullary system (151, 152). 
Vice versa, HIV seropositive patients may suffer from many 
neuropsychiatric disorders, in particular major depression and 
dementia (153). Like HCV (154), HIV can cross the BBB simply 
by infecting macrophages that migrate to the brain where the 
virus leads to neurotoxin-mediated neuronal loss and synaptic 
damage (155, 156).

The PAMPs presented by viruses are DNA and RNA mol-
ecules as well as surface glycoproteins (157, 158). Nucleic acids 
of viral origin are recognized by TLR3, TLR7, TLR8, and TLR9 
in endosomal compartments, as well as by RNA helicase retinoic 
acid-inducible gene-I (RIG-I) and melanoma-differentiation-
associated gene 5 (MDA5) found in the cytosol. Receptor 
stimulation leads to a proinflammatory immune response by 
activating a battery of transcription factors followed by the 
production of type I IFNs and other cytokines including IL-1β, 
IL-6, TNF-α, and IFN-γ, depending on the kind of viral infec-
tion (157, 159–161). Furthermore, sensing of viral nucleic acids 
by RIG-I and other PRRs leads to inflammasome formation and 
activation of caspase-1, resulting in the production of IL-1β and 
IL-18, enhancement of the antiviral response of the immune sys-
tem and pyroptosis (162, 163). The cytokines formed in response 
to viral infection signal to the brain, evoke sickness behavior 
and cause other perturbations of brain function and behavior. 
The effect of the influenza virus to depress food intake in mice, 
for instance, is attenuated by an IL-1 receptor antagonist (164). 
In humans, the plasma levels of IL-1β are elevated in patients 
suffering from post-viral depression when compared to patients 
who do not develop post-viral depression (165).

Polyinosinic:polycytidylic acid (Poly I:C) is a synthetic PAMP 
that is widely used to study virus-evoked stimulation of the 
innate immune system, as it specifically mimics dsRNA mol-
ecules occurring during the replication of most viruses except 
negative-strand RNA viruses (166). Like dsRNA, Poly I:C binds 
to TLR3 in endosomal compartments (160, 167) and, to a much 
lesser extent, to cytosolic RIG-I as well as MDA5 if the molecule 
contains more than 2,000  base pairs (168). Systemic Poly I:C 
administration to rodents induces expression and release of 
proinflammatory cytokines, especially type I IFNs, IL-6, IL-1β, 
and TNF-α (96, 160), the magnitude of effect being consider-
ably smaller than that evoked by the TLR4 agonist LPS (169). 
Since Poly I:C is rapidly degraded by RNases (170), its prolonged 
neuroinflammatory and behavioral effects are mediated by the 
cytokines it induces (171, 172).

Poly I:C given to adult rodents mimics the acute phase of 
a viral infection, alters a variety of brain functions and gives 
rise to a sequence of behavioral alterations (Table 1). Within 
4 h, Poly I:C causes fever and attenuates activity, followed by 
anxiety-like behavior and anhedonic depression-like behavior 
that can be observed during the period 24–72 h post-treatment 
(96, 173, 174). In addition, an impairment of working memory 
and a deficit in contextual fear memory consolidation become 
manifest (175, 176). These behavioral perturbations are 
associated with disruption of the BBB, enhanced expression 
of indoleamine 2,3-dioxygenase (IDO) in hippocampus and 
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frontal cortex, suppression of hippocampal neurogenesis and 
decreased expression of BDNF in hippocampus and cortex 
(173, 174, 176, 177). In line with the common notion that sys-
temic infection can impair cognitive function, administration 
of Poly I:C over several days increases amyloid-β1–42 levels in 
hippocampal tissues, paralleled by a deficit in hippocampus-
dependent learning tasks (178). Further analysis has revealed 
that peripheral immune activation by Poly I:C causes dendritic 
spine loss and impairs dendritic spine formation associated 
with learning (179). The resulting deficit in multiple learning 
tasks in mice is mediated by cells derived from peripheral 
monocytes and a TNF-α-dependent mechanism but does not 
require microglial function in the CNS (179). Furthermore, sys-
temic Poly I:C amplifies brain pathology in the ME7 model of 
prion disease and accelerates progression of neurodegeneration 
(180). In confirmation of the hypothesis that a viral infection 
during pregnancy is a risk factor for particular neuropsychiat-
ric diseases in the offspring (181), Poly I:C administration to 
pregnant rodents has been found to evoke a schizophrenia-like 
phenotype (182–184) as well as depression-like phenotype 
(185) in the adult offspring, changes that are associated with 
hippocampal synaptic deficits in the absence of microglial 
alterations (186).

Signaling Molecules in the Brain Affected 
by Peripheral immune Stress
IFN-γ is a strong inducer of the tryptophan-degrading enzyme 
IDO (187) which has gained center stage as a factor in cytokine-
induced mood disorders. Cytokine-induced activation of IDO 
causes augmented conversion of tryptophan to kynurenine. While 
kynurenine itself is inactive, its metabolites, 3-hydroxykynurenine  
and quinolinic acid exert neurotoxic effects through NMDA 
receptor agonism and generation of oxidative radicals (188). 
By contrast, kynurenic acid, another kynurenine metabolite, is 
neuroprotective, acting as an antagonist of NMDA and α7 nico-
tinic acetylcholine receptors (188). Depressed patients display in 
fact a reduction of kynurenic acid/3-hydroxykynurenine and/or 
kynurenic acid/quinolinic acid ratios (189). Kynurenine levels 
rise not only in response to proinflammatory cytokines but also 
in response to corticosteroids, given that multiple mRNA tran-
scripts of IDO are differentially expressed in response to differ-
ent immune stimulants and corticosteroids (190). Importantly, 
the IDO antagonist 1-methyl-d,l-tryptophan is able to block 
LPS-induced depression-like behavior, while the levels of proin-
flammatory cytokines and sickness behavior remain unchanged 
(191). In a similar vein, the NMDA receptor antagonist ketamine 
abrogates LPS-induced depression-like behavior without affect-
ing the sickness response (192). Ketamine is able to induce rapid 
antidepressant effects in patients with treatment-refractory 
depression, highlighting the potential of targeting glutamatergic 
neurotransmission as a treatment option for depressive disor-
ders (193).

The sickness behavior evoked by immune stimulation com-
prises anorexia, a response in which IL-18 plays a role through 
inhibition of type III GABAergic neurons in the bed nucleus 
of the stria terminalis (194). Secretion of the “satiety hormone” 

leptin in response to LPS also contributes to inflammation-
induced anorexia. Thus, leptin deficiency attenuates LPS-induced 
anorexia, and further analysis has shown that both the PI3K and 
STAT3 signaling pathways in leptin receptor-expressing cells 
are required for the acute hypophagic response to LPS (195). 
In addition, leptin is involved in cytokine-induced depression, 
as ICV leptin administration induces depression-like behavior, 
while leptin antagonism attenuates particular components of this 
behavioral response (196). Apart from cytokines and leptin, PGs 
also mediate some aspects of the sickness in response to immune 
activation. PGE2, for instance, has been implicated in inflam-
mation-induced feelings of malaise and discomfort (197). An 
analogous behavioral readout in mice, LPS-induced conditioned 
place aversion, is mediated through MyD88-dependent activa-
tion of CECs, resulting in cyclooxygenase-1 (COX-1)-dependent 
PGE2 synthesis. By activating EP1 receptors on striatal neurons, 
PGE2 inhibits a motivational circuitry through GABA-mediated 
inhibition of dopaminergic neurons (197).

Cytokines induce a wide range of neurochemical changes in 
the brain including altered function of monoamine, glutamate, 
and neuropeptide systems as well as deficits in growth factors 
such as BDNF (198). Neuropeptide Y (NPY) signaling via Y2 and 
Y4 receptors has in particular been implicated in the short-and 
long-term behavioral effects of peripheral immune challenge. 
Thus, Y2 receptor knockout mice are particularly sensitive to 
the effects of LPS-evoked immune stress to attenuate locomotion 
and social interaction and to increase anxiety-like behavior, while 
the LPS-induced rise of circulating corticosterone is suppressed 
by Y2 receptor knockout (8, 98, 99). Furthermore, knockout of 
Y2 and Y4 receptors unmasks the ability of a single LPS injec-
tion to cause a delayed and prolonged increase in depression-like 
behavior, which indicates that NPY signaling conveys resilience 
to some of the adverse effects of immune stress on the brain 
(98). In addition, combined deletion of NPY and PYY aggravates 
and prolongs the weight loss caused by Bacille Calmette–Guérin, 
which attests to an important role of NPY and PYY in orchestrat-
ing homeostatic reactions to infection and immune stimulation 
(199). Changes in serotoninergic and glutamatergic systems 
seem to be prominently involved in cytokine-induced mood 
and cognitive symptoms, while the dopamine system has been 
implicated in symptoms such as fatigue, decreased motivation 
and altered appetite (200). Cytokine-induced activation of the 
enzyme GTP cyclohydrolase I (GTP-CH1) is an important 
mechanism whereby immune activation affects dopamine and 
serotonin synthesis. Thus, GTP-CH1 activation inhibits the 
formation of tetrahydrobiopterin which is an essential co-factor 
of dopamine and serotonin biosynthesis (201). In addition, 
RNA-Seq studies reveal wide ranging changes of the micro-
glial transcriptome associated with depression-like behavior 
recorded 7 days after peripheral immune activation by Bacille 
Calmette–Guérin (202).

Emerging evidence indicates that bioactive lipids, including 
eicosanoids, endocannabinoids, and specialized pro-resolving 
mediators (resolvins, maresins, protectins, lipoxins) participate in 
the regulation of the neuroinflammatory, cerebral and behavioral 
consequences of immune activation and inflammation (203). 
PGs are very likely involved in the development of sickness and 
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depression-like behavior induced by peripheral immune chal-
lenge. In particular, PGE2 is synthesized in the brain in response 
to a variety of immune signals such as LPS or cytokines, and 
its administration has been found to evoke sickness behavior 
through stimulation of EP2 receptors (204). Conditional deletion 
of EP2 receptors in myeloid linage cells blunts the brain micro-
glial response to systemic LPS injection, which attests to a role 
of EP2 receptor stimulation in immune–brain signaling (205). 
Chemoattractant receptor-homologous molecule expressed on 
T helper type 2 cells (CRTH2) is a PG D2 receptor that is also 
involved in the behavioral effects of LPS (206, 207). Inhibition 
of PG synthesis by nonsteroidal antiinflammatory drugs attenu-
ates the sickness and depression-like behavior induced by LPS, 
Bacille Calmette–Guérin and interferon-α-2b (204, 208–211). 
Cyclooxygenase-2 inhibitors, particularly celecoxib, have the 
potential to ameliorate depression in humans, although a meta-
analysis of the pertinent clinical trials points out that the subgroup 
of patients who could benefit from such therapy has not yet been 
identified (212).

Endocannabinoids such as 2-arachidonoylglycerol and anan-
damide constitute another class of lipid mediators that have an 
impact at several levels of the immune–brain axis (213). Apart 
from their inhibitory effect on inflammation in the GI tract (5, 
213, 214), endocannabinoids influence the responsiveness of 
vagal and spinal afferent neurons and modify neuronal as well 
as microglial activity in the CNS. Activation of cannabinoid CB1 
receptors which are expressed by visceral afferent neurons in 
the vagus nerve (215) blocks the effect of TNF to amplify vagal 
afferent responsiveness (216). In the brain, endocannabinoids 
appear to protect from BBB dysfunction and neuroinflamma-
tory processes under conditions of immune challenge. Such a 
homeostatic role is, for instance, deduced from the finding that 
hydrolysis of the endocannabinoid 2-arachidonoylglycerol by 
monoacylglycerol lipase generates neuroinflammatory PGs in 
response to peripheral LPS administration (217, 218). Prevention 
of the hydrolysis of the endocannabinoid anandamide by an 
inhibitor of fatty acid amide hydrolyase likewise attenuates 
the expression of pro- and antiinflammatory cytokines in the 
frontal cortex and hippocampus of rats following peripheral 
stimulation of TLR3 (poly I:C) or TLR4 (LPS) and inhibits the 
LPS-induced anhedonia, but not sickness response (219, 220). 
Moreover, deletion of CB2 receptors exacerbates, while CB2 
receptor agonism attenuates, stress-induced neuroinflamma-
tory responses in the brain (221). These observations are in line 
with the emerging concept that the endocannbinoid system in 
the brain operates at the intersection between stress, immune 
activation, neuroinflammation, emotionality, and neuropsychi-
atric disease (222, 223).

Specialized pro-resolving mediators, such as resolvins, 
maresins, protectins, and lipoxins, play not only a role in the 
resolution of inflammation but also emerge as regulators of 
neuroinflammatory processes and their impact on brain func-
tion and behavior (203, 224). The antiinflammatory effect of 
resolvins appears to involve neurons, given that the ability of 
resolvin D1 (RvD1) to attenuate zymosan-evoked peritonitis 
in mice depends on the vagus nerve, since vagotomy increases 
the severity of inflammation (224). This implication of the 

vagus nerve appears to be mediated by netrin-1, an axonal 
guidance molecule (224). Both RvD1 and resolvin E1 (RvE1) 
are able to decrease the LPS-evoked expression of proinflam-
matory cytokines (TNF-α, IL-6, and IL-1β) in microglia cells 
in  vitro (225). The underlying mechanisms differ, however, as 
RvE1 regulates the NFκB signaling pathway and RvD1 acts via 
microRNA expression (225). In vivo experiments demonstrate 
that RvD1 and RvD2 counteract the depressogenic effect of LPS 
via the mammalian target of rapamycin complex 1 signaling 
pathway, an effect in which the medial prefrontal cortex and 
dentate gyrus are of particular relevance (226). A similar anti-
depressant effect of RvD1 and RvD2 has been observed in the 
chronic unpredictable stress model (227). The ability of other 
specialized pro-resolving mediators such as lipoxins, protectins 
and maresins to regulate neuroinflammatory processes and 
behavioral reactions to immune stimulation has not yet been 
systematically investigated. Systemic administration of lipoxin 
A4 to mice reduces anxiety-related behavior (228), and treat-
ment of rats with an analog of lipoxin A4 has been reported to 
attenuate neuroinflammation in a rat model of ischemic stroke 
and to promote sensorimotor recovery (229). Docosahexaenoic 
acid is a major n-3 polyunsaturated fatty acid present in the 
brain, and acute ICV infusion of unesterified docosahexaenoic 
acid protects from LPS-evoked neuroinflammation, an action 
that involves conversion to specialized pro-resolving mediators 
such as neuroprotectin D1 (230).

CYTOKiNe HYPOTHeSiS OF 
DePReSSiON

The changes in emotional-affective behavior seen in experimental 
studies of immune stress and in therapeutic trials of interferon 
therapy are consistent with the cytokine hypothesis of depres-
sion. Following its first formulation as macrophage theory of 
depression by Smith (231), proinflammatory cytokines as well 
as microglial activation and neuroinflammation have been 
demonstrated to occur not only in depression but also in other 
psychiatric disorders such as schizophrenia and bipolar disorder 
(232–235). In identifying the precise Research Domain Criteria 
driven by inflammation it has been recognized that inflamma-
tory processes represent pivotal factors in the psychopathology of 
symptom dimensions shared by different psychiatric conditions 
(200). In testing the therapeutic potential of antiinflammatory 
agents in depressed patients (236), the TNF-α blocker infliximab 
has been found to improve symptoms only in patients with high 
inflammatory markers, while patients with low levels of periph-
eral inflammation experience rather negative effects (237). A 
similar response pattern has been reported for the treatment with 
omega-3 fatty acids (238). Low levels of TLR3 in peripheral blood 
mononuclear cells of depressed patients also predict therapeutic 
efficacy of antidepressant drugs while high expression of this PRR 
is associated with treatment failure (239). These clinical observa-
tions are in part supported by experimental findings that low 
cytokine concentrations have a positive influence on learning, 
memory, and synaptic plasticity (240), that meninges-derived 
T-cells exert beneficial effects on learning behavior through IL-4 
and BDNF expression (241), and that adaptive immunity of the 
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meninges supports cerebral circuits underlying social behavior 
through IFN-γ (242).

iMPLiCATiONS OF THe GUT MiCROBiOTA 
iN MOOD DiSORDeRS

The cytokine hypothesis of depression has been extended by 
an increasing number of observations to suggest that the gut 
microbiota contributes to the pathogenesis of depression, given 
that depressed patients may present with a change in the micro-
bial community structure, a disruption of the intestinal barrier 
and increased endotoxinemia (243). Depression-associated 
changes in the gut microbial community have been observed at 
the phylum level, with either a decrease (244, 245) or increase 
(246) in the relative abundance of Bacteroidetes. A decrease in 
Bacteroidetes has also been observed in other disorders of the 
gut–brain axis such as obesity and irritable bowel syndrome 
(IBS) (247, 248), although comorbid depression in IBS patients is 
not associated with particular alterations in the microbial profile 
(249). A causal relationship between gut microbiota and depres-
sion has been inferred from the observations that transplantation 
of fecal microbiota from depressed patients to germ-free or 
germ-depleted rodents induces a depression-like phenotype in 
the animals (245, 250). This transfer of a depression-like pathol-
ogy is accompanied by an increase in the kynurenine/tryptophan 
ratio and other inflammation markers (250) and an altered 
profile of metabolites involved in carbohydrate and amino acid 
metabolism (245).

Given the impact of stress on mood disorders, stress-induced 
alterations in the commensal microbiota community, GI barrier 
and GI physiology are increasingly recognized to be relevant to 
stress-evoked immune activation and behavioral disturbances 
(251). It has long been known that stress enhances the permeabil-
ity of the GI mucosa (19), and there is now increasing evidence 
that a dysfunctional intestinal barrier enables microbiota-driven 
immune activation to impact on the brain (252). Stress-evoked 
alterations of the microbial community toward a composition 
favoring immune stimulation may exacerbate the adverse influ-
ence of gut leakiness on the immune–brain interaction. Stress 
exposure not only disrupts the community structure of the gut 
microbiota (253) but also induces translocation of, for instance, 
Lactobacillus spp. to the spleen and primes the innate immune 
system for enhanced reactivity (254).

Antibiotic-induced depletion of the intestinal microbiota 
blocks stress-induced bacterial translocation and, consequently, 
TLR activation and neuroinflammation in the brain (255). 
Antibiotic treatment as well as neutralization of LPS also blunts 
the formation of the inflammasome-dependent cytokines 
IL-1β and IL-18 in response to stress, while inflammasome-
independent cytokines are not affected (251). In addition, the 
depressogenic effect of LPS is attenuated in germ-free mice 
(256). Peripheral administration of the IL-6 receptor antibody 
MR16-1 counteracts the effect of psychosocial stress to disturb 
the gut microbiota and to evoke depression-like behavior along 
alterations in dendritic spine density and synaptic protein 
expression (257). Taken together with many other findings 
(252), it is thus emerging that gut microbiota and gut leakiness 

represent an important interface in the impact of stress on 
mood disorders.

iMPACT OF iNTeSTiNAL iNFLAMMATiON 
ON BRAiN AND BeHAviOR

Ulcerative colitis and Crohn’s disease, the two major manifesta-
tions of IBD, are associated with an increased risk of mental dis-
orders and can be exacerbated by stress. The disease impairs the 
quality of life not only in terms of GI symptoms, discomfort, and 
pain but also in terms of psychiatric comorbidities. Several men-
tal disorders, including major depression, panic, and generalized 
anxiety, are more common in IBD patients than in community 
controls (258). Moreover, the psychiatric comorbidities can affect 
disease prognosis and response to treatment, as Crohns’ disease 
patients with major depression respond poorly to infliximab (259). 
In addition, stressful life events are risk factors for IBD develop-
ment, exacerbation, and relapse (260). Some of the relationships 
between GI inflammation and emotional-affective disorders can 
be studied in experimental models of IBD in rodents. Colitis 
induced by dextran sulfate sodium (DSS) is immunologically 
similar to ulcerative colitis, while some immune processes occur-
ring in trinitrobenzene sulfonic acid (TNBS)-induced colitis are 
reminiscent of those seen in Crohn’s disease (261). This range of 
chemically induced models of colonic inflammation is comple-
mented by immunologically provoked paradigms of IBD. Thus, 
mice deficient in the antiinflammatory cytokine IL-10 (IL-10−/−) 
spontaneously develop a mild, patchy form of colitis which is 
highly dependent on the composition of the gut microbiota, given 
that the commensal Akkermansia muciniphila is able to induce 
colitis in IL-10−/− mice (262).

Cerebral and Behavioral Disturbances in 
experimental Models of inflammatory 
Bowel Disease (iBD)
Various experimental models of GI inflammation are associ-
ated with alterations in brain function and behavior (Table 2). 
While IL-10−/− mice have been little studied in this respect, 
DSS-treated animals exhibit a number of behavioral alterations 
associated with intestinal inflammation, which have been linked 
to changes in gut–brain signaling (Table 2). For instance, mice 
with DSS-induced colitis are more anxious and less socially 
interactive than control mice, and these disturbances occur in 
parallel with increased circulating IL-6, IL-18, and NPY levels 
as well as with altered Npy, Bdnf, Cox-2, and Mineralocorticoid 
receptor gene expression in the brain, which points to an 
involvement of inflammatory and stress mechanisms in the 
behavioral perturbations (263). Moreover, DSS-treated mice 
display deficits in novel object recognition memory, which can 
be prevented by a probiotic (Lactobacillus rhamnosus R0011 and 
Lactobacillus helveticus R0052) and, thus, may involve a major 
influence of the GI microbiota on behavioral disturbances dur-
ing colitis (264).

Besides enhanced anxiety, DSS-treated rodents also display 
aggravated depression-like behavior, a relationship that appears 
to be sex dependent (33, 265). The increase in anxiety- and 
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depression-like behavior accompanying DSS-evoked colitis in 
rats is associated with increased firing rates of colonic afferents, 
which suggests that altered neuronal signaling is a major factor 
responsible for the colitis-induced behavioral changes (265). A 
similar conclusion can be drawn in mice in which DSS-evoked 
colitis is accompanied by increased anxiety-like behavior only if 
the vagus nerves are intact (64). In addition, DSS-evoked colitis 
alters the activity of central neurons. At the height of inflam-
mation, stress-induced c-Fos expression, a marker of neuronal 
activation, is blunted throughout the corticolimbic system 
depending on housing conditions (266). Moreover, DSS-treated 
mice exhibit altered stress-associated behavior, increases in brain 
IL-6 and growth-regulated oncogene-α levels and brain region-
specific changes in corticotropin-releasing factor (Crf), Bdnf, 
and Npy gene expression (267). In view of the emerging role of 
NPY in mediating stress resilience and treating post-traumatic 
stress disorder (268, 269) it appears worth investigating whether 
pharmacological manipulation of the NPY system has therapeu-
tic effects in animal models of IBD which are sensitive to stress 
exposure.

Cerebral alterations associated with TNBS-induced colitis 
have been less thoroughly examined, but a relevant study has 
shown that TNBS-evoked colitis induces behavioral despair 
in mice (Table 2), which can be mitigated by inhibition of NO 
synthase (270). Potential effects of TNBS-induced colitis on other 
behavioral dimensions await to be explored, as TNBS-induced 
colitis has a number of cerebral effects such as increased excit-
ability of hippocampal slices, altered hippocampal glutamatergic 
transmission and microglial activation, and lowered seizure 
threshold (271, 272). These effects appear to be cytokine and 
microglia dependent, because they are reversed by ICV admin-
istration of an anti-TNF-α antibody and minocycline, an inhibi-
tor of microglial activation (273). In line with these findings, a 
positron emission tomography and ex vivo biodistribution study 
found increased levels of [11C]PBR28, an imaging biomarker of 
neuroinflammation, in the cerebellum 11  days after induction 
of colitis, suggesting activation of microglia or infiltration of 
macrophages in the brain (274).

Intestinal inflammation can also be triggered by parasites, 
and infection of mice with Trichuris muris has been found not 
only to cause mild to moderate colonic inflammation but also 
to elicit anxiety-like behavior (275). These effects are associated 
with increased circulating levels of TNF-α, IFN-γ, kynurenine 
and kynurenine/tryptophan ratio, and decreased hippocampal 
expression of Bdnf (275). Etanercept and, to a lesser degree, 
budesonide reduce cytokine and kynurenine levels and normal-
ize behavior (Table  2) but do not influence Bdnf expression. 
By contrast, the probiotic Bifidobacterium longum NCC3001 
normalizes both behavior and hippocampal Bdnf expression 
but does not affect circulating cytokine and kynurenine levels. 
Moreover, the anxiety-like behavior associated with Trichuris 
muris infection persists after vagotomy (275), unlike the anx-
iety-like behavior associated with DSS-induced colitis, which 
is prevented by vagotomy (64). Thus, the pathways and mecha-
nisms underlying the behavioral perturbations in response to 
experimental colitis depend on the immunological triggers of 
GI inflammation.

intestinal inflammation and visceral Pain
IBD and experimental colitis are frequently linked to visceral 
and somatic hyperalgesia (276). Importantly, DSS-induced colitis 
enhances the spontaneous activity of spinal afferent neurons sup-
plying the rat colon, and reduction of this spontaneous activity 
by intracolonic administration of lidocaine causes conditioned 
place preference in DSS-treated but not control rats (265). This 
finding indicates that colitis gives rise to continuous abdominal 
discomfort and not just to hyperalgesia toward acute stimuli 
(265). Continuous firing of afferent neurons from the inflamed 
gut is also likely to explain the increased expression of c-Fos 
and the enhanced phosphorylation of p42/44 MAPK in the 
lumbosacral spinal cord that takes place in mice suffering from 
DSS-induced colitis in the absence of noxious stimulation (277). 
Although inflammatory mediators are known to sensitize GI 
nociceptors, peripheral pain hypersensitivity alone does not 
explain all pain symptoms in IBD patients as some patients 
still suffer from pain in remission, and pain is poorly correlated 
with inflammatory markers (276, 278). Likewise, under condi-
tions of experimental colitis in rodents, visceral hyperalgesia is 
not always going in parallel with inflammation. For example, 
DSS-induced colitis in mice leads to chemical and mechanical 
visceral hyperalgesia that persists for several weeks post-DSS 
treatment when intestinal inflammation has already subsided 
(279, 280). Similarly, mechanical visceral hyperalgesia associated 
with TNBS-induced colitis in rats can still be measured at a time 
when inflammation has resolved (281). Although a review of GI 
hyperalgesia mechanisms is beyond the scope of this article, it 
should not go unnoticed that TRPV1 ion channels play a role in 
post-inflammatory visceral hyperalgesia, since TRPV1 knockout 
and TRPV1 blockade prevent the development of mechanical 
visceral hyperalgesia after colitis (280, 282).

Chronic pain is a major internal stressor and as such a risk 
factor for the pathogenesis of anxiety and mood disorders (283, 
284), a relationship that is also true for patients with Crohn’s 
disease in whom pain is associated with enhanced anxiety (285). 
TRPV1 desensitization in DSS-treated rats not only suppresses 
ongoing activity in spinal afferent neurons but also prevents the 
development of anxiety- and depression-like behavior associated 
with DSS-induced colitis (265). This observation confirms that 
nociceptive signaling from the colon is an important trigger for 
secondary changes in the brain that underlie the emotional-
affective disturbances induced by experimental colitis.

Gut Hormone Signaling in intestinal 
inflammation
Apart from immune and inflammatory mediators and nocicep-
tive messages, gut hormones emerge as an important interface 
between GI inflammation, visceral pain, and perturbations 
of brain function, and behavior. IBD alters the expression of 
several GI and circulating gut hormones, including PYY and 
GLP-1 (39, 286–288), although the data are inconsistent due 
to heterogeneities in patient selection and assay methodology. 
Similarly, colonic PYY has been found to be reduced in response 
to TNBS in rats, while in response to DSS both increased and 
reduced colonic PYY levels have been reported (289–291). PYY 
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TABLe 2 | Effects of gastrointestinal inflammation on emotional-affective and cognitive behavior.

Type of 
inflammation

experimental design Species (sex) Behavioral effects Additional effects Reference

DSS-induced 
colitis

Three 7-day DSS cycles  
(3.5, 3, 3% w/v in drinking 
water) with 5-day recovery 
periods (tap water) in between

AKR mice (male) Increased anxiety DSS-induced anxiety prevented by  
vagotomy and by the probiotic 
Bifidobacterium longum NCC3001 given 
daily during and after DSS exposure for 14 d 

(64)

DSS-induced 
colitis

11-day exposure to DSS (2% 
w/v) in drinking water

WT; NPY KO and PYY KO 
mice on mixed C57BL/6:129/
SvJ (1:1) background (male 
and female)

Increased anxiety 
(male WT); increased 
depression-like 
behavior (female WT)

Decreased anxiety (female NPY KO and PYY 
KO); decreased depression-like behavior 
(male PYY KO)

(33)

DSS-induced 
colitis

7-day exposure to DSS (2% 
w/v) in drinking water

C57BL/6N mice (male) Increased anxiety; 
decreased social 
interaction

Repeated WAS exposure (7 d) during DSS 
exposure prevents behavioral deficits

(263)

DSS-induced 
colitis

5-day exposure to DSS (5% 
w/v) in drinking water

Sprague-Dawley rats (male) Increased anxiety; 
increased depression-
like behavior

Resiniferatoxin-induced desensitization of 
colonic TRPV1 channels reverses behavioral 
deficits

(265)

DSS-induced 
colitis

5-day exposure to DSS (3% 
w/v) in drinking water

C57BL/6 mice (male and 
female)

Increased anxiety; 
decreased novel object 
recognition memory

Probiotics (mixture of Lactobacillus 
rhamnosus R0011 and L. helveticus R0052) 
administered daily for 7 days before and 
during DSS exposure) prevent behavioral 
deficits

(264)

TNBS-induced 
colitis

Single intrarectal 
administration of TNBS (10 mg 
in 50% ethanol)

NMRI mice (male) Increased depression-
like behavior

Nitric oxide synthase inhibition ameliorates 
depression-like behavior

(270)

Trichuris muris 
infection-
induced colitis

Single infection with Trichuris 
muris (300 eggs/mouse)

AKR mice (male) Increased anxiety-like 
behavior

Etanercept, budesonide and the probiotic 
Bifidobacterium longum NCC3001 normalize 
behavior

(275)

DSS, dextran sulfate sodium; KO, knockout; NPY, neuropeptide Y; PYY, peptide YY; TNBS, trinitrobenzene sulfonic acid; TRPV1, transient receptor potential vanilloid-1; WAS, water 
avoidance stress; WT, wildtype.
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can influence not only appetite but also emotional-affective 
behavior and visceral pain. Genetic deletion of PYY enhances 
depression-like behavior in mice, whereas anxiety-related 
behavior stays unaltered (33). Under conditions of DSS-induced 
colitis, PYY influences emotional-affective behavior in a sex-
dependent manner, because anxiety-like behavior is modified 
only in female PYY knockout mice while depression-like behav-
ior is altered only in male PYY knockout mice (33). Acute IP 
administration of PYY (3–36) induces schizophrenia-relevant 
behaviors including a profound impairment of social interac-
tion (292). PYY is also involved in regulation of pain signaling, 
given that PYY knockout mice are more sensitive to somatic and 
visceral pain (293). In a wider perspective, these findings point 
to a potential involvement of PYY in the pain and emotional-
affective alterations seen in animal models of colitis and IBD 
patients alike.

Like PYY, GLP-1 also influences emotional-affective behavior 
as revealed by the anxiogenic effect after acute administration and 
antidepressant effect after chronic administration of the GLP-1 
analog, exendin-4, in rats (294). Other GLP-1 analogs have been 
reported to have an analgesic effect in both somatic and visceral 
pain states: ROSE-010 shows promising results in relieving vis-
ceral pain in patients suffering from IBS (295), while liraglutide 
suppresses the visceral hyperalgesia induced by LPS or water 
avoidance stress (WAS) in rats (296). In addition, intrathecally 
administered GLP-1 receptor agonists are able to alleviate pain 

evoked by peripheral nerve injury, bone cancer, and diabetes in 
rats and formalin-induced pain in rats and mice without affecting 
acute nociceptive responses (297). Therefore, PYY, GLP-1, and 
potentially other gut hormones emerge as targets for the control 
of GI inflammation, pain, and their relation to brain processes 
regulating emotion and affect.

Gut Microbiota, intestinal inflammation, 
and Stress Responsivity
An emerging interface between GI immune system, GI inflam-
mation and brain is posed by the gut microbiota and its multitude 
of signaling molecules. Germ-free mice display an exaggerated 
neuroendocrine response to restraint stress (298), and there 
is increasing evidence that the GI microbiota plays a role in 
the impact of stress on gut and brain (299). Mice lacking any 
microbiota display enlarged volumes of amygdala, hippocampus, 
and periaqueductal gray but a decreased volume of the anterior 
cingulate cortex compared to conventionally colonized mice 
(300, 301). These findings, together with marked alterations 
in brain neurochemistry, brain ultrastructure (300, 302, 303), 
brain microglia (26), and BBB function (28) may explain why 
germ-free mice display exaggerated stress responsivity (298), 
hyperactivity (302, 303), and visceral pain hypersensitivity (301). 
It would appear that the GI microbiota plays an important role 
in the development of the gut–brain axis, and that its disruption 
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predisposes to maladaptive stress responsivity and behavioral 
profile (299, 304).

As discussed above, SCFAs seem to be important messengers 
of GI bacteria with a beneficial impact on the brain, and such a 
role may also be attributed to food, prebiotics, and probiotics that 
facilitate a physiological community structure of the GI micro-
biota. The prebiotic sialyllactose, for instance, has been shown 
to prevent the change in colonic microbiota composition, the 
increase in anxiety-like behavior and the decrease in hippocam-
pal neurogenesis evoked by social disruption stress in mice (305). 
Fructooligosaccharides and galactosaccharides are likewise able 
to protect mice from the disruption of the microbiota commu-
nity structure, the enhancement of anxiety- and depression-like 
behavior, and the rise of the circulating corticosterone concentra-
tion elicited by chronic psychosocial stress (306). The benefical 
effects of the prebiotics are associated with increased production 
of SCFAs in the gut (306).

Despite the clinical observations that stress has an adverse 
influence on IBD, predictable chronic WAS fails to modify 
the severity of DSS-evoked colitis in the mouse, but prevents 
colitis-evoked sickness behavior anxiety and disruption of social 
interaction (263). This effect of repeated WAS is associated with 
a rise of circulating corticosterone, an increase in hypothalamic 
Npy expression and a blockade of the colitis-associated induction 
of c-Fos in thalamus, hypothalamus, amygdala, and prefrontal 
cortex (263, 277). Likewise, the ability of colitis to amplify the 
expression of c-Fos in the lumbosacral spinal cord in response to 
noxious chemical stimulation of the colon is blunted by repeated 
WAS (277). In keeping with this finding, repeated WAS fails to 
aggravate mechanical and thermal hyperalgesia associated with 
DSS-induced colitis in mice (277) much as it fails to exacerbate 
visceral hyperalgesia associated with TNBS-induced colitis in rats 
(307). Taken together, these observations provide an explanation 
for the resilience effect of predictable chronic stress and show 
that the immune stress associated with experimental colitis 
alters not only brain function but also the cerebral processing of 
psychological stress and its impact on behavior. In addition, the 
influence of GI inflammation on stress processing in the brain is 
modified by environmental conditions, given that environmental 
enrichment appears to improve stress resilience as deduced from 
region-specific changes in the activity of the central amygdala, 
hippocampus, and infralimbic cortex (266).

THe CiRCLe COMPLeTeD: THe 
STReSSeD BRAiN FACiLiTATeS iMMUNe 
ACTivATiON AND iNFLAMMATiON iN THe 
GUT

Adverse and Beneficial effects of Stress 
on intestinal inflammation
Psychosocial stress is known to trigger disease exacerbation and 
relapses of IBD as well as IBS, a relationship that has been con-
firmed in animal models of GI inflammation (308). For instance, 
restraint stress amplifies the severity of colitis in IL-10−/− mice as 
revealed by histopathology, increased expression of proinflam-
matory cytokines, and aggravated loss of body weight (309). 

Likewise, neonatal maternal separation stress enhances the 
permeability of the colonic mucosa both in wildtype and IL-10−/− 
mice, but colitis develops only in IL-10−/− mice (310), which 
attests to the multifactorial pathogenesis of chronic GI inflamma-
tion (311). DSS-treated mice exposed to chronic restraint stress 
(312), repeated psychological stress (313), repeated WAS (314), or 
a combination of repeated social defeat stress and overcrowding 
(315) also present with enhanced colonic inflammation scores, 
lowered body weight, and increased proinflammatory cytokine 
levels. Similarly, TNBS-induced colitis is aggravated after 
exposure to various stressors (316–319), which demonstrates an 
adverse impact of stress on disease course and severity. However, 
the outcome of the interaction between stress and GI inflamma-
tion is variable, depending on the type and duration of stress, the 
type of experimental inflammation and the experimental design. 
Repeated WAS, for example, has been shown to be without effect 
on acute and chronic DSS-induced colonic inflammation, on the 
one hand (263, 320), but to reactivate a quiescent chronic inflam-
mation after exposure to DSS, on the other hand (314).

By contrast, there are also studies attesting to an ameliorating 
effect of stress on colonic inflammation. Cakir et  al. (321) and 
Gülpinar et  al. (322) both report that colitis severity is attenu-
ated if animals are exposed to WAS during colitis induction, or if 
they are subjected to a controllable electric shock prior to colitis 
induction, respectively. In contrast to other experiments, these 
two studies used a single acute stressor, which raises the hypoth-
esis that the acutely stressed brain and body are able to suppress 
inflammation. In fact, high concentrations of glucocorticoids 
released by the acute stress exposure are very likely responsible 
for the antiinflammatory action of stress, as deduced from the 
antagonistic effects of a glucocorticoid receptor antagonist (321, 
322) and a CRF receptor antagonist (322). In line with this 
contention, chemical stimulation of the paraventricular hypotha-
lamic nucleus, the major source of brain CRF, with glutamic acid 
alleviates TNBS-evoked colitis as measured by reduced colonic 
damage scores and blunted colonic levels of IL-6 and IL-17 (323).

In some animal studies, chronic stress per se has been shown to 
provoke the development of spontaneous colitis. In mice exposed 
to chronic subordinate colony housing, the colon displays an 
increased histological damage score, a higher number of inflam-
matory cells, and increased cytokine secretion (324, 325). Similar 
findings have been obtained in mice exposed to repeated social 
interaction stress, in which body weight loss, increased circulating 
cytokine levels and signs of colonic damage were observed (326). 
Changes in both glucocorticoid and cytokine signaling appear to 
be involved in the disease onset, but the relative importance of 
peripheral and central mechanisms remains to be investigated. It is 
not known whether chronic psychological stress may also trigger 
GI inflammation in humans. There are only some case reports that 
extensive physical stress such as that experienced by long-distance 
runners may give rise to reversible ischemic colitis (327, 328).

Mechanisms involved in the impact of 
Stress on the Gut
Psychosocial stress acts primarily on the brain and disturbs 
brain function in many ways (329), and these cerebral 
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perturbations can adversely affect many peripheral organs, 
including the GI tract (Figure  2). Exposure to stress alters 
not only the activity of the HPA axis and its adrenocortical 
hormonal system but also that of the parasympathetic nervous 
system, the sympathetic nervous system, and the sympathetic 
adrenomedullary hormonal system (Figure  2). The HPA axis 
appears to be the most important stress response system (330) 
and represents a particularly important interface between stress 
and the gut, with CRF as a mediator operating both in the brain 
and GI tract (331). Glucocorticoids released from the adrenal 
cortex (cortisol in humans, corticosterone in rodents) dampen 
immune processes and are likely to interfere with immunologi-
cal processes during stress. In addition, glucocorticoids can also 
induce non-neuronal catecholamine enzymes (332) which may 
add to the multiple signaling mechanisms of chronic stress 
exposure.

Both physical and psychological stressors cause formation of 
proinflammatory cytokines in the periphery (333), which may 
be due to “sterile inflammation” (334). In this process, damage-
associated molecular pattern molecules, such as heat shock pro-
tein-72, uric acid, and ATP activate various PRRs (TLRs, NODs) 
that stimulate cytokine production (334). Importantly, there are 
individual differences in the sensitivity of the peripheral immune 
system that predict vulnerability to social stress (335). Specifically, 
IL-6 is most highly upregulated in mice that respond to chronic 
stress with exaggerated social avoidance behavior, whereas IL-6 
knockout mice as well as mice treated with an IL-6 monoclonal 
antibody are resilient to social stress (335). These findings may 
have a bearing on stress-related psychiatric disorders as patients 
with treatment-resistant major depression display highly elevated 
serum levels of IL-6 (335).

In the gut, stress leads to disruption of mucosal tight junctions, 
which enhances mucosal permeability, facilitates microbial trans-
location, induces an immune response, and promotes inflamma-
tion (19). In addition, stress disrupts the community structure 
of the gut microbiota (253), which also weakens the mucosal 
barrier. The paracellular permeability through tight junctions of 
the GI mucosa is under the control of myosin light chain kinase 
(MLCK) which is involved in cytoskeletal regulation. MLCK can 
be activated by cytokines such as TNF-α, which enhances tight 
junction permeability by actomyosin contraction and reorganiza-
tion of the tight junction (19). ML-7, a specific MLCK inhibitor, is 
able to blunt the increase of colonic paracellular permeability and 
the rise of LPS, ACTH, and corticosterone plasma levels evoked 
by partial restraint stress in rats (336).

CRF and NPY have proved to be important mediators of 
stress-related brain–gut interactions because both peptides 
occur at multiple sites in the gut and brain and affect various 
functions in both organ systems (32, 331, 337). CRF, for instance, 
participates in the stress-evoked inhibition of upper GI transit 
and stimulation of colonic motility (331). NPY serves a 
proinflammatory role in the gut, while cerebral NPY protects 
against distinct disturbances in response to immune challenge, 
enforcing stress resilience both in brain and periphery (337, 
338). During restraint stress, fecal pellet output is significantly 
increased in mice deficient in NPY or the gut hormone PYY, 
relative to wildtype mice (338, 339). CRF1 receptor blockade 

reduces defecation in wildtype and NPY knockout mice but has 
no effect in PYY knockout mice (338). Endogenous NPY and 
PYY thus appear to inhibit the colonic motor stimulation evoked 
by stress, the effect of NPY depending on endogenous CRF act-
ing via CRF1 receptors (338).

TRANSLATiONAL iMPLiCATiONS

The information reviewed here reveals a bidirectional interplay 
between stress and the immune system, which is particularly 
obvious in the complex relationship between the GI immune 
system and the CNS. Psychosomatic medicine has long known 
that the digestive system is a preferred target of somatoform 
manifestations of stress. This is not, however, the end of the story. 
The stress-evoked disturbance of GI function, in which the cross-
talk between the gut microbiota and the local immune system 
is of particular relevance, is signaled back to the CNS and may 
cause further disturbances of brain function. Thus, the impact of 
stress on the gut initiates a vicious cycle that is composed of both 
a brain–gut and gut–brain segment, the two segments being con-
nected in the gut via the microbiota-immune network (Figure 2). 
This integrated view is important to consider in order to appreci-
ate the mutual relationship between “stress and immunity” in a 
broad perspective.

The research we have reviewed here focusses on the impact of 
peripheral immune stress on the brain, given that a dysbalance of 
gut microbiota-immune homeostasis is thought to have a bear-
ing on many neuropsychiatric disorders including Parkinson’s 
disease, multiple sclerosis, autism spectrum disorder, anxiety 
disorders, chronic fatigue syndrome, IBS, major depressive dis-
order, and cognitive decline (53, 55, 57, 82, 247, 250, 252, 299). 
Although research involving animal models provides compelling 
evidence for a causal relationship in an increasing number of 
instances, most evidence obtained from clinical studies is still 
of an associative nature. Thus, there is an appreciable gap in 
the translation of basic research to clinical applications across 
different microbe and host species. In addition, nutritional, 
environmental, genetic, epigenetic, and physiological factors will 
shape the microbiota-immune network in rodents in a quite dif-
ferent manner than that of humans. Furthermore, we still know 
little about the resilience of this GI network under changes of the 
external and internal environment, given that a disturbance of 
microbiota-immune homeostasis represents itself a local stress 
scenario.

The pathways along which peripheral immune stress is 
communicated to the brain are multifactorial, comprising both 
circulating molecules (microbe-derived molecules, immune 
mediators, gut hormones) and neuronal messengers. Through 
these signaling systems, several transmitter and neuropeptide 
systems within the brain are altered, enabling adaptive processes 
related to stress coping and resilience to take place or, if these 
measures are exhausted, giving rise to various CNS pathologies. 
Particular microbe-derived molecules (e.g., SCFAs), immune 
mediators (e.g., cytokines), and CNS messengers (e.g., neuro-
trophic factors, NPY) may play a particular role in determining 
whether inputs from the gut have a beneficial or deleterious 
effect on the brain. Dissection of the complex information flow 
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from gut to brain will help identifying biomarkers of immune 
processes that carry a risk to stress the brain and unfold novel 
opportunities for therapeutic intervention.
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