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Mesenchymal stromal cells (MSC) have been used to treat a broad range of disease 
indications such as acute and chronic inflammatory disorders, autoimmune diseases, 
and transplant rejection due to their potent immunosuppressive/anti-inflammatory 
properties. The breadth of their usage is due in no small part to the vast quantity of 
published studies showing their ability to modulate multiple immune cell types of both 
the innate and adaptive immune response. While patient-derived (autologous) MSC 
may be the safer choice in terms of avoiding unwanted immune responses, factors 
including donor comorbidities may preclude these cells from use. In these situations, 
allogeneic MSC derived from genetically unrelated individuals must be used. While 
allogeneic MSC were initially believed to be immune-privileged, substantial evidence 
now exists to prove otherwise with multiple studies documenting specific cellular and 
humoral immune responses against donor antigens following administration of these 
cells. In this article, we will review recent published studies using non-manipulated, 
inflammatory molecule-activated (licensed) and differentiated allogeneic MSC, as well 
as MSC extracellular vesicles focusing on the immune responses to these cells and 
whether or not such responses have an impact on allogeneic MSC-mediated safety 
and efficacy.

Keywords: allogeneic, allo-mesenchymal stromal cell, anti-donor immune response, immunogeniciy, 
inflammation, immunomodulation

inTRODUCTiOn

Mesenchymal stem/stromal cells (MSC) are a readily accessible cell source in which interest has 
expanded hugely in the last two decades (1). The allogeneic use of these cells was touted as being 
safe owing to their low expression of major histocompatibility complex (MHC) and co-stimulatory 
molecules and the fact that they can suppress the activity of numerous immune cell populations 
(2–4). However, in more recent years several groups have shown in different models that MSC 
do induce anti-donor immune responses from different facets of the immune system, including 
dendritic cells, T cells, and B-cell mediated allo-antibodies (4–7). Despite the fact that allogeneic 
MSC can be recognized by the host immune system, administration of these cells to human subjects 
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has been shown, for the most part, to be safe in several different 
disease settings (5, 8–10). There are a small number of studies 
describing several treatment emergent adverse events (TEAE) 
following administration of decidual stromal cells or adipose-
derived stromal cells to patients, however, it appears that 
these are unrelated to the development of anti-donor immune 
responses (10–13). However, the field should remain vigilant to 
adverse immune responses which may have detrimental effects 
in the long term or if the patient receives a transplant later in life 
which may be rejected as a result of a pre-existing anti-donor 
memory response, either cellular or humoral (5). To this end, 
here we have critically assessed recent allogeneic MSC literature 
as a follow up to our previous review with a focus on studies 
which have investigated the immune response to allogeneic 
MSC either in vitro, in vivo, or as part of a clinical trial to update 
the field on the potential responses to these cells (5).

iMMUnOGeniCiTY AnD 
iMMUnOMODULATORY POTenTiAL OF 
ALLOGeneiC nOn-MAniPULATeD MSC

The advantages of using allogeneic over autologous MSC have 
been well documented with perhaps the most compelling advan-
tage being the ability to obtain cells from healthy donors followed 
by expansion in vitro to clinically relevant numbers. The cells can 
then be banked and transported where required with minimal 
delay. Another commonly touted advantage of allogeneic MSC 
is their low immunogenicity and while there may be some truth 
in this when compared to other allogeneic cell types, emerging 
evidence suggests that allogeneic MSC can indeed induce a strong 
immune response in vivo which may have severe consequences 
depending on the disease indication for which the cells are being 
administered (14). Even in vitro, it has been shown that stimulat-
ing MHC class II negative equine MSC with interferon (IFN)-γ 
for 4 days leads to markedly increased expression of MHC class 
II (15, 16). One could reasonably assume that, in an allogeneic 
in vivo setting, administered MSC would encounter significant 
levels of IFN-γ which may impair their efficacy, depending on 
the indication. A study by Joswig et al. (17) assessed the clinical 
response to repeated intra-articular injections of bone marrow-
derived equine allogeneic versus autologous MSC. Clinical 
parameters assessed in the study showed no differences after the 
first injection of either autologous or allogeneic MSC. However, 
following the second injection, a significant adverse response of 
the joint was seen in horses treated with allogeneic compared to 
autologous MSC, evidenced by elevated synovial total nucleated 
cell counts. In the same model, another recent study could dem-
onstrate that anti-sera collected from horses injected with MHC-
mismatched MSC contained antibodies that caused the death 
of equine leukocyte antigen-A2 haplotype MSC in cytotoxicity 
assays (4, 18). By contrast, Ardanaz and colleagues (19) reported 
no persistent unwanted effects, including the absence of a hyper-
sensitivity response, following single or repeated intra-articular 
injections of equine allogeneic MSC from pooled donors. In this 
study, only a transitory inflammatory response was observed 
which resolved after 10 days.

Owing to the similarities between the immune systems of 
humans and non-human primates, immunological analysis of 
allogeneic MSC in these pre-clinical animal models may have 
important implications from a clinical perspective. Recently, 
Isakova and co-workers (20) performed such a study. The aim 
of the study was to evaluate the immune response caused by 
intra-cranial injection of allogeneic compared to autologous 
MSC in rhesus macaques. The authors detected clear signs of allo- 
recognition as evidenced by significantly higher levels of circulat-
ing allo-specific antibodies in serum of macaques that received 
allogeneic compared to autologous MSC. They also demonstrated, 
in in vitro co-cultures, that peripheral blood mononuclear cells 
(PBMCs) isolated from allogeneic but not autologous MSC 
recipients were capable of lysing their respective donor MSC. 
Furthermore, higher levels of peripheral blood-derived natural 
killer, B and T cell subsets were recorded in allogeneic MSC recip-
ients with the overall magnitude of the allo-immune response 
determined by the level of mismatch between the MSC donor 
and recipient. A detailed understanding of the consequences of 
these reported changes in immune profiles following allo-MSC 
therapy is likely to advance the field even further.

Another emerging concept in relation to allo-MSC therapy 
that should be considered is the idea that allo-MSC cell death 
following administration may play a role in regulation of ensu-
ing immune responses. Immune responses to dying cells can be 
affected by multiple factors related to the type of cell death (21). 
These include, but are not limited to, the cell death pathway, 
the way dead cells are cleared by innate immune effectors, the 
nature and phenotype of the effector immune cells, the location 
of cell clearance, and the immune cell effectors that eventually 
encounter the antigens presented along with the dead cells (21). 
Another key consideration is whether to use fresh or cryopre-
served cells, as this may impact cell viability and consequent 
immune responses (22). Indeed, a recent report by Chinnadurai 
and colleagues demonstrated that cryopreserved MSC were 
susceptible to T cell-mediated apoptosis (23). In the context of 
allo-MSC therapy, consideration of all of these issues is likely to 
shed light on the impact of death of allo-MSC on the immune 
system, and the implications for the potential of allo-MSC 
therapeutic efficacy.

iMMUnOGeniCiTY AnD 
iMMUnOMODULATORY POTenTiAL  
OF LiCenSeD ALLOGeneiC MSC

Few studies have investigated the effects of licensing (treatment 
with pro-inflammatory stimuli in  vitro) on allogeneic MSC, 
particularly in vivo. This is most likely because these cells will 
be targeted by recipient immune cells upon their first encounter 
in an in vivo setting and will receive an inflammatory stimulus, 
thereby, potentially, negating the need to pre-activate these cells 
in vitro. However, there are some reports using this strategy with 
the focus primarily being to further enhance the cells’ immuno-
suppressive ability, as opposed to investigating whether immuno-
genicity has been increased. In one such study, Mancheno-Corvo 
and colleagues assessed the ability of adipose-derived MSC 
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(ASC) to inhibit allogeneic T cell proliferation. They correctly 
pointed out that the majority of similar studies activate T cells 
at the same time the cells first encounter the MSC in in  vitro 
co-culture assays and that such an approach may not be relevant 
to typical clinical scenarios in which MSC, administered after 
the onset of symptoms associated with inflammatory disorder, 
such as Crohn’s disease or rheumatoid arthritis, will encounter 
and interact with immune cells (e.g., T  cells) that are already 
activated. Upon analysis, they found that ASC co-cultured with 
T lymphocytes that had been pre-activated for 48 h beforehand 
had impaired immunosuppressive capacity. However, this 
ability to inhibit allogeneic T  lymphocyte proliferation was 
restored when ASC were pre-activated with IFN-γ, provided 
the co-culture was performed in the medium conditioned by 
pre-activated ASC and not fresh medium. Intriguingly, pre-
treatment with other candidate cytokines tumor necrosis factor 
(TNF)-α, interleukin (IL)-1β, IL-17, tissue growth factor-β, or 
stromal cell-derived factor-1α had no reported effect (24).

Little has been reported to date on the use of cytokine-licensed 
MSC and their immunosuppressive effects on T  cell function. 
Chinnadurai et  al., in a recent report, found that only IFN-γ 
licensed human (h)MSC were able to inhibit the secretion of the 
key Th1-related cytokines IFN-γ, TNF-α, and IL-2 by allogeneic 
T  cells. In the same experiments, un-licensed MSC had no 
immunomodulatory effect (23). Moreover, they identified the 
MSC-expressed, IFN-γ-licensed inhibitory molecules B7H1 and 
B7DC/programmed death receptor 1 (PD1) pathways as essential 
effectors in blocking T cell function. The authors also found that, 
in vivo, licensing-induced efficacy was dependent on whether the 
MSC were used fresh or from frozen (23). While indoleamine 
2,3-dioxygenase (IDO) activity was increased in these licensed 
MSC, its function was largely dispensable with regard to MSC-
driven inhibition of T cell effector function (25).

While the inflammatory cytokines IFN-γ, TNF-α, and IL-1β 
are by the far the most commonly used molecules to license 
MSC, Sivanathan et al. employed a novel approach to licensing 
hMSC by pre-activating the cells with IL-17 (MSC-17). Their 
rationale for this approach was that, while IFN-γ licensed MSC 
are more immunosuppressive than their un-licensed counter-
parts they also upregulate MHC I thereby becoming potentially 
more immunogeneic in  vivo. Unlike IFN-γ licensed MSC, 
MSC-17 do not upregulate MHC I (or MHC II), nor the T cell 
co-stimulatory marker CD40. Furthermore, MSC-17 could 
inhibit the production of Th1-related cytokines IFN-γ, TNF-α, 
and IL-2 by allogeneic T cells, in addition to inhibiting surface 
CD25 expression. In addition, and potentially crucial with 
regard to therapeutic efficacy, MSC-17 but not IFN-γ licensed 
MSC consistently induced CD4+ CD25high CD127low FoxP3+ 
regulatory T cells (iTregs) from phytohemagglutinin-activated 
CD4+ CD25− T cells (26). As mentioned previously, the major-
ity of studies use licensing as a way to further enhance MSC 
immunosuppressive ability. However, Roemeling van-Rhijn 
and colleagues (27) focused on the effect(s) of licensing on the 
immunogenicity of allogeneic MSC by evaluating whether or 
not repeated exposure to allogeneic MSC [derived from bone 
marrow (BM-MSC)] and/or adipose tissue (ASC) induced 
human leukocyte antigen (HLA) class I specific lysis by CD8+ 

T cells in a human setting. They also tested what effects exposure 
to IFN-γ had on the MSC and their ability to induce CD8+ 
cytotoxic T cell reactivity. They found that MSC-educated CD8+ 
T cells were able to lyse BM-MSC in an HLA-specific manner. 
Interestingly, in addition to an observed increase in HLA class 
I expression, percentage lysis of MSC was doubled when the 
cells were pre-activated with IFN-γ. Furthermore, co-culture 
of PBMC with IFN-γ-stimulated BM-MSC further increased 
percentage lysis. A similar trend was observed when using 
ASC but percentage lysis was significantly lower compared to 
BM-MSC (16, 27).

iMMUnOGeniCiTY AnD 
iMMUnOMODULATORY POTenTiAL OF 
ALLOGeneiC DiFFeRenTiATeD MSC

The cell surface expression of MHC proteins and co-stimulatory 
molecules can have a major impact on allo-recognition of 
transplanted cells or organs in an immunocompetent host (5). 
As mentioned previously, MSC are generally thought to express 
low or no MHC and co-stimulatory proteins contributing to 
their perceived “weak” immunogenic profile (5). However, as 
with exposure to a pro-inflammatory environment, MSC differ-
entiation has been previously shown to result in upregulation of 
cell surface immunogenic molecules (5, 28, 29). In recent years, 
several studies have examined upregulation of potentially immu-
nogenic cell surface proteins in an allogeneic and xenogeneic cell 
therapy context. With regard to the effect of MSC differentiation 
on the cell surface profile of the cells, there are conflicting results 
presented in different studies. For example, Li et al. describe an 
upregulation of HLA-DR on MSC after hepatocyte differentiation 
(30), while several other studies report no change in cell surface 
proteins after chondrogenic (31), myogenic (32), and insulin-
producing cell (33) differentiation.

More important than cell surface expression levels is func-
tional immunogenicity, which is the response of immune cells to 
the differentiated cells. Differentiated MSC have been shown to 
elicit allogeneic lymphocyte proliferation after osteogenic (34), 
chondrogenic (29, 35), and hepatocytic (30) differentiation, and 
lymphocyte IFN-γ production in vitro after hepatocytic differen-
tiation (30). Contrary to these studies, it has also been recently 
shown that differentiated MSC do not induce allogeneic T cell 
proliferation in vitro after osteogenic (36) or chondrogenic (37) 
differentiation.

While not directly related to immunogenicity, the secretion 
of immunoregulatory or immunosuppressive molecules has 
also been reported as being affected by MSC differentiation. 
Prostaglandin E2 (PGE2), an important mediator of MSC 
immunosuppressive ability has been shown to be reduced after 
myogenic differentiation (38). On the other hand, it has also 
been shown that MSC, during chondrogenic differentiation can 
maintain the expression and production of immunomodulatory 
molecules, such as nitric oxide, IL-6, and IDO (39).

While in vitro data have aided in our understanding of the 
potential mechanisms occurring during differentiation and the 
immune response to the transplanted cells, the in vivo immune 
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response to the cells is the most indicative of translational poten-
tial. Studies that transplanted allogeneic differentiated MSC 
into appropriate pre-clinical models have shown varying levels 
of immune response. For example, hepatocyte differentiated 
MSC induced significantly more CD3+ and CD45+ cells after 
transplantation compared to undifferentiated MSC, despite the 
fact that the differentiated MSC exerted a beneficial effect on the 
glycemic control of the treated animals (33). Osteogenically dif-
ferentiated MSC transplantation resulted in significantly more 
activated immune cells after implantation in a mouse model 
(34). In a diabetic model, evidence for in situ differentiation was 
observed, increased numbers of cytotoxic cells in recipients and 
higher levels of allo-antibody were attributed to this differentia-
tion (40).

Much of the evidence discussed here and elsewhere (5, 28, 29) 
points to an increase in MSC immunogenicity following induced 
differentiation. Strategies to reduce this immunogenicity, there-
fore, would be extremely important for the future development 
of such therapies. Interestingly, Li et al. showed that when they 
carried out their hepatocyte differentiation in a 3D scaffold, as 
opposed to 2D tissue culture plastic, they observed no increase 
in lymphocyte proliferation, no decrease in production of PGE2 
and less IFN-γ production by lymphocytes (30). The maintenance 
of expression of immunomodulatory molecules which Yang et al. 
observed was also only seen in 3D culture conditions as opposed 
to 2D (39). Gene therapy approaches also hold promise as an 
approach to reduce the detrimental immune effects of differen-
tiation. Dhingra et al. (38), following up on excellent work from 
Huang et al. (41), showed that restoration of secretion of PGE2 
could overcome the rejection and loss of efficacy of cardiomyo-
cyte differentiated MSC (38). It was also shown that interfering 
with the expression of MHC II on the cell surface of differentiated 
MSC could increase their survival time in vivo, reduce cytotoxic 
and allo-antibody responses, and increase therapeutic efficacy  
(14, 42). Our increased understanding of the immunological 
changes that occur following differentiation of allo-MSC are 
already informing alternative strategies to circumvent their 
increased immunogenicity.

iMMUnOGeniCiTY OF HUMAn MSC  
in HUMAn SUBJeCTS

As mentioned earlier, the generation of humoral and/or cellular 
immune responses against the allogeneic donor cells could 
potentially lead to adverse immunological effects, impact the 
efficacy of subsequent allogeneic cell therapy, or compromise the 
success of future organ transplantation (5). Although it has been 
shown that allogeneic MSC induce at least a humoral immune 
response in pre-clinical models, it is not clear whether this occurs 
on the human setting. To date, approximately 3,000 patients have 
received allogeneic mesenchymal stem cell treatment for various 
diseases and no acute adverse events linked to the allogenicity of 
MSC have been reported (8, 9).

As yet only a limited number of clinical trials have evaluated 
the generation of potentially harmful anti-HLA antibodies in 
patients receiving allo-MSCs, and it remains unclear whether 

this may lead to adverse effects. Four clinical trials have been 
published that have documented the presence/absence of anti-
HLA antibodies in patients after allo-MSC therapy for various 
disease indications, including osteoarthritis, Crohn’s disease, 
and Type II diabetes. Results published by Garcia-Sancho et al. 
on the influence of HLA-matching on the efficacy of allogeneic 
MSC therapy in osteoarthritis and degenerative disk disease 
(43), indicated that only a very limited number of patients 
receiving MSC had developed anti-donor antibodies and, 
surprisingly, better donor–recipient HLA-matching did not 
enhance efficacy. In another clinical trial for complex perianal 
fistulas in Crohn’s disease, Panés et al. reported that allogeneic 
adipose-derived mesenchymal stem cells (Cx601) treated 
patients developed donor-specific antibodies (44). At week 
12, 34% of Cx601 treated patients generated anti-HLA Class I 
antibodies compared to none of the placebo-treated group. The 
authors suggested, however, that the development of donor-
specific antibodies had no clinical relevance in terms of affecting 
the efficacy of Cx601 or in provoking TEAEs. Two other clinical 
trials have been published by Skyler et  al. (45) and Packham 
et  al. (46) using rexlemestrocel-L cells, defined as allogeneic 
mesenchymal precursor cells (MPC), for the treatment of Type 
II Diabetes and Diabetic nephropathy. Cross matching between 
donor cells and recipient was not performed prior to infusion. 
Both studies indicate that no subjects receiving rexlemestrocel-
L treatment developed antibodies specific to the donor HLA 
or showed clinically relevant increases in either class I or II 
PRA. The authors suggest that these findings are consistent 
with the immunotolerant profile of MPCs, which are negative 
for HLA Class II and CD80 and CD86 co-immunostimulatory 
molecules, and exert potential immunomodulatory effects, 
including inhibition of T cell proliferation (47). The observed 
lack of acute immunological responses to unmatched allogeneic 
MPC is particularly important in patients who may eventually 
require organ transplantation. The authors suggest that the lack 
of any evidence of sustained sensitization and development 
of antibodies specific to the donor HLA suggests that repeat 
administration of this therapy may be a feasible option in this 
patient population.

Taken collectively, these data might indicate that the formation 
of allo-antibodies may not be as critical as originally thought, 
though this would likely be dependent on the phenotype of the cells 
administered as well as disease specificity. However, the implica-
tions of the development of donor-specific allo-antibodies will need 
to be assessed over longer time periods, alongside the tolerability 
and efficacy of single and repeated administration of allogeneic 
MSC before definite conclusions can be drawn in this regard.

iMMUnOGeniCiTY OF eXTRACeLLULAR 
veSiCLeS SeCReTeD FROM 
ALLOGeneiC MSC

In recent years exciting results from the use of MSC-derived extra-
cellular vesicles (EVs) or exosomes has come to light (48–50). This 
research has been primarily focused on transfer of molecular car-
goes, such as mRNA and miRNA (48, 51), to enhance regenerative 
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or pro-survival responses. Furthermore, a recent report form Bai 
and colleagues (52) could demonstrate the efficacy of human 
MSC-derived exosomes delivered periocularly in a rat model of 

experimental autoimmune uveitis (52). However, evidence from 
dendritic cell research indicates that potentially immunogenic 
proteins such as MHC molecules can also be transferred via EVs 
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(53). This raises the possibility that allogeneic MSC-derived EVs 
may also possess immunogenic molecules which could lead to 
potentially detrimental immune responses such as those elicited 
by allo-MSCs themselves. Although there seems to be evidence 
that EVs may contain MHC molecules it is not clear at this stage if 
(i) MSC-derived exosomes contain MHC molecules, (ii) they can 
be transferred to other cells, and, most notably, (iii) if they may 
induce allo-immune responses. Another future potential area of 
interest may be to examine the expression of tissue factor (TF). 
While TF has been shown to be present in EVs (54), expression 
has not yet been reported in MSC-derived EVs. Future studies 
designed to investigate the influence of TF in EVs on anti-donor 
immune responses or procoagulant activity may yield impor-
tant insights.

PeRSPeCTive

While in recent years strong evidence has emerged showing 
that allogeneic MSC can and do invoke measurable immune 
responses, there is still ambiguity and uncertainty in the field. 
The next generation of allo-MSC therapies should be developed 
through rigorous characterization and fine tuning of MSC 
immunogenicity, survival, and persistence after transplantation, 
efficacy, and disease-specific mechanisms of action (Figure 1).

Consideration of the points below is likely to lead to consider-
able advances in our understanding of the anti-donor immune 
responses induced by allogeneic MSC therapy and potential new 
strategies to minimize any potential adverse responses while 
maximizing patient benefit,

 1. Establishment and monitoring of safety/efficacy profiles for 
each specific treatment regimen in different treatment indi-
cations and disease stages to evaluate, for example, the risk 
of allo-immunization relative to the beneficial effects of the 
treatment.

 2. Comprehensive analysis of the full range of characteristics 
affecting immunogenicity such as cell surface expression 
of important molecules on the MSC, in  vitro responses of 
dendritic, T, and B cells and in vivo humoral, cytotoxic, and 
memory responses.

 3. The use of immunosuppressive drugs or other molecules in 
combination with allogeneic MSC to determine if the immune 
response to the cells can be reduced.

 4. Use of gene therapy or small molecule approaches to interfere 
with the presentation of allo-antigen on the cell surface.

 5. Replacement of highly immunogenic cells such as some dif-
ferentiated MSC (29). Alternative cell types could be investi-
gated to replace damaged tissue (55, 56), or in-depth studies 
into the mechanism of action of, e.g., licensed MSC may 
yield candidate molecules which could replace cell therapy  
altogether.

 6. Investigation of alternative routes of administration (e.g., “inert”)  
locations such as the articular cavity or intervertebral disk 
(43) which may lower the “visibility” of the cells to the host 
immune system.

 7. A detailed understanding of how allo-MSC cell death affects 
their immunogenic or tolerogenic properties and how (or if) 
allo-MSC cell death regulates ensuing anti-donor immune 
responses.

It is clear that MSC therapy, and particularly allogeneic MSC 
therapy, holds great promise for the treatment of a multitude of 
diseases. These cells have been shown to be clinically safe despite 
abundant pre-clinical evidence that they invoke an anti-donor 
immune response. The systematic collection and dissemination 
of immunological data should still be undertaken to provide 
further insight into mechanism of action and so that researchers, 
clinicians, and regulatory bodies worldwide can remain vigilant 
to any future adverse effects.
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