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Epstein–Barr virus (EBV) is a potent B cell transforming pathogen in humans. In most 
persistently EBV-infected individuals, potent cytotoxic lymphocyte responses prevent 
EBV-associated pathologies. In addition to comprehensive adaptive T cell responses, 
several innate lymphocyte populations seem to target different stages of EBV infection 
and are compromised in primary immunodeficiencies that render individuals susceptible 
to symptomatic EBV infection. In this mini-review, I will highlight the functions of natural 
killer, γδ T cells, and natural killer T cells during innate immune responses to EBV. These 
innate lymphocyte populations seem to restrict both lytic replication and transforming 
latent EBV antigen expression. The mechanisms underlying the recognition of these 
different EBV infection programs by the respective innate lymphocytes are just starting to 
become unraveled, but will provide immunotherapeutic strategies to target pathologies 
that are associated with the different EBV infection programs.

Keywords: natural killer cells, natural killer T cells, vγ9vδ2 T cells, lytic replication, infectious mononucleosis, 
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inTRODUCTiOn On innATe LYMPHOCYTeS

Epstein–Barr virus (EBV) is a common human γ-herpesvirus that persistently infects more than 
90% of the human adult population. At the same time, it was the first human candidate tumor 
virus that was discovered (1, 2) and remains to date the only human pathogen that can readily 
transform human B  cells into immortal continuously growing lymphoblastoid cell lines (LCLs) 
(3). Even so EBV contributes with 1–2% to the overall tumor burden in humans (4), the majority 
of infected individuals carry EBV for life without symptoms. This peaceful coexistence is thought 
to be maintained by cytotoxic lymphocytes, which massively expand during symptomatic primary 
EBV infection, called infectious mononucleosis (IM), can be used to treat some EBV-associated 
malignancies and are affected by primary or secondary immunodeficiencies that predispose for 
EBV-driven pathologies, such as human immunodeficiency virus-associated lymphomas (5–7).

Among these cytotoxic lymphocytes, adaptive CD8+ T cell responses to EBV have been best 
characterized and single peptide epitope specificities against early lytic EBV antigens constitute 
in some individuals up to 40% of the massively expanded CD8+ T cell compartment during IM 
(8). Much less is known about innate cytotoxic lymphocyte compartments during EBV infection, 
including natural killer (NK), natural killer T (NKT), and γδ T cells. Nevertheless, they can utilize 
the same eomesodermin-dependent perforin, granzymes, and death receptor ligands to eliminate 
EBV-infected cells by cytotoxicity (9). Furthermore, they exist at much higher frequencies than 
individual CD8+ T cell clones at sites of primary EBV infection, like tonsils (more than 1010 more 
frequent), and therefore can more rapidly respond to pathogen encounter, ensuring the survival 
of the infected individual until specific T cells have been clonally expanded. However, their target 
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cell recognition is not directed against EBV protein-derived 
peptides presented on major histocompatibility complex (MHC) 
molecules, but instead they recognize infected targets with 
their germ line encoded receptors or invariant T cell receptors. 
Activation of innate lymphocytes depend on loss of MHC class I 
molecules from the surface, stress induced ligand upregulation, 
glycolipid presentation on non-classical MHC class I molecules, 
or mevalonate metabolite recognition in the context of buty-
rophilin (BTN) family members (10–14). As I will discuss below, 
these different target recognition mechanisms seem to be used 
to target different stages of EBV infection, thereby achieving a 
similarly comprehensive immune control over all EBV infection 
programs as T cells that target antigens of the different EBV life 
cycles. Thereby, primary immunodeficiencies that affect NK, 
NKT, or γδ T cells might manifest with different EBV-associated 
pathologies. A better understanding of which EBV pathology 
might be targeted by which innate lymphocyte compartment 
might enable us to utilize these innate cytotoxic lymphocytes 
in addition to classical T cells for respective immunotherapies.

nK CeLLS in THe PRevenTiOn OF 
SYMPTOMATiC PRiMARY eBv inFeCTiOn

Natural killer cells are the preeminent cytotoxic innate 
lymphocytes, which have been originally described for their 
spontaneous cytotoxicity against infected and tumor targets 
(15–17). In particular, deficiencies in NK  cells predispose in 
humans for herpesvirus-driven pathologies (18). It was indeed 
described early on that NK cells also expand during IM (19–22). 
IM symptoms are thought to be caused by the associated lym-
phocytosis of CD8+ T cells, which primarily recognize lytic EBV 
antigens that are expressed during infectious virus production 
(23). Indeed, NK  cells also preferentially recognize lytically 
EBV-replicating cells (22, 24, 25). Depletion of NK cells in mice 
with reconstituted human immune system components (HIS 
mice) increases viral loads and CD8+ T cell lymphocytosis only 
for wild-type (wt), but not lytic EBV replication incompetent 
BZLF1-deficient EBV (25). The respective NK cell-depleted and 
wt EBV-infected HIS mice also develop more EBV-associated 
B cell lymphomas and need to be sacrificed due to weight loss 
6 weeks after infection (25). HIS mice share an early differenti-
ated NK cell compartment with newborns and young children 
(26). The respective NKG2A+killer immunoglobulin-like recep-
tor (KIR)− NK cells preferentially expand during IM and recog-
nize lytically EBV-replicating cells (21, 22). Interestingly, these 
early differentiated NK  cells are continuously lost during the 
first decade of life and get successively replaced by KIR+ NK cell 
accumulation (22, 27). This coincides with an increased risk to 
develop IM when primary infection is delayed into adolescence 
(5). Recognition of lytic EBV replication might be mediated by 
the downregulation of MHC class I molecules and upregulation 
of NKG2D and DNAM-1 ligands on lytically EBV-replicating 
B  cells (24, 28), tilting the balance of inhibitory, and activat-
ing NK  cell receptor signaling toward activation. In contrast, 
EBV transformed B cells with the expression of all latent EBV 
antigens (LCLs) are only efficiently recognized by NK cells in 
the allogeneic MHC class I mismatched setting. This allows 

the recruitment of KIR+ NK  cells to the response and can be 
harnessed in mixed MHC class I mismatched human immune 
system reconstitution from two hematopoietic progenitor cell 
donors in HIS mice (29). Although NK  cells in these mixed 
reconstituted HIS mice have a decreased cytotoxicity against 
MHC class I negative target cells and are therefore less licensed, 
they control EBV infection better by NK cells (29). This results 
presumably from NK cell recognition of the MHC class I mis-
matched EBV-infected B cells, recruiting KIR+ NK cells to the 
innate immune response to EBV. Such allorecognition is cur-
rently being harnessed for NK cell-dependent immunotherapies 
of acute myeloid leukemias (30), but could also be harnessed 
against persistent infections that reactivate during bone marrow 
transplantation and home to the hematopoietic lineage. Thus, 
NK cells preferentially target lytic EBV replication, but might 
be therapeutically beneficial to target also other stages of EBV 
infection in the allogeneic setting.

γδ T CeLLS AnD THeiR ReSTRiCTiOn  
OF eBv LATenCY

Natural killer cells are by far not the only cytotoxic innate lym-
phocytes that react to EBV infection. In a subset of EBV-positive 
children (25–50%), Vγ9Vδ2 T cells are also expanded (31). These 
human T cells with an invariant γδ T cell receptor do not exist 
in mice and recognize pyrophosphate-containing molecules that 
are generated in the mevalonate metabolism (32). Interestingly, 
Vγ9Vδ2 T  cell recognition of these phosphoantigens (pAgs) 
depends on the BTN 3A1 molecule (CD277), but how BTN3A1 
supports pAg recognition, remains unclear (32). In addition, 
γδ T  cells can utilize the NK  cell receptor NKG2D for target 
cell recognition (32), which has previously been described to be 
important in lytic EBV replication recognition by NK  cells (24, 
28). Interestingly, these Vγ9Vδ2 T  cells seem to preferentially 
recognize EBV-infected B  cell lines that express the nuclear 
antigen 1 of EBV (EBNA1) as the sole viral protein, so-called 
EBV latency I (31). This latency I is found in Burkitt’s lymphoma 
(BL), the most common childhood tumor in Sub-Saharan Africa 
and homeostatically proliferating EBV-infected memory B cells 
(33). Interestingly, such non-transformed EBV-infected memory 
B cells are thought to be the reservoir of EBV persistence (34), 
accumulate in the peripheral blood of IM patients (35), and might 
drive Vγ9Vδ2 T  cell expansion in children, which sometimes 
have viral loads as high as IM patients (36). Indeed, BTN3A1 and 
NKG2D are required to expand Vγ9Vδ2 T cells with BL cell lines 
in donors who are susceptible for this expansion (31). Similarly, 
pAg stimulation of Vγ9Vδ2 T cells in HIS mice was able to pre-
vent outgrowth of adoptively transferred EBV transformed LCLs 
in vivo (37). These activated Vγ9Vδ2 T cells also required their 
invariant T cell receptor and NKG2D for LCL recognition. In this 
study, Vγ9Vδ2 T cells seem to eliminate EBV transformed LCLs 
primarily by FasL- and TRAIL-mediated programmed cell death 
induction. Moreover, adoptive transfer of Vγ9Vδ2 T  cells into 
HIS mice, in which EBV-associated lymphoma formation was 
induced by EBV infection, prevented tumorigenesis (38). Even 
3  weeks after infection, adoptive transfer of activated Vγ9Vδ2 
T cells was still able to reduce tumor burden substantially. These 
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data suggest that Vγ9Vδ2 T cells preferentially expand to EBV 
latency I-infected B cells, but, once activated, can also target other 
EBV latencies, including latency III carrying EBV transformed 
LCLs. However, it remains unclear why this Vγ9Vδ2 T cell expan-
sion can only be achieved in some donors and how pAg presenta-
tion or mevalonate metabolism is regulated during the different 
EBV latency programs. Nevertheless, Vγ9Vδ2 T  cells seem to 
complement NK cells by recognizing latent EBV infection, while 
the latter innate lymphocyte subset preferentially controls lytic 
EBV replication. A combination of both cytotoxic innate lympho-
cyte subsets could be beneficial to target EBV infection.

nKT CeLL-MeDiATeD iMMUne COnTROL 
OF eBv-DRiven B CeLL 
TRAnSFORMATiOn

Similar to our lack of understanding of how EBV regulates the 
mevalonate metabolism for Vγ9Vδ2 T  cell recognition, also 
NKT  cell recognition of EBV-infected B and epithelial cells is 
poorly understood, even so cytotoxicity of CD8+ NKT  cells 
against EBV latency II Hodgkin lymphoma (HL) and naso-
pharyngeal carcinoma (NPC) cells was previously reported (39). 
NKT  cells carry the invariant Vα24-Jα18/Vβ11 T  cell receptor 
and recognize glycolipids that are presented on the non-classical 
MHC class I molecule CD1d (11). CD1d has been reported to be 
downregulated on fully EBV transformed LCLs (40). Nevertheless, 
EBV infection of primary human B cells and LCL outgrowth can 
be restricted by NKT  cells, and restoring CD1d expression on 
LCLs allows NKT cells to recognize EBV latency III (40). These 
data suggest that during B  cell infection and transformation 
CD1d ligands are produced and presented on CD1d that allow 
for NKT cell recognition. Therefore, NKT cells can also restrict 
EBV-induced tumorigenesis in  vivo (39). In particular, CD8+ 
NKT cells can directly lyse EBV positive HL and NPC cells and 
produce IFN-γ, which augments protective Th1 responses against 
EBV infection (39). CD4+ NKT cells, which mainly produce IL-4 
and bias immune responses toward Th2 polarization, do not seem 
to be able to control EBV on their own, but synergize with CD8+ 
NKT cells for improved immune control (39). While NKT cells 
are reduced in the peripheral blood of HL patients (39), they seem 
to be enriched in the tumor tissue (41). The HL and NPC associ-
ated EBV latency II with expression of three EBV latent antigens, 
namely EBNA1 and the two latent membrane proteins 1 and 2 
(LMP1 and 2), can also be found in germinal center (GC) B cells 
of healthy EBV carriers (42). Therefore, NKT cells might play a 
role in restricting EBV latency II in GC B cells and epithelial cells. 
The latter might, however, only occur during NPC tumorigenesis, 
because EBV seems to mainly induce lytic replication in epithelial 
cells of healthy EBV carriers (43).

PRiMARY iMMUnODeFiCienCieS THAT 
COMPROMiSe eBv-SPeCiFiC iMMUne 
COnTROL

The above discussed studies seem to indicate that several human 
innate lymphocyte subsets target different stages of EBV infection 

with NK cells recognizing lytic replication, Vγ9Vδ2 T cells react-
ing to EBV latency I and maybe III, and NKT  cells providing 
restriction of EBV latency II. Can further evidence for this dif-
ferential targeting of EBV by innate lymphocytes be gleaned from 
primary immunodeficiencies that predispose for EBV-associated 
pathologies (7, 44) and compromise these innate lymphocyte 
compartments?

The selective loss of NK, NKT, or γδ T cells is rare in primary 
immunodeficiencies. Usually, the respective mutations affect 
multiple immune compartments like the GATA2 mutation that 
was later characterized in the original patient with susceptibility 
to herpesvirus infections and decreased NK cell activity (18, 45). 
This mutation results in low numbers of B, CD4+ T, NK, dendritic, 
and monocytic cells. The associated uncontrolled EBV infection 
manifests in fulminant IM, hemophagocytic lymphohistiocytosis 
(HLH), and chronic active EBV (CAEBV). Similarly, mutations 
in the cytotoxic machinery (perforin, Munc13-4, and Munc18-2) 
that predispose for HLH and CAEBV affect all cytotoxic lympho-
cytes (46–48). Furthermore, the mutations in SLAM-associated 
protein (SAP) and X-linked inhibitor of apoptosis that result in 
X-linked lymphoproliferative diseases (XLP) 1 and 2 affect many 
lymphocytes and also result in fulminant IM and HLH (49–53), 
even so also NKT  cell development is compromised in XLP1 
patients (54, 55). Therefore, overall loss of cytotoxic lymphocyte 
control of EBV infection seems to result in uncontrolled IM, 
CAEBV, and HLH. However, other primary immunodeficiencies 
seem to be more selective, both with respect to clinical manifesta-
tion and loss of cytotoxic lymphocytes. In this regard, patients 
with mutations in IL-2 inducible T  cell kinase (ITK) lack all 
NKT  cells and present sometimes with HL (56–63). Similarly, 
CD70 deficiency predisposes for HL (64, 65), but so far only 
the deficiency of CD8+ T cells in recognizing EBV transformed 
B cells has been characterized. While in four of the five patients 
with CD70 deficiency no information about NKT cell numbers 
were given (64), in one patient NKT cell numbers were at least 
fivefold decreased. Thus, it is tempting to speculate that primary 
immunodeficiences, resulting from ITK and CD70 mutations, 
more prominently predispose for loss of NKT  cell-mediated 
innate immune control and thereby favor uncontrolled EBV 
latency II, as in HL.

Even so CD70 is so far the only known ligand of CD27, 
CD27 mutations predispose for a much larger spectrum of 
EBV-associated pathologies, including HLH and different 
EBV-associated lymphomas, and also increase the mortality of 
affected individuals (66–68). It has been speculated that this 
results from ligand-independent signaling events of CD27 that 
are compromised in addition to T and NK  cell recognition of 
LCLs (44). In addition to CD27, mutations in the magnesium 
transporter MagT1 and the transcription factor NFκB1 com-
promise NK  cell recognition and predispose for EBV-induced 
lymphoproliferations and lymphomas (28, 69–74). These 
have been suggested to compromise NKG2D, TNF receptor  
(e.g., CD27), and SLAM receptor family (SAP dependent) signal-
ing (28, 73). These receptors are crucial costimulatory molecules 
and activating receptors on CD8+ T and NK cells, respectively. 
More selective NK cell deficiencies have been reported for muta-
tions in the minichromosome maintenance complex component 
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FiGURe 1 | Innate lymphocytes target different stages of Epstein–Barr virus 
(EBV) infection. EBV was suggested to drive B cell differentiation by 
expressing all eight latent EBV proteins (latency III) in tonsillar naïve B cells 
and rescuing germinal center (GC) B cells with the expression of three latent 
EBV proteins (latency II) toward memory B cells. In homeostatically 
proliferating memory B cells, only one latent EBV protein is expressed for viral 
genome maintenance (latency I). From this infected memory B cell pool, EBV 
can reactivate into virus producing lytic replication, most likely after B cell 
receptor engagement. Natural killer (NK) cells have been shown to 
preferentially recognize lytic EBV replication and NKG2D has been suggested 
as an activating receptor involved in this recognition after upregulation of its 
MICA/B and ULBP ligands. In a subgroup of infected individuals, Vγ9Vδ2 
T cells can be stimulated by EBV latency I Burkitt’s lymphoma cell lines and 
recognize these by mevalonate metabolite recognition in a butyrophilin (BTN) 
3A1-dependent fashion. Finally, natural killer T (NKT) cells have been 
suggested to recognize EBV latency II in Hodgkin’s lymphoma cell lines, 
presumably by recognizing glycolipid presentation on CD1d. Thus, cytotoxic 
innate lymphocytes can target different stages of EBV infection.

TABLe 1 | Primary immunodeficiencies that are associated with loss of immune 
control by innate lymphocytes and EBV-associated pathologies.

Affected protein eBv-associated 
pathology

Affected innate 
lymphocytes

Reference

Cytotoxic machinery
Perforin CAEBV, HLH NK, NKT, γδT (46)
Munc13-4 CAEBV, HLH NK, NKT, γδT (47)
Munc18-2 CAEBV, HLH NK, NKT, γδT (48)

DnA-binding proteins
GATA2 CAEBV, HLH NK (18, 45)
MCM4 EBV lymphoma NK (75, 76)
NF-κB1 EBV lymphoma NK (73, 74)

Costimulatory receptors and their ligands
CD27 EBV lymphoma NKT (66–68)
CD70 EBV-positive 

Hodgkin’s lymphoma
NKT (64, 65)

CD16 EBV-positive 
Castleman’s disease

NK (77, 78)

NKG2D and TCR 
(because of MagT1 
deficiency)

EBV lymphoma NK, γδT (69–72)

Signaling molecules
SAP EBV lymphoma, IM, 

HLH
NKT (49–51, 54, 55)

ITK EBV lymphoma NKT (56–63)
RasGRP1 EBV lymphoma NKT (79)
PI3K 110δ EBV viremia NK (82)

Others
XIAP IM, HLH NKT (52, 53)
Coronin 1A EBV lymphoma NKT (80)
CTP synthase 1 IM, EBV lymphoma NKT (81)

CAEBV, chronic active EBV; HLH, hemophagocytic lymphohistiocytosis; IM, infectious 
mononucleosis; NK, natural killer; EBV, Epstein–Barr virus; NKT, natural killer T; 
SAP, SLAM-associated protein; XIAP, X-linked inhibitor of apoptosis; ITK, inducible 
T cell kinase; MCM4, minichromosome maintenance complex component 4; PI3K, 
phosphatidylinositol-3-kinase.
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4 (MCM4) and the Fcγ receptor 3A (CD16) (75–78). Both types 
of mutations diminish or functionally impair the CD56dimCD16+ 
NK  cell compartment, which contributes to the early dif-
ferentiated NKG2A+KIR− NK  cells that were found to restrict 
lytic EBV replication (22, 25). In addition, they could mediate 
further restriction of lytic EBV replication by CD16-mediated 
antibody-dependent cellular cytotoxicity against late lytic viral 
glycoproteins. Patients with MCM4 and CD16 mutations present 
with EBV-induced lymphoproliferative diseases, including EBV-
positive Castleman’s disease in the case of CD16 mutations. These 
selective NK  cell deficiencies could point toward ill controlled 
lytic EBV infection that stimulates these lymphoproliferations.

In contrast to NKT and NK  cells, Vγ9Vδ2 T  cells have not 
received much attention in the characterization of primary 
immunodeficiencies that predispose for EBV pathologies. 
However, from the above described pathways that are affected 
by these, several are predicted to affect also Vγ9Vδ2 T cell func-
tion. Downstream of the TCR signaling, which in the case of 
Vγ9Vδ2 T  cells engages pAgs in the context of BTN3A1, ITK 
phosphorylates PLCγ1, which elicits Ca2+ flux and phosphati-
dylinositol-4,5-bisphosphate cleavage to release diacylglycerol 
that in turn activates the guanine nucleotide exchange factor 

RasGRP1, whose mutations also predispose for EBV-associated 
B cell lymphomas (79). PLCγ1 activation is also Mg2+ dependent 
and thereby influenced by MagT1 function. Thus, mutations 
in ITK, MagT1, and RasGRP1 affect T  cell receptor signaling 
and predispose for EBV-associated pathologies. Furthermore, 
NKG2D is a prominent coreceptor on Vγ9Vδ2 T cells and elicits 
NFκB1-dependent gene transcription (31). NKG2D and NFκB1 
are affected by primary immunodeficiencies with EBV patholo-
gies that result from mutations in the magnesium transporter 
MagT1 and the transcription factor NFκB1, respectively (28, 73). 
Finally, cytotoxicity of Vγ9Vδ2 T cells is also affected by the per-
forin, Munc13-4, and Munc18-2 mutations. These considerations 
suggest that T cell receptor signaling, costimulation, and effector 
functions of Vγ9Vδ2 T cells are compromised in some primary 
immunodeficiencies that predispose for EBV pathologies.

Apart from these immunodeficiencies whose genes can 
be related to innate lymphocyte function, other more general 
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deficiencies like the mutations in the actin-binding protein coro nin  
1A and CTP synthase 1 are associated with NKT cell loss and EBV-
associated lymphoproliferative diseases (80, 81). Furthermore, 
loss-of-function mutations in phosphatidylinositol-3-kinase 
subunit 110δ diminish NK cell killing and results in EBV viremia 
(82). Thus, primary immunodeficiences in the perforin machin-
ery of cytotoxic lymphocytes, their costimulatory molecules, 
DNA-binding proteins that are required for their differentiation, 
and some less well-mechanistically understood gene products 
diminish innate lymphocyte activity and predispose for EBV-
associated pathologies. These are summarized in Table 1.

COnCLUSiOn AnD OUTLOOK

The above outlined arguments suggest a division of labor 
among innate lymphocytes in targeting different programs of 
EBV infection. While NK  cells might preferentially eliminate 
lytically EBV replicating cells, and immunodeficiencies that 
affect them could primary result in lymphoproliferations, 
NKT cells might be superior in restricting Hodgkin’s lymphoma 
and especially affected by ITK and CD70 deficiencies. Finally, 
Vγ9Vδ2 T  cells might be able to target BL cells and LCLs.  
In combination, NK, NKT, and Vγ9Vδ2 T cells could therefore 
restrict EBV latencies I–III and lytic replication (Figure 1). This 
comprehensive immune control by innate lymphocytes might 
be especially important during early primary infection before 

protective CD8+ T  cell responses have been primed. A better 
understanding of how these innate lymphocyte subsets colla-
borate during primary EBV infection could provide insights why 
IM preferentially develops in adolescence and which subgroup 
of these are especially at risk. Furthermore, characterizing how 
NK, NKT, and Vγ9Vδ2 T  cells recognize EBV-infected cells 
and which infection programs in virus-associated malignan-
cies are especially susceptible to this recognition could suggest 
immunotherapeutic approaches against the respective tumors, 
harnessing these innate lymphocytes.
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