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Propionic acid (PPA) is a ubiquitous short-chain fatty acid which is a fermentation product  
of the enteric microbiome and present or added to many foods. While PPA has beneficial 
effects, it is also associated with human disorders, including autism spectrum disorders 
(ASDs). We previously demonstrated that PPA modulates mitochondrial dysfunction dif-
ferentially in subsets of lymphoblastoid cell lines (LCLs) derived from patients with ASD.  
Specifically, PPA significantly increases mitochondrial function in LCLs that have 
mitochondrial dysfunction at baseline [individuals with autistic disorder with atypical  
mitochondrial function (AD-A) LCLs] as compared to ASD LCLs with normal mitochondrial 
function [individuals with autistic disorder with normal mitochondrial function (AD-N) LCLs] 
and control (CNT) LCLs. PPA at 1 mM was found to have a minimal effect on expression 
of immune genes in CNT and AD-N LCLs. However, as hypothesized, Panther analysis 
demonstrated that 1 mM PPA exposure at 24 or 48 h resulted in significant activation of 
the immune system genes in AD-A LCLs. When the effect of PPA on ASD LCLs were  
compared to the CNT LCLs, both ASD groups demonstrated immune pathway activation, 
although the AD-A LCLs demonstrate a wider activation of immune genes. Ingenuity 
Pathway Analysis identified several immune-related pathways as key Canonical Pathways 
that were differentially regulated, specifically human leukocyte antigen expression and 
immunoglobulin production genes were upregulated. These data demonstrate that the 
enteric microbiome metabolite PPA can evoke atypical immune activation in LCLs with 
an underlying abnormal metabolic state. As PPA, as well as enteric bacteria which pro-
duce PPA, have been implicated in a wide variety of diseases which have components of 
immune dysfunction, including ASD, diabetes, obesity, and inflammatory diseases, insight 
into this metabolic modulator may have wide applications for both health and disease.

Keywords: mitochondrial disease, autism, propionic acid, short-chain fatty acids, microbiome, inflammation, 
epigenetics, histone deacetylase inhibitor

inTrODUcTiOn

The human microbiome represents a diverse ecosystem of microbes housed in the human body. 
Microbial cells outnumber the cells in the human body by a factor of 10 and microbial genes out 
number human genes by a factor of over 100 (1–3). There is a particular focus on the enteric (gut) 
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microbiota since it represents about 99% of the human microbi-
ome (4). The importance of the enteric microbiome in relation to 
human health and disease has been recognized since it appears to 
influence the immune system (5), metabolic processes (6), gene 
expression (7, 8), the nervous system (9, 10), and behavior (9, 10). 
Disruption of the enteric microbiome has been implicated in a 
wide range of human diseases including depression and anxiety 
(11), gastrointestinal disorders (12), inflammatory airway disease 
(13), diabetes (14–16), obesity (17, 18), atopic disease (5), and 
neurodegenerative conditions (19). The enteric microbiome may 
be particularly important early in life around the time of birth as it 
has been linked to early brain development and behavior (9, 10, 20) 
and disruption and/or treatments (i.e. early antibiotics) early in life 
can influence the development of childhood diseases, particularly 
atopic disease (9, 10).

The mechanism in which the enteric microbiome modulates 
particular effects on the host is not completely clear, although 
several mediators are potential vehicles for such influence. Such 
mediators include lipopolysaccharides, peptidoglycans, short-
chain fatty acids (SCFAs), neurotransmitters and gaseous mol-
ecules (21–23). We are particularly interested in SCFAs because 
of their role as both mediators of physiology and mitochondrial 
fuels. SCFA are particularly intriguing as they are derived as a 
consequence of fermenting carbohydrates and some proteins, 
and also present naturally or as an additive in many foods, in 
particular wheat and dairy. Thus, dietary variations can have a 
larger influence on their production (19, 24, 25). Of the SCFAs, 
propionic acid (PPA) has been of key interest because it has sev-
eral links to autism spectrum disorder (ASD), a disorder which 
affects as many as ~2% of children in the United States. What 
is intriguing about ASD is that the etiology is largely unknown  
but is strongly influenced by both genetic and environmental 
factors (26, 27).

The enteric microbiome is a major environmental factor that 
may contribute to the etiology of ASD (2, 9, 10, 28). First, several 
factors which may have a direct effect on health through disruption 
of the microbiome are associated with increased risk of develop-
ing ASD, including dietary alteration, environmental exposures 
that disrupt enteric microbiome bacteria content and diversity, 
being born by C-section delivery which reduces maternal transfer 
of enteric and vaginal bacteria, increased antibiotic use which can 
destroy key bacteria in the enteric microbiome, formula feeding 
and early hospitalization (2, 9, 28). Second, specific bacteria, such 
as Clostridia spp., a major SCFA producer, have been repeatedly 
reported to be overrepresented in the ASD microbiome (29, 30). 
Third, exposure to PPA has been demonstrated in several animal 
models to result in the development of ASD-like behaviors and 
physiological changes to the brain similar to those found in 
ASD are seen in adult rats acutely exposed to PPA (24, 25, 31)  
and in juvenile rats systematically exposed to PPA pre- and 
postnatally (32–34).

Although the mechanism by which PPA influences host function 
is still unclear, data from the animal model of PPA induced ASD dem-
onstrates neuroinflammation and electrophysiological disturbances 
as well as disruptions in lipid, mitochondrial and redox metabolism 
(24, 25, 31). We have performed a series of studies to demonstrate that 
changes in mitochondrial metabolism similar to those found in the 

animal model exposed to PPA are also found in humans. For exam-
ple, we found that the unique pattern of biomarkers of mitochondrial 
dysfunction found in the PPA rodent model was also found in a 
subset of children with ASD (28, 35, 36). We also demonstrated that 
PPA modulates mitochondrial respiration in lymphoblastoid cell 
lines (LCLs) derived from children with ASD differently than LCLs 
derived from age and gender matched typically developing control  
LCLs (37).

PPA also could induce changes in host physiology through 
modulation of the immune system. The animal models of PPA 
induced ASD behavior demonstrates neuroinflammation but 
inflammatory mediators induced by PPA in human ASD cells has 
not been investigated. In this study, we investigate whether PPA 
can differentially regulate immune genes using our LCL model of 
ASD. We have developed a cell line model of ASD in which LCLs 
derived from individuals with autistic disorder (AD) are classi-
fied into two groups: those with normal mitochondrial function 
(AD-N) and those with atypical mitochondrial function (AD-A) 
(38–40). The AD-A LCLs have respiratory rates approximately 
twice that of control and AD-N LCLs and are very sensitive to 
in vitro increases in reactive oxygen species (ROS) (38–40). We 
recently demonstrated that this atypical increase in mitochon-
drial function characteristic of AD-A LCLs was associated with 
more severe repetitive behaviors in the children from which 
these LCLs were derived (40). In this way, we believe that the 
AD-A LCLs may represent a more severe ASD phenotype. Given 
the connection between metabolism and immune system (41), 
we hypothesize that the AD-A LCLs will demonstrate a greater 
activation of immune genes with PPA exposure as compared to 
the control and AD-N LCLs.

MaTerials anD MeThODs

lcls and culture conditions
Lymphoblastoid cell lines were derived from white males 
diagnosed with AD chosen from pedigrees with at least other 1 
affected male sibling (i.e., multiplex family) [mean (SD) age 7.3 
(3.5) years]. These LCLs were obtained from the Autism Genetic 
Resource Exchange (Los Angeles, CA, USA) or the National 
Institutes of Mental Health (Bethesda, MD, USA) center for col-
laborative genomic studies on mental disorders. In our previous 
studies (37, 39, 40, 42–44), these LCLs where categorized into 
two different types of AD LCLs; ones with atypical mitochondrial 
respiration (AD-A) and those with normal respiration (AD-N). 
These metabolic groupings have been shown to be consistent 
and repeatable in our previous studies (37, 39, 40, 42–44). Eight 
pairs of AD-N and AD-A LCLs were age and gender matched to 
control LCLs. The sample size chosen was based on our previous 
studies. Control (CNT) LCLs were derived from healthy white 
male donors with no documented behavioral or neurological 
disorder and with no first degree relative suffering from any 
medical disorder that might involve mitochondrial dysfunction 
[mean (SD) age 7.5 (3.3) years]. CNT LCLs were obtained from 
Coriell Cell Repository (Camden, NJ, USA). Due to low avail-
ability of CNT LCLs which fit our criteria, a single CNT LCL line 
was paired with two AD LCL lines in one case (see Table 1). Also 
two AD-A LCLs were paired twice with AD-N LCLs. On average, 
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Table 1 | Lymphoblastoid cell lines used in this study.

controls aD-n subgroup aD-a subgroup

cell iD source age (years) cell iD source age (years) cell iD source age (years)

GM09659 Coriell 4 04C24363 NIMH 4 1393306 AGRE 3
GM17255 Coriell 6 02C10054 NIMH 6 01C08594 NIMH 7
GM16007 Coriell 12 05C38988 NIMH 12 1165302 AGRE 13
GM18054 Coriell 5 03C15992 NIMH 5 01C08495 NIMH 4
GM11626 Coriell 13 008404 AGRE 13 1165302 AGRE 13
GM09642 Coriell 7 01C08367 NIMH 7 01C08594 NIMH 7
GM09642 Coriell 7 04C27439 NIMH 7 02C09713 NIMH 7
GM09380 Coriell 6 01C08022 NIMH 5 01C08495 NIMH 4

Three types of cell lines were used with two types of autistic disorder (AD) cell lines, characterized in our previous studies, and one type of control cell line.
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cells were studied at passage 12, with a maximum passage of 15. 
Genomic stability is very high at this low passage number (45, 
46). Cells were maintained in RPMI 1640 culture medium with 
15% FBS and 1% penicillin/streptomycin (Invitrogen, Grand 
Island, NY, USA) in a humidified incubator at 37°C with 5% CO2.

PPa exposure
Each group of LCLs were cultured with PPA 1  mM for 24 or 
48 h or left untreated (0 mM). This concentration was selected 
because it provided optimal metabolic activation in our previous 
studies (37). The sodium propionate was buffered with sodium 
bicarbonate in the culture medium to prevent changes in pH 
which could cause changes in influx of PPA (47). As PPA is mostly 
disassociated at physiological pH, the effects of the PPA treatment 
are most likely a combination of both PPA and propionate.

expression studies
Total RNA samples from each LCL group were pooled together 
and after DNase treatment and purified using RNeasy Mini 
Kit (Qiagen Sciences, MD, USA) as described in our previous 
studies (48). The cDNA synthesis and microarray analyses were 
performed at Keck Affymetrix GeneChip Resource at Yale, New 
Haven, CT, USA (NIH Neuroscience Microarray Consortium) as 
previously described (48).

analytic approach
Analysis of variance was conducted between the exposure condi-
tions and different cell types. Genes showing expression of at 
least ≥2.0-fold were exported for functional annotation to several 
pathway analysis packages including Ingenuity Pathway Analysis 
(IPA) and Panther software. For the initial comparison of the 
effect of PPA for each exposure time on a particular LCL type, 
the statistical significance of the comparison was not considered 
as there was only an N of 1 for each example. When the ASD 
LCL types were compared to controls, the two PPA exposure 
times were combined and the genes selected not only showed a 
difference in expression of at least ≥2.0-fold but also a p < 0.05.

resUlTs

The effect of PPa on gene expression  
for each lcl Type
The change in gene expression resulting from 1 mM exposure to 
PPA for 24 and 48 h was determined for each LCL type separately. 

Table S1 in Supplementary Material demonstrates the number of 
genes up- and downregulated more than 2.0-fold for each LCL 
type.

The CNT LCLs demonstrated no upregulation or downregula-
tion of known genes with 24 h PPA exposure and only one gene 
upregulated and downregulated with 48 h PPA exposure. Only 
the downregulated gene was associated with immune function. 
Panther analysis demonstrated no overrepresentation of immune 
genes associated with PPA exposure in CNT LCLs.

Exposure of AD-N LCLs to PPA for 24  h demonstrated no 
upregulated genes and downregulation of several immune genes 
including two major histocompatibility complex genes. Exposure 
of AD-N LCLs to PPA for 48 h demonstrated upregulation of two 
microRNA genes not known to be involved in immune function 
and downregulation of the gene for complement C4B. Panther 
analysis demonstrated overrepresentation of genes associated 
with major histocompatibility complex antigen with 24  h PPA 
exposure in AD-N LCLs (see Table 2).

Exposure of AD-A LCLs to PPA for 24 or 48 h demonstrated 
upregulation of several genes related to immune function, 
particularly several genes associated with immunoglobulin pro-
duction and one gene related to activation of proinflammatory 
caspases. Downregulation of the gene for complement C4B was 
found for 24 h exposure and no genes were downregulated for 
48  h exposure. Panther analysis demonstrated overrepresenta-
tion of many immune processes and proteins as result of PPA 
exposure to AD-A LCLs for 24 and 48  h, demonstrating that 
PPA did significantly activate immune processes for AD-A LCLs 
(Table 2).

comparison of PPa effect on asD lcls  
as compared to control lcls
To better understand how PPA exposure affects ASD LCLs differ-
ently than control LCLs, gene expression was compared between 
CNT LCLs and each ASD LCL group independently. Both the 
24- and 48-h PPA exposure data was combined since the previ-
ous analysis demonstrated little difference between the changes 
in gene expression with these two different exposure durations. 
Table S2 in Supplementary Material outlines the genes that were 
upregulated or downregulated with PPA exposure for each ASD 
LCL group as compared to CNT LCLs. Table 3 demonstrates the 
biological processes identified by the differential gene expression 
for AD-N and AD-A LCLs as compared to CNT LCLs. The major 
processes identified are also represented in Figure 1. Biological 
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Table 2 | Panther overrepresentation analysis of genes significantly upregulated 
and downregulated with 24 and 48 h PPA exposure.

# of genes enrichment p-Value

aD-n downregulated 24 h
Protein class

Major histocompatibility  
complex antigen

2 91.31 <0.05

aD-a upregulated 24 and 48 h
Biological process

Immune response 6 20.87 <0.0001
Response to stimulus 7 5.83 <0.01

Cellular component
Immunoglobulin complex 2 54.91 <0.05
Extracellular space 6 26.32 <0.0001
Extracellular region 6 19.08 <0.0001

Protein class
Immunoglobulin 4 99.3 <0.0001
Defense-immune protein 4 19.78 <0.01

Molecular function
Antigen binding 4 44.66 <0.01

Biological processes
Immunoglobulin production 4 79.78 <0.01
Production of mediator of  
immune response

4 69.14 <0.01

Immune response 7 9.83 <0.01

Table 3 | Biological processes panther overrepresentation analysis of genes 
differentially expressed in autism cell lines as compared to control cell lines.

aD-n lcls aD-a lcls

Up Down Up Down

Immunoglobulin production 8 0 9 0
Mediator of immune response 8 0 9 0
Immune system process 22 0 20 0

Phagocytosis (recognition) 0 0 5 5
Phagocytosis 0 0 9 6

Phagocytosis (engulfment) 0 0 5 5
Plasma membrane invagination 0 0 5 5
Membrane invagination 0 0 5 5

B cell receptor signaling pathway 5 0 6 6
Antigen receptor-mediated signaling 8 0 8 8
Activating cell surface receptor 10 0 12 10
Regulating cell surface receptor 10 0 12 10

Response-regulating signaling 10 0 12 10
Response-activating signaling 10 0 12 10

Activation of immune response 10 0 12 10
Regulation of response 12 0 13 10

Leukocyte migration 8 0 0 0
Cell migration 13 0 0 0
Cell motility 13 0 0 0

Locomotion 13 0 0 0
Subcellular component movement 14 0 0 0

Localization of cell 13 0 0 0

Adaptive immune response 9 0 13 0
Immune response 19 6 20 0

Complement activation, classical pathway 0 0 8 6
Complement activation 0 0 8 6

Protein activation cascade 0 0 9 6
Humoral immune response 0 0 9 6

Mediated by immunoglobulin 0 0 9 6
Immunoglobulin mediated 0 0 9 6

B cell-mediated immunity 0 0 9 6
Receptor recombination 0 0 9 7

Lymphocyte mediated 0 0 9 8
Leukocyte mediated 0 0 12 8

Regulation of B cell activation 0 0 6 6

Numbers represent number of genes associated with the identified biological process.
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process was the only Panther analysis used as it was the most 
robust for representing the difference in pathway activation.

This analysis suggests that both the AD-N and AD-A LCLs 
demonstrate change in immune genes as compared to CNT LCLs. 
Both AD-A and AD-N LCLs demonstrate an upregulation in 
genes associated with immunoglobulin production and adaptive 
immune responses without any downregulation in genes involved 
in these processes. AD-A LCLs demonstrate both upregulation 
and downregulation of genes involved in a wider variety of 
immune responses as compared to AD-N LCLs, including 
phagocytosis, complement system activation, B  cell regulation, 
and B cell receptors. This suggests that AD-A LCLs may have a 
wider network of immune genes activated as compared to AD-N 
LCLs as well as CNT LCLs.

Table  4 represents the top canonical pathways (p  <  0.01) 
identified by IPA for the comparison between the AD-A and 
CNT LCLs. As we see, many of these processes are involved in 
immune activation and immune disorders. IPA also identified 
the top upstream regulators as RUNX3, ONECUT1, SNAI2, 
STAT5A, and TCF7. Interestingly, as will be discussed below, 
these genes are regulatory of both developmental and immune 
processes.

DiscUssiOn

In this study, we examined the effect of PPA, a SCFA produced 
by enteric bacteria that are overrepresented in the ASD gut, on 
transformed B cells (LCLs) derived from children with ASD as 
well as controls. We examined two types of LCLs derived from 
children with ASD, those with mitochondrial dysfunction (AD-
A) and those found to have mitochondrial function similar to 
controls (AD-N). We hypothesized that PPA would activate 
immune pathways in ASD LCLs since the PPA animal model of 

ASD demonstrates neuroinflammation and immune activation, 
including increased GFAP immunoreactivity in the hippocam-
pus, increased activation of microglia, and increased interleukin 
(IL)-6 (24, 25, 31). We further hypothesized that the AD-A LCLs 
would have a greater enhancement of immune pathways since 
this is a more severe ASD phenotype and since optimal mito-
chondrial function is required for appropriate immune function 
and response (41).

Exposure to PPA for either 24 or 48 h resulted in upregulation 
in genes associated with immune system activation in AD-A 
LCLs, particularly genes involved in immunoglobulin produc-
tion. This effect was not seen in CNT or AD-N LCLs. In fact, 
there was a decrease in major histocompatibility complex antigen 
genes in AD-N LCLs exposed to PPA for 24  h. We then com-
pared the effect of PPA on ASD LCLs as compared to the effect 
of PPA on CNT LCLs. We found that both the AD-N and AD-A 
LCLs demonstrated changes in gene expression as compared to 
the control LCLs with a significant change in genes related to 
immune pathways almost exclusively. Although the AD-N LCLs 
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Table 4 | Top canonical pathways identified using Ingenuity Pathway  
Analysis (IPA).

B cell development
T helper cell differentiation
Primary immunodeficiency signaling
Graft-versus-host disease signaling
Calcium-induced T lymphocyte apoptosis
IL-4 signaling
Altered T cell and B cell signaling in rheumatoid arthritis
Antigen presentation pathway

FigUre 1 | Biological processes associated with an increase or decrease in 
gene expression resulting from propionic acid exposure to autism cell lines as 
compared to control cell lines.
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development through lineage specification (52). Interestingly, 
RUNX3 is involved in the TNF-beta signaling cascade (53), 
a cytokine whose dysregulation has been correlated with ASD 
severity (51). RUNX3 appears to have an important role in the 
development of proprioceptive afferent neurons in mice, result-
ing in ataxia (54), a neurological finding that is not uncommon in 
ASD. Other genes identified are related to B cell function. SNAI2 
is an evolutionarily conserved zinc finger transcription factor 
which plays an important role in prenatal fetal development, most 
notably the development of neural crest-derived cells and adipo-
cytes (55). SNAI2 is also involved in regulation of B cells and can 
promote the aberrant survival and malignant transformation of 
mammalian pro-B cells otherwise slated for apoptotic death (56) 
and has antiapoptotic effects (57).

In conclusion, ASD is being recognized as having a very 
strong immune component to its etiology (58). Several models 
of ASD demonstrate immune dysregulation, including prenatal 
exposure to immune challenges (59, 60). In fact two animal 
models have been developed to parallel prenatal exposure to 
autoantibodies (61), including fetal brain antibodies (62) and 
antibodies to the folate transporter (63, 64). The microbiome is 
being recognized as important in the etiology of neurodevelop-
mental disorders (9, 10), potentially through modulation of the 
immune system (65) through enteric metabolites (65) including 
SCFAs like PPA (24, 25, 31). It is important to note the effects 
of SCFA on gene expression and inflammation are complex, and 
include histone deacetylase activity,  activation of free fatty acid 
G-coupled receptor and mitochondrial inflammatory signal-
ing cascades, which may or may not be mutually reinforcing.  
Furthermore, we do not yet know if the effects found in our LCL 
model also occur in patients, as many effects of SCFA, in particu-
lar PPA and butyrate, are dose and tissue dependent, and have 
different effects at key developmental time periods (9, 10, 24, 
31, 48, 66, 67). Nonetheless, this study provides insight into the 
mechanism in which the microbiome may influence the immune 
system to result in disease and demonstrates the predisposition 
of certain cells to be sensitive to microbiome metabolites. It also 
may lead to further reevaluation of the widespread use of PPA 
in agriculture and the food industry (24, 31). Certainly, further 
research is needed in this area to better define the role of the 
microbiome and microbial metabolites in immune modulation 
and disease.
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demonstrated activation of immune pathways, the AD-A LCLs 
demonstrated a wider range of genes and processes involved in 
immune pathways. In addition, IPA analysis of AD-A LCL gene 
expression changes identified canonical pathways almost exclu-
sively related to immune function.

Several of the genes identified by the IPA analysis are involved 
in regulation of the immune system and may be linked to 
ASD. Several genes are linked to regulation of T cells. TCF7 is 
a T  lymphocyte-specific enhancer of the CD3-Epsilon T  cell 
antigen receptor complex. Interestingly TCF7 expression may 
be regulated by beta-catenin (49). This is intriguing since beta-
catenin has been shown to be dysregulated in an animal model of 
ASD (50). STAT5 is induced in response to T cell activation with 
cytokines, most notably IL-2, and is believed to be involved in 
the effect of IL-2 in the immune response and may be involved in 
the suppression of IL-3 production. This is interesting as IL-2 is 
produced by neurons and astrocytes, is important in brain devel-
opment and normal brain physiology and has been implicated in 
neurodegenerative disease, cognitive dysfunction and has been 
linked to ASD (51). RUNX3 is also important in immune system 
function as well as neuronal development. RUNX3 is essential 
during thymopoiesis where it modulates the development of 
CD8 T cells, thus having an important role in immune system 
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