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Resident microbiota do not just shape host immunity, they can also contribute to host 
protection against pathogens and infectious diseases. Previous reviews of the protective 
roles of the microbiota have focused exclusively on colonization resistance localized 
within a microenvironment. This review shows that the protection against pathogens 
also involves the mitigation of pathogenic impact without eliminating the pathogens  
(i.e., “disease tolerance”) and the containment of microorganisms to prevent pathogenic 
spread. Protective microorganisms can have an impact beyond their niche, interfering 
with the entry, establishment, growth, and spread of pathogenic microorganisms. More 
fundamentally, we propose a series of conceptual clarifications in support of the idea of 
a “co-immunity,” where an organism is protected by both its own immune system and 
components of its microbiota.

Keywords: host–microbiota symbiosis, colonization resistance, microbial ecology, disease tolerance, pathogens, 
containment, infectious diseases

iNTRODUCTiON

The immune system is never at rest, nor is it ever isolated from its environment. It is in constant 
interactions with myriads of microbes, which can be pathogenic, commensal, or mutualistic 
(1–4). Recent work has shed light on the impact of commensal and mutualistic microbes on 
the development, induction, training, and functioning of the immune system [reviewed in Ref. 
(5–7)]. It is becoming increasingly clear that the microbiota, i.e., the microorganisms living 
persistently on and in a host, play a decisive role in shaping an effective host immune system 
and, vice versa.

Resident microorganisms do not just induce host immunity but can also directly inhibit patho­
gens (8–14). This phenomenon has been documented across many species—vertebrates, inverte­
brates, and plants (15, 16). The ability of commensals and mutualists to interfere with pathogen 
colonization and growth is known as “colonization resistance” (17–19). While the concept of 
colonization resistance is not new (Box 1), its underlying mechanisms are just being understood. 
Two main modes of protection have been proposed: resident microorganisms can protect the host 
either through direct microbe–microbe competition, which involves niche competition or direct 
antagonism, or by the indirect induction or priming of host metabolism or immunity, thanks to 
which the host is better protected against pathogen infections.
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BOx 1 | History of colonization resistance.

Since the beginning of the antibiotics era in the 1950s, it became increasingly 
clear that indigenous microbial flora—generally assumed as the anaerobic 
autochthonous symbionts—can be a source of resistance against pathogens. 
Resistance conferred by the indigenous population explains the side effects 
of antibiotics (e.g., microbial overgrowth and superinfections) as well as the 
effectiveness of using antibiotics to prepare animal models for pathogen 
infection (20–22). The main mechanisms were thought to be competition 
between microbes, either over substrates or through bactericide molecule 
production (23, 24). When van der Waaij and colleagues (25) coined the term 
“colonization resistance,” they cited as possible mechanisms an indirect sti-
mulation of gut movement in addition to direct antagonism between microbes, 
but rejected the involvement of the immune system. Yet, with the discovery of 
immunoglobulins (Ig) in the gut lumen and mucosa (26, 27), evidence for indi-
rect, host-mediated mechanisms began to emerge: microbes were thought 
to assist the immune system by preventing Ig degradation or by significantly 
lowering pathogen load for Ig effectiveness (28, 29). In the meantime, propo-
sals of direct mechanisms expanded (including competition over substrates 
and adhesion sites, release of antibacterial substances, prevention of tran-
slocation, and alteration of microenvironments to favor growth) (30–33). The 
1980s and 1990s saw an explosion of research on colonization resistance and 
gut immune responses against pathogens, as well as the impact of bacterial 
flora on immune development (34). But only after the 2000s did breakthrough 
studies decisively demonstrate microbe-induced innate and adaptive immune 
responses, e.g., defensins (35), IgA specific to the mucosa (36), angiogenins 
(37), lectins (38), and modulated T-cell populations (39).
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a broader range of defensive strategies differing in range (local, 
systemic, and long­reaching), mode (direct microbe­to­microbe 
and indirect host mediated), and effect (resistance, containment, 
and disease tolerance) (Figure  1). Addressing the first gap, we 
expand the effects of protection beyond colonization resistance 
to include containment of microorganisms and suppression of 
pathogenic impacts. We address the second gap by organizing 
existing evidence of the long­reaching of protective microbes.

Taking into account space constrains, our examples will focus 
only on vertebrates, with most of our examples coming from 
mammalian studies, especially humans and murine models [for 
example, in invertebrates, see Ref. (15)]. Because many of the terms 
used in this review have often been employed loosely in the litera­
ture and/or have been understood differently by different authors, 
here we explain in which sense we use them (Box 2). Finally, we 
offer important conceptual clarifications about the different ways 
components of the microbiota can exert protective effects on their 
host, and propose the concept of “co-immunity1” to describe the 
fact that host protection is in general the emergent and dynamic 
product of two influences, that of the host and that of some micro­
organisms (see Concluding Remarks and Perspectives).

LOCALiZeD PROTeCTiON

In recent years, a general consensus on the mechanisms of colo­
nization resistance has emerged (6, 9, 10, 18, 19, 43–46). Resident 
microorganisms can inhibit pathogenic viability and growth by 
antagonizing pathogens or “starving” them of limited resources, 
two well­recognized mechanisms of microbial ecological com­
petition (47–49). In this section, we review expanded evidence 
that microorganisms confer local protection directly through 
microbe­to­microbe interactions (see Direct, Host­Independent 
Protection) and indirectly through the host immune system (see 
Indirect, Host­Mediated Protection) through colonization resist­
ance, containment, and disease tolerance.

Direct, Host-independent Protection
Colonization Resistance: Beyond Niche Competition 
and Antagonism
Recent reviews have focused on a few aspects of colonization 
resistance. Protective microorganisms can antagonize pathogens 
through contact­dependent inhibition or the release of anti­
microbial molecules. They can also outcompete pathogens for 
limited resources such as trace metals, nutrients, receptor donors, 
or adhesion sites, or construct environments hostile to pathogens, 
for instance, by lowering environmental pH (see summary of 
recent findings in Table 1). A recent finding, for instance, is that 
bacteria of the Clostridiales order outcompete Listeria monocy-
togenes for nutrition in the small intestine and likely antagonize 
the pathogen in other ways in the large intestine, providing the 
host a first line of defense from systemic infection (50).

The concept of the ecological niche is central to coloniza­
tion resistance. Protective microorganisms are thought to 
“defend” their nutritional niche by killing incoming pathogens 

1 Derek Skillings helped dubbed the term, noting its similarity to “community.”

Colonization resistance constitutes an expanded sense of 
traditional protective immunity, as these mechanisms can in 
fact be considered part of the host’s defensive repertoire. Of 
course, the protective effects of microbiota components are 
context­dependent: some microbes can help protect the host in 
certain circumstances, but are detrimental in others. In light of 
recent studies, our main claim is that microorganisms, broadly 
construed, can exert a protective role, and that a key challenge is 
now to characterize the different ways this protection can occur.

There are two important gaps in the current literature on 
colonization resistance. First, current understanding of microbe­
induced protection is generally limited to colonization resistance 
against pathogen establishment and growth. Yet the protection 
against pathogens also involves the mitigation of pathogenic 
impact without eliminating the pathogens, also called “disease 
tolerance” (40), and the containment of microorganisms to 
prevent pathogenic spread.

Second, the protective effects reviewed under colonization 
resistance are localized to the immediate vicinity of the protec­
tive microbes. Of date, little is known about the protective effects 
of microorganisms against pathogens in distal organs and tissue 
sites, even though it is established that microorganisms in one 
organ (mainly the gut) can influence immune responses in 
other organs (41). The relative lack of research on long­reaching 
microbiota­mediated protection in part arises from the assump­
tion that microorganisms, once established within their niches, 
do not spread or move. Another reason could be the assumption 
that protective long­reaching effects are too weak to be clinically 
relevant, and thus, not significant enough for therapeutic pur­
poses. Both assumptions, however, are questionable.

In this review, we fill in the two gaps presented above with a 
systematic classification of protective mechanisms that include 

http://www.frontiersin.org/Immunology/
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BOx 2 | Definitions.

•	 Immune protection against pathogens: although immune responses can be 
very diverse, ranging from protection to development and repair (42), our 
focus in this article is on protection against pathogens. Consequently, our 
analysis excludes protection against immune diseases such as allergies, 
diabetes, and susceptibility to xenobiotics. We distinguish between direct, 
host-independent protection and indirect, host-mediated protection.

•	Microbiota: when talking about the “microbiota,” we broadly consider 
all the resident microorganisms (microbes, but also “macrobes” such as 
helminthes) living in or on a host, regardless of the nature of their ecolog-
ical interaction (parasitic, commensal, and mutualistic), size or taxonomy 
(parasites such as helminthes, fungi, bacteria, phages, or viruses). We also 
consider the synergistic and context-dependent effects of microorganisms.

•	Co-immunity: a form of immune defense associating components of several 
organisms.

•	Colonization resistance: host-dependent or independent resistance to 
pathogens that is induced by the microbiota. Current examples only con-
cern the local inhibition of pathogen viability, establishment, or growth, but 
here we expand this concept to include long-reaching effects as well.

•	Containment: controlled localization of microbes within a particular location 
inside the host body.

•	Disease tolerance: limitation of host’s tissue damages induced by patho-
gens, without direct pathogen elimination.

FigURe 1 | An expanded view of microbe-conferred protection. Microorganisms can protect the host in different ways, depending on the mode of protection (direct 
ecological and indirect host-mediated), the effects of protection (colonization resistance against pathogenic establishment and growth, containment of pathogens 
and their effects, and disease tolerance of pathogens while suppressing their negative effects), and the range of protection (localized or long-reaching, with the latter 
further divided into protection that is systemic or from one locale to another locale). All three aspects of protection can occur in combination. Long-reaching 
protection, for instance, involves both direct (ecological) and indirect (host-mediated) modes of protection that result in colonization resistance, containment, or 
disease tolerance effects.
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or outcompeting them (74). Pathogens, on the other hand, are 
thought to overcome colonization resistance by creating or 
exploiting new spatial­temporal niches (19). However, a niche 
is not just a nutritional environment, but any environmental 
feature relevant for colony survival and growth. Protective 
microbes can also inhibit pathogenic establishment and growth 
by disrupting pathogenic biofilms, bacterial collectives that 
undergo regular developmental “life cycles” and protected by 

synthesized extracellular polysaccharides matrices. Proteases 
released by Staphylococcus epidermidis can degrade the matrices 
of pathogenic Staphylococcus aureus biofilms (75, 76). Lactic acid 
bacteria can disrupt matrix synthesis by interfering with patho­
gen virulence genes, for instance, by decreasing the expression 
of Streptococcus mutans genes involved in matrix glucan produc­
tion (77) or modulating S. aureus gene expressions related to the 
production of intercellular adhesion polysaccharides (78).

Protective microorganisms can also influence quorum sens­
ing, the cell­to­cell communication system that allows bacteria 
to perceive information about bacterial population density  
and to regulate collectively virulence factor production and 
biofilm development (79, 80). Soluble molecules released by 
probiotics can interfere with the S. aureus accessory gene regu­
lator (agr) quorum sensing system, which regulates the switch 
between biofilm and free­floating lifestyles (81). Subtilosin, 
a protein secreted by Bacillus subtilis, also interferes with the 
quorum sensing of Gardnerella vaginalis, preventing biofilm 
formation (82). Biosurfactants are well­known anti­adhesion, 
anti­biofilm agents that can also disrupt cell­to­cell signaling 
(83, 84). Cell­bound biosurfactants of lactic acid bacteria 
disrupt the biofilms of multi­drug­resistant Acinetobacter bau-
mannii, Escherichia coli, and S. aureus (85) as well as Serratia 
marcescens strains (86).

Beyond Colonization Resistance: Containment  
and Disease Tolerance
Colonization resistance is not the only way microorganisms can 
protect the host from pathogens, as not all types of protection act 

http://www.frontiersin.org/Immunology/
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TABLe 1 | Types of colonization resistance.

Types Species effects Reference

Nutrition niche 
competition

Bacteroides thetaiotaomicron against C. rodentium Competition for carbohydrates (10)

Escherichia coli Nissle 1917 against Salmonella Typhimurium Competition for iron (51)

Escherichia coli HS and E. coli Nissle 1917 against EHEC O157:H7 Competition for carbohydrates (52)

Antagonistic inhibition E. coli Nissle 1917 against commensal and pathogenic E. coli and  
S. Typhimurium

Production of microcin (53)

E. coli against EHEC O157:H7 Production of colicin (54)

Nasal Staphylococcus lugdunensis against Staphylococcus aureus Production of lugdunin (55)

Enterococcus faecalis strain against Enterococcus Production of bacteriocin (pPD1) (56)

B. thuringiensis against Clostridia species Production of bacteriocin (thuricin CD) (57, 58)

Bacillus amyloliquefaciens against vaginosis-associated human pathogen 
Gardnerella vaginalis

Production of bacteriocin (subtilosin) (59)

Staphylococcus epidermidis peptides selectively reduce survival of 
Streptococcus pyogenes and S. aureus

Production of phenol-soluble modulins (PSM-γ  
and PSM-δ)

(60, 61)

Four bacterial consortium (R. gnavus E1, B. thetaiotaomicron LEMF4, 
Clostridium hathewayi LEMC7, and Clostridium orbiscindens LEMH9)  
against Clostridium perfringens

Collective production of consortium-dependent 
antibacterial substance

(62)

Against EHEC O157:H7 Production of short chain fatty acids (acetic,  
propionic, and butyric acids)

(63)

Against Clostridium difficile Production of secondary bile acids (44, 64–66)

Bacteroides fragilis against Bacteroidales strains in gut Type IV system delivered toxins (67, 68)

Lactic acid bacteria against a range of pathogens Lactic and acetic acid, metabolites (hydrogen 
peroxide and carbon dioxide), diacetyl, and 
bacteriocins

(69, 70)

Niche construction 
of disadvantageous 
environments

Lactic acid bacteria in vagina against bacteria and viruses Lower environmental pH with lactic acid (71)

Propionibacterium acnes suppresses the growth of S. aureus Lower environmental pH with fermentative products (72)

Anaerobic commensals against Enterobacteriaceae Low oxidation–reduction potential (73)
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by inhibiting pathogenic colonies establishment and growth. The 
role of resident microorganisms in barring entry and dispersal 
of alien populations is oftentimes ignored (87). Furthermore, 
inhibition of quorum sensing can affect pathogenicity, the effects 
of pathogens, without inhibiting bacterial viability, which, as 
a therapeutic option can avoid the selection of drug­resistant 
bacteria (88). We thus propose looking beyond colonization 
resistance to adopt a community ecology point of view that better 
understands the multiple ways resident communities can prevent 
or disrupt pathogen invasion.

In invasion ecology, residents can disrupt alien invasion by 
intervening with alien entry and diversification, by inhibiting its 
establishment or growth, by mitigating its negative impacts on 
local communities, or by preventing alien dispersal into other 
vulnerable environments (89–91) (see summary of stages of 
invasion in Table 2). A more comprehensive picture of resistance 
against pathogens must take into consideration the multiple 
stages of invasion and go beyond competition as the only way 
residents can fight against invaders.

We thus distinguish three major microbial obstacles against 
invading pathogens (Table  2; Figure  2): colonization resistance 
exclusively refers to the prevention of pathogen establishment 
of a persistent colony and population growth, containment is the 
prevention of pathogen spread into another body site, sometimes 
leading to systemic infection, and finally, disease tolerance is the 
limitation of pathogenic impact on host tissues without killing 
the pathogens.

Containment is the controlled localization of microbes and 
their effects within a particular location inside the host body. 
One example is the intestinal lumen. The epithelium barrier and 
gut mucosal immune system prevents the translocation of micro­
organisms from the lumen into the host. Mucosal­associated 
microorganisms have long been postulated as reinforcers of gut 
barriers, both directly and indirectly through the host (94–97). 
For instance, in various organisms, bacteriophages that adhere to 
mucus glycoproteins can prevent translocation of bacteria, thus 
providing a host­independent protection of mucosal surfaces 
against bacterial infections (98). Saccharomyces boulardii also 
prevents Salmonella liver translocation by directly binding to the 
pathogens (99).

Secreted factors can interfere with the translocation of 
gut pathogens into and beyond the epithelia. Supernatants 
of Enterococcus mundtii and Lactobacillus plantarum inhibit 
the invasion of L. monocytogenes into epithelial cells (100). 
A secreted, non­bacteriocin component from Escherichia coli 
Nissle 1917 also reduces the efficiency of Salmonella enterica 
serovar Typhimurium epithelial invasion and blocks invasion 
by many pathogens without eliminating them (101). Pathogen 
translocation can also be prevented by interference with patho­
gen adhesion to the epithelium (102, 103). It is well known that 
resident commensals, especially lactic acid bacteria, compete 
with pathogens for adhesion sites, for instance, the competi­
tion between Lactobacillus reuteri and enteropathogenic  
E. coli (104). Short chain fatty acids are products of anaerobic 
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FigURe 2 | Stages of pathogen invasion and the obstacles presented by 
resident communities. Colonization resistance, containment, and disease 
tolerance present obstacles to different stages of the invasion process. 
Colonization resistance disrupts the establishment and growth of pathogens, 
the containment of pathogens prevents their spread into other tissues, and 
disease tolerance suppresses the negative effects of pathogens without 
decreasing their load.
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intestinal microbiota fermentation of dietary fibers. Butyrate 
inhibits the virulence genes that enable intestinal S. enterica 
subspecies to enter the epithelium, specifically pathogenicity 
island 1 (105). Acetate from Bifidobacteria can enhance epi­
thelial cellular defense functions, inhibiting the translocation 
of Enterohemorrhagic E. coli (EHEC) shiga toxin into the 
bloodstream (106).

Disease tolerance, on the other hand, is the limitation of 
pathogen­induced damage of host tissues without elimination 
of the pathogen. Various types of processes are associated with 
disease tolerance: the neutralization or inhibition of pathogenic 
toxins, the healing process of the host, and the regulation of 
destructive inflammation and maintenance of metabolic 
homeostasis (see Box  3). While the latter two are mediated 
through the host, the first can be host­independent.

An example of host­independent disease tolerance is the abil­
ity of resident microbiota to inhibit gene expressions of toxins. 
Soluble molecules from Bacteroides thetaiotaomicron and the 
bacteria­produced short chain fatty acid butyrate, for instance, 
can inhibit EHEC shiga toxin gene expressions and pathways 
(111, 112). The quorum sensing molecule AI­2 of Ruminococcus 
obeum also downregulates the Vibrio cholera toxin operon 
(113). Secreted organic acids can mitigate pathogen toxicity in 
various ways: lactic acid from Streptococcus thermophilus inhibits 
Clostridium difficile toxin A gene expression (114) while acetic 
acid secreted by a Bifidobacteria strain inhibits EHEC shiga 
toxin production in part by lowering environmental pH (115). 
Remarkably, the growth of shiga­producing E. coli was not 
inhibited by the B. breve strain even though toxin production 
was halted.

The damaging effects of pathogens can also be diminished 
by the degradation of released toxins. Proteases secreted by a 
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FigURe 3 | Localized microbe-conferred protection against pathogen 
invasion. Alien pathogens invade the host by entering a host site, establishing 
a growing colony, exerting negative effects on the host. When conditions are 
ripe, they can spread to a different host site, in this case, through the 
epithelium or endothelium barrier. Protective microorganisms can challenge 
pathogen invasion at any of the four stages, by disrupting entry, preventing or 
destroying colony establishment and growth, by suppressing pathogenic 
effects, or by preventing spread into other tissues.

BOx 3 | The concept of disease tolerance.

Disease tolerance should be distinguished from “tolerance” or “immune tole-
rance,” a low or regulated immune reaction toward an antigen (40). It is instead 
the limitation of pathogenic damage to host tissues. The concept of disease 
tolerance has long been recognized by plant ecologists as an alternative mode 
of protection from pathogens or pests besides resistance mechanisms, yet 
only relatively recently applied to animals (107–110). Even though disease 
tolerance is currently seen as an indirect process mediated by the immune 
system to control tissue damage (40), it could be directly regulated by micro-
bes as well. The toleration of pathogens could be a cost-effective alternative 
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(e.g., when pathogen virulence is low), especially since the side effects of pro-
inflammatory immune responses are sometimes more damaging to the host 
than the infections themselves.
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probiotic Bacillus clausii strain acts against toxins from C. difficile 
and Bacillus cereus (116). Another example is a Saccharomyces 
boulardii protease that inhibits C. difficile toxin A and B (117). 
Bifidobacteria and Lactobacilli strains mitigate C. difficile cyto­
toxic effects by inactivating their secreted toxins (118, 119).

In sum, colonization resistance, containment, and disease 
tolerance are diverse effects of protective microbes against the 
spread, establishment and growth, and impact of pathogen inva­
sion. Broadening the concept of protection to include the effects 
of disease tolerance and containment allows us to consider 
pathogenicity in a wider context, taking into account the overall 
ecological process of pathogen invasion (Figure 3). The detailed 
mechanisms underlying these three types of effects—coloniza­
tion resistance, containment, and disease tolerance—may 

overlap. For instance, competition over adherence sites prevents 
the growth of biofilms that enable the establishment, growth, and 
spread of many pathogens (Figure 4).

The examples reviewed so far are direct microbe­to­microbe 
effects. We now turn to indirect forms of protection that involve 
host systems.

indirect, Host-Mediated Protection
Local microbiota­induced protection of the host can also be 
indirect, that is, mediated by host immunity and metabolism.  
We will focus on protection that involves the host immune sys­
tem. Microorganisms induce proper development of crucial com­
ponents of the host immune system, such as mucosa­associated 
lymphoid tissues (120–122). Here, we will more precisely focus 
on microbe­induced host immunity that specifically acts against 
pathogens (4, 123), guarding against both harmful (pathogens) 
and potentially harmful (“pathobionts”) microorganisms.

Colonization Resistance
Examples of host­mediated protection, especially colonization 
resistance, by gut microbiota have already been extensively 
reviewed (see Box  1). Indirect colonization resistance occurs 
when resident microorganisms induce host reactions that act 
against pathogens.

Resident microbiota sampled by pattern recognition recep­
tors can activate downstream secretion of antimicrobial pep­
tides that protect the host by killing or inactivating bacteria, 
fungi, and viruses, primarily by destroying cellular membranes 
(124, 125). These include C­type lectin Reg3­γ (38), α and β 
defensins (35, 126), and the ribonuclease angiogenin (127). The 
effects are often pathogen­ and host­specific (128–130).

Gut microbes induce the development of lymphoid tissues 
that sample and secrete Ig A into the gut lumen as well as regu­
late secretory IgA (SIgA) secretion levels (131). SIgA can help 
trap and exclude pathogens (“immune exclusion”), but when 
bound to certain microorganisms, can also selectively promote 
commensal biofilms that confer colonization resistance against 
pathogens (“immune inclusion”) (132–136). Specificity to 
microorganisms could be enhanced through a positive feedback 
loop mediated by SIgA retrotransportation (137–139).

Microbes can also induce protective pro­ or anti­inflammatory 
immune activities by altering the balance between host T­cell 
subsets (2, 140–142). By tilting the balance toward pro­inflam­
matory pathways, commensals help generate host­mediated 
attacks against pathogens. Segmented filamentous bacteria, for 
example, induce inflammatory Th17 immunity (143), leading 
to a generally protective, although context­dependent immune 
state (144). Protozoan Tritrichomonas musculis protects from gut 
S. Typhimurium infection through promotion of inflammatory 
Th1 and Th17 type immunity (145).

In the skin, microbiota could be considered an “endogenous 
adjuvant” of the skin immune system, exerting its influence 
via the release of products (such as antimicrobial peptides or 
metabolites) and/or via the modulation of innate and adaptive 
immunity without invoking inflammatory responses (146–148).

In the respiratory tract, local manipulation of the microor­
ganism composition may have profound consequences on the 
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FigURe 4 | The overlapping mechanisms of colonization resistance, containment, and disease tolerance. Colonization resistance, containment, and disease 
tolerance are distinct effects on invading pathogens, disrupting their growth and establishment, their spread, and their negative effects, respectively. Nevertheless, 
the mechanisms underlying these effects can overlap, deployed at different times and stages with different outcomes. Antimicrobial peptides, for instance, prevent 
the translocation of microorganisms as part of the mucus barrier and disrupt the establishment and growth of pathogens. Another example is the disruption of a 
pathogenic biofilm, which may destroy the establishment of the colony as well as prevent it from adhering and translocating gut lumen.
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capacity of the host to mount protective responses (149). For 
instance, intranasal inoculation of mice with live or heat­inacti­
vated Lactobacillus spp. and non­pathogenic Listeria spp. protects 
against secondary lethal infection with the virulent pneumonia 
virus by suppressing virus­induced pro­inflammatory cytokines 
and viral load (150).

Beyond Colonization Resistance: Containment  
and Disease Tolerance
Microbes can also indirectly protect the host by containing 
pathogens within the gut and lung lumen, as breaching of the 
epithelial layer triggers systemic inflammation. New develop­
ments shed light on the intimate relation between microorgan­
isms and barrier functions. The gut epithelium barrier is fortified 

by maternal microorganisms before birth (151). After exposure 
to environmental microbes, microorganisms strengthen and 
protect the barrier (152). In vitro treatment of Saccharomyces 
boulardii, for instance, prevents Bacillus anthracis toxins from 
destroying the integrity of epithelium cells and the tight junc­
tions between them (153). In antibiotics­treated mice, transloca­
tion of bacteria and an increase in inflammatory responses can 
be observed (154, 155).

The separation of host and microorganism with a mucus 
layer is in part regulated by resident microorganisms. The 
mucus layer effectively separates luminal components, especially 
microorganisms, from the epithelium. The constant outgrowth 
of mucus pushes microorganisms out and provides a medium 
that concentrates antimicrobial elements such as antimicrobial 
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FigURe 5 | Long-reaching microbe-conferred protection against pathogens. The multiple pathways of long-reaching protection include: local-to-local protection 
against pathogens at a distal site by protective microorganisms at another site (e.g., gut to lung, upper respiratory tract to lower respiratory tract, and small intestine 
to large intestine) (left), local-to-systemic protection from one site to pathogens across the body (e.g., systemic protection from gut microbiota) (center) and 
systemic-to-systemic protection by microorganisms that are distributed systemically (e.g., protective viruses or bacteria that circulate through the blood stream or 
the lymphatic system, or reside in multiple locations) (right).
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peptides and SIgA. In the small intestine, Muc2 mucin, the back­
bone of mucus in mice, requires bacterial cleavage of a proteolytic 
enzyme to detach mucin from secreting goblet cells; in the 
colon, “sentinel” goblet cells activated by bacterial components 
quickly respond by extruding and releasing an explosion of Muc2  
(156, 157). Helminthes such as Trichuris muris can restore 
the Nod2­deficient abnormal goblet cells of mice through  
TH2­mediated immunity, thereby inhibiting the colonization of 
pro­inflammatory Bacteroides species (158).

Localized protection is also achieved by disease tolerance. 
In the gut, Bacteroides fragilis affects systemic T­cell responses 
through the action of the bacterium­derived polysaccharide 
A, which protects against pathobiont H. hepaticus colitis via 
the production of anti­inflammatory IL­10 by CD4+ T  cells 
and the promotion of regulatory T cells (159). Moreover, this 
protection has no effect on pathogen fitness or on population 
load in the intestine. SIgA can neutralize intracellular toxins 
and viruses, as well as directly suppress bacterial virulence 
mechanisms (133, 135).

In sum, resident microbiota can protect the host by locally 
inhibiting the establishment and growth of pathogens, mitigat­
ing pathogen­induced damage to the host, and preventing the 
spread of microbes to other sites. Local protection is ensured by 
mechanisms that are directly targeted against microorganisms or 
indirectly through the host immune system.

LONg-ReACHiNg PROTeCTiON

We now turn to protective microbes that help the host from 
a distance, by either inducing systemic protection (that is,  
a protection realized in the entire organism) or protection at a 
particular remote site. In host­microbiota symbiosis, the habitat 
of the microbial communities is a changing and responsive liv­
ing being. Since host microbial communities are connected by 
metacommunity dispersal and through the internal sensors and 
networks of the host, protective microbes can have potentially far­
reaching and integrated consequences. A more comprehensive 
picture of protective microbes requires a global understanding of 
the ecological and physiological—e.g., metabolic, immune, and 
neuroendocrine—interactions.

However, our understanding of long­reaching protection 
is at its infancy. Whereas pathogens can migrate through the 
blood from one organ to another or travel across microenviron­
ments within an organ system (160–162), there is little evidence 
that commensals can do the same. Here we review examples of 
long­reaching protection (see Figure 5).

Systemic Protection
The direct, host­independent systemic effects of microorgan­
isms are poorly illustrated in the literature, and as far as we 
know, there are no mammalian examples where microorganisms 
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can confer direct systemic protection across microhabitats. 
Nevertheless, the killing capacities of some microorganisms 
present promising therapeutic options as “live antibiotics.” 
For example, the predatory proteobacteria Bdellovibrio bac-
teriovorus, when injected in a zebrafish model infected with  
S. flexneri, preys and eliminates the human pathogen in the 
whole animal (163).

Indirectly, however, the evidence is much more promising as 
microorganisms have far­reaching immunomodulatory effects 
on mucosal and systemic immunity (164, 165). Microbiota 
modulation of myeloid cells preconditions neutrophils induces 
macrophage killing capacities and calibrates macrophages and 
dendritic cell responsiveness to infections (166). Microbial­
regulated hematopoiesis can fight against systemic infections 
such as L. monocytogenes (167). In a mice model, injection 
of chitin from the fungal commensal S. cerevisiae increases 
resistance to systemic infection with C. albicans by inducing 
monocyte activity via a fine modulation of TNF­α and IL­6 
(168). Without the microbiota, mononuclear phagocytes fail to 
prime NK cells that normally trigger systemic antiviral immune 
responses in non­mucosal lymphoid organs (169). Recent studies 
show that maternal microbes shape offspring immunity before 
birth. Bacterial products in mothers induce genetic expression 
of antimicrobial peptides in offspring epithelium and shape the 
components of their innate immune systems (170) while damp­
ening their adaptive immune responses (171). In fact, the success 
of vaccination (the injection of microbe­derived products in one 
site that protect against infections in another site) shows that 
long­distance immune protection is possible. For instance, the 
intranasal administration of a vaccine against HSV­1 induces 
production of specific antibodies in the genital tract (172).

While current evidence is still not clear­cut, it is nevertheless 
important to conceptually distinguish between various origins 
of systemic protection. In local­to­systemic protection, micro­
organisms at a single location, such as the gut microbiota, can 
confer protection through systemic immune responses or leave 
the local site and disseminate to other regions. In systemic­to­
systemic protection, the protective microorganisms are already 
distributed systemically, exerting system­wide localized effects. 
In particular, we discuss how microbiota, their fragments, or 
by­products can reach distal sites through the host circulatory 
systems.

Local to Systemic Protection
Microbiota at one location can induce systemic colonization 
resistance in the host. Composition of the gut microbiota 
modulates the severity of malaria, where a fecal transplant 
from resistant mice transfers the resistance to germ­free 
mice by elevating humoral immune responses. The resistant 
gut microbiota are characterized by an increased abundance 
of Lactobacillus and Bifidobacterium (173). In humans, gut 
microbe E. coli O86:B7 induces antibodies that target plas­
modium sporozoites, conferring a protective cross­response 
against malaria transmission (174).

Systemic innate and adaptive immune responses to Toxo-
plasma gondii infection in humans rely on the indirect stimula­
tion of dendritic cells by normal gut microflora (175). Several 

studies have shown that gut microbiota also have the potential 
to reduce systemic viral infection and disease (176). A clini cal 
trial observed a positive effect of a Lactobacillus strain as an 
immune adjuvant for live­attenuated H3N2 influenza vaccine 
in healthy adults, with higher seroconversion rates in patients 
treated by probiotics (177), suggesting a non­specific immune 
response activation. In HIV infection, higher abundance of the 
gut Lactobacillales order in patients is positively associated with 
CD4+ T  cell count and negatively associated with viral load, 
indicating that bacteria from Lactobacillales could in some 
direct or indirect way modulate the infectivity or pathology of 
HIV infection (178).

Finally, as a basal stimulant, bacteria can prime activation 
threshold of antiviral innate immunity against systemic viruses 
(179). Antibiotic­treated mice before lymphocytic choriomenin­
gitis (LCMV) infection elicited an impaired innate and adaptive 
immune response to LCMV infection, and an increased mortal­
ity after influenza infection (179).

Systemic to Systemic Protection
Microbiota or its components that are normally distributed 
across the host system can also induce system­wide coloniza­
tion resistance in the host. Recently, the idea that viruses can 
be mutualistic, and in particular can offer protection against 
pathogens, has gained popularity (180–182). A healthy human 
is infected by more than 10 permanent chronic systemic viruses, 
and this number may in fact be far higher (182). Two cases show 
that viruses induce in their hosts a higher basal immunity that 
explains normal immunity as well as responses to novel microbes. 
First, baseline activities can be upregulated and maintained by 
viruses in latent states, conferring protection against subsequent 
infections (176, 183). In mice, gammaherpesvirus 68 or murine 
cytomegalovirus (CMV) (which are models for the human 
pathogens Epstein–Barr virus and CMV, respectively) in dor­
mancy confers symbiotic protection against bacterial infection 
to L. monocytogenes and Y. pestis in an antigen­independent 
way, involving interferon production and macrophages systemic 
activation (184, 185).

In a clinical study, HIV patients co­infected with non­path­
ogen GB flavivirus showed reduced mortality rate, suggesting 
the possibility of an inhibition of HIV replication due to this 
flavivirus (186). HIV replication was reproducibly inhibited 
in cultures of peripheral­blood mononuclear cells by GBV­C 
coinfection (187). Patients with GBV­C infection present an 
increased proportion of naive T cells and a reduction in T­cell 
activation and proliferation that could increase disease toler­
ance and finally the survival among HIV infected individuals 
co­infected with GBV­C (188).

Circulations and Protective Effects
It is generally assumed that microorganisms are pathogenic 
when spread throughout the system while non­pathogens are 
contained within the gut and lung lumens and outside of skin 
surfaces. Indeed, bacteremia and endotoxemia, i.e., the spread­
ing of bacteria or bacterial structural components through blood 
circulation, respectively, are usually pathological. For instance, 
intra­uterine infection during pregnancy in mice can be caused 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Chiu et al. Protective Microbiota: From Localized to Long-Reaching Co-Immunity

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1678

by pathogens that do not belong to vaginal microflora, but to oral 
microorganisms via hematogenous transmission (189).

However, non­pathological, physiological blood circulation 
of microorganisms or microbial fragments occurs in healthy 
subjects (190–192). Substantial numbers of live gut species have 
also recently been found living in the mesenteric lymph nodes 
and systemic lymphoid organs under normal situations (164). 
In this section, we thus consider the possibility that circulation 
of bacteria or their metabolic compounds can constitute a long­
reaching route of protection. Even though a long­reaching seed­
ing through the bloodstream and lymphatic systems has never 
been demonstrated, it is a possible route protective microbes 
could take.

The involvement of circulating long­reaching mechanisms in 
host protection is only a hypothesis at this stage, but investigating 
this potential long­reaching influence undoubtedly constitutes 
a very promising avenue for future research, paving the way to 
targeted experiments.

Bacteremia and Endotoxemia
Bacteremia is the dissemination of bacteria into the circulatory 
system. Under normal conditions, Gram­negative bacteria in the 
gut can disseminate systemically, inducing system­wide produc­
tion of IgG that provide cross­protection against Gram­negative 
bacteria infections such as E. coli and Salmonella (193).

Recent data suggest a long­distance disease tolerance by 
challenge­induced translocation of gut microbiota to multiple 
distal sites. In mice, infection with the respiratory pathogen  
B. thailandensis (intranasally) or with the pathogen S. Typhimurium 
(orally) leads to skeletal muscle wasting. Gut commensal E. coli 
O21:H+ antagonizes muscle wasting during these infections, 
with no changes in inflammation profile but sustained insulin­
like growth factor 1 signaling in skeletal muscle. This protection 
was associated with the translocation of E. coli O21:H+ from the 
intestine to white adipose tissue and occurred without a nega­
tive impact on B. thailandensis or S. Typhimurium fitness. This 
beneficial effect promoted both the health of the host and fitness 
of E. coli O21:H+ (194).

Endotoxemia occurs when bacterial by­products circulate 
into the bloodstream. It has long been known that circulating 
lipopolysaccharides, a membrane component of Gram­negative 
bacteria, has potentially beneficial immunomodulatory effects 
(195). Lipopolysaccharides endotoxemia is increased by nutri­
tional factors (196) and modulated by changes in gut microbiota 
(197). The mechanisms of host­mediated modulation of bacte­
remia and endotoxemia (primarily of lipopolysaccharides) are 
currently being explored under the context of high­fat intake or 
obesity, which weaken gut integrity leading to increased pen­
etration of gut microbes or their products into the circulation. 
The uptake and transportation of lipopolysaccharides is active, 
reaching from the gut to distant tissues like adipose tissue. After 
lipoprotein binding and transportation to the lymph and across 
endothelial barriers, they interact with macrophages and trigger 
the secretion of pro­inflammatory cytokines (198).

Microbiota­derived peptidoglycan translocated from the 
gut to neutrophils in the bone marrow systemically primes the 
innate immune system, enhancing the elimination of two major 

pathogens, S. pneumoniae and S. aureus via the pattern recog­
nition receptor nucleotide­binding, oligomerization domain­
containing protein­1 (199).

Finally, another active long­reaching route is the gut–liver 
axis, where influx of microbial molecules derived from genetic 
inflammasome deficiency­associated dysbiosis, passing in portal 
circulation, can trigger liver inflammation through TLR4 and 
TLR9 activation. In the case of preexisting lipid accumulation 
in hepatocytes, this mechanism could lead to non­alcoholic 
steatohepatitis (200).

Metabolic Compounds
Naïve mass spectrometry­based metabolomics studies com­
paring blood metabolic profiles between germ­free mice and 
conventional animals show a drastically different blood meta­
bolic profile, with a drug­like metabolic response of the host to 
metabolites (i.e., degradation of xenobiotic molecules by host’s 
enzymes) generated by the microbiome (201).

Gut microbiota produce and regulate multiple compounds that 
can reach distant organs via systemic circulation, and influence 
host physiology (202). More precisely, metabolic compounds 
produced or transformed by gut microbiota may modulate host 
immunity in distant sites. In particular, short chain fatty acids, 
especially butyrate, seem to exert broad anti­inflammatory 
activities by affecting immune cell migration, adhesion, cytokine 
expression, as well as cellular proliferation, activation, and 
apoptosis through the activation of signaling pathways (NF­κB) 
and inhibition of histone deacetylase (203). Moreover, epithelial 
permeability can be modulated by the microbiota: blood­brain 
barrier permeability is increased in germ­free mice and rein­
troduction of a healthy microbiota, of short chain fatty acids 
producing bacteria or direct short chain fatty acids administra­
tion can reverse this effect, up­regulating tight junction proteins 
expression (204). This mechanism could be involved at the host­
environment interface, modulating pathogen susceptibility.

Fungi could also play a crucial role in long­reaching immune 
modulation. Digestive Candida­produced prostaglandin E2, an 
active lipid compound with hormone­like effects, can reach the 
lungs through the bloodstream, act on lung macrophages and 
promote allergic inflammation, thus suggesting a hypothetical 
long­reaching route that could be protective (205).

Local to Local Protection
Some studies suggest that local microbiota could modulate 
distant local conditions, which may confer long­term protection 
to the host. On the one hand, few studies have highlighted a long­
reaching protective role of specific local microbiota to specific 
local sites, and with poor mechanistic understanding. On the 
other hand, many papers have brought out various mechanisms 
that could involve distant modulations of immune conditions, but 
without a protective effect. Time has perhaps come to combine 
these approaches, to determine how the microbiota located in a 
given organ could have a protective effect on another organ (i.e., 
a local­to­local protection, but without a demonstrated systemic 
effect). Even though in some cases, later evidence might show 
that a local­to­local effect is actually a local­to­systemic effect, 
the conceptual distinction between a highly targeted mechanism 
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versus a system­wide mechanism can guide research questions 
about the underlying mechanisms and the scope of protective 
effects. We explore two possible routes of long­reaching protec­
tion: the host­mediated gut–lung axis and direct interactions 
down the respiratory and gastrointestinal tracts.

Indirect, Immune-Mediated Protection along the 
Gut–Lung Axis
To the best of our knowledge, the only explicit long­reaching 
protective effects from one local site to another described in 
the literature are the immune­mediated relation between the 
gut microbiota and lung infections (203, 206). Klebsiella pneu-
moniae lung infection has been extensively studied as a model 
of pulmonary infection. Germ­free mice infected with K. pneu-
moniae are drastically susceptible to bacterial infection in an 
IL­10­dependent manner, with an increase of bacterial growth 
and dissemination. Interestingly, activating microbial pattern 
recognition receptors helps fight against K. pneumoniae infec­
tion in the lungs (207, 208). Another example is tuberculosis. 
Helicobacter pylori infection is suspected to modify the clinical 
outcomes of M. tuberculosis infection, with the presence of  
H. pylori associated with a lower rate of tuberculosis infection 
(209), but increased tuberculosis severity (210). In this case, a 
microbe at one location (H. pylori in the stomach) could modu­
late long­distance immunity at yet another location (in the lungs) 
in response to infection.

Antibiotic­treated mice exhibit impaired innate and adaptive 
mucosal immune responses to influenza infection, with increased 
damages and host mortality (179). A decrease in the number of 
gut commensals via treatment with a broad­spectrum antibiotic 
resulted in blunted T­cell and B­cell responses to an intranasal 
infection with the A/PR8 strain of influenza (211). Activation of 
Toll­like receptors restored the immune response in antibiotic­
treated mice through inflammasome­mediated induction of 
interleukins such as IL­1β and IL­18. The authors suggest that 
either the microbial products can diffuse systemically, or activa­
tion of the inflammasome does not need to occur at the site of 
infection.

In an E. coli pneumonia model, antibiotic depletion of com­
mensals in mice also causes a drastic bacterial burden both 
in lungs and blood, with a significant increase of mortality. 
Lip opolysaccharides supplementation during antibiotherapy 
reversed these effects, suggesting a distal action of commensal 
microbes through toll­like receptors (212). Deleterious effects 
of antibiotic depletion have been shown in a mouse model of 
Streptococcus pneumoniae infection, reversed by fecal microbiota 
transplantations that enhance macrophage functions in the pri­
mary alveolar (213).

Gut microbiota also play a role in expanding and maintaining 
viral­specific memory T­cell populations in the lungs. In a mouse 
model of MCMV­associated lung disease, the frequency of virus­
specific CD8+ T cells in the MCMV­infected lungs of germ­free 
mice was restored by fecal bacteria from specific pathogen­free 
mice, likely through cross­activity between gut microbiota pep­
tides and epitopes of MCMV­specific memory T cells (214).

Furthermore, mice challenged with pulmonary staphylococ­
cal infection but lacking segmented filamentous bacteria in 

their gut microbiota showed more severe infection with higher 
bacterial load and mortality, associated with diminished lung 
concentration of Th17 immune effector cells. Reintroduction of 
segmented filamentous bacteria was sufficient to restore protec­
tive effect (215). Antibiotics also significantly decreased lung 
Th17  cell numbers during pulmonary acute fungal infection, 
restored by segmented filamentous bacteria colonization (216).

Direct, Ecological Protection through Digestive 
Flows and Air Circulations
Even though direct and host­mediated causes of microbial pro­
tection are oftentimes difficult to distinguish and intertwined at a 
local scale, the direct versus indirect distinction can help identify 
ecological versus physiological routes of influence at a global 
scale. Current evidence indicates that long­distance protection 
is mostly mediated by the host, but ecological routes are also 
available when we consider the way fluids and air flow through 
the host. Many organs are interconnected through airways and 
liquid channels. We hypothesize microbe­induced protection of 
downstream conditions in the respiratory tract and the gastroin­
testinal tract.

The respiratory tract ecosystem consists of the upper and lower 
respiratory tracts, with the latter further divided into trachea, 
bronchi, and bronchioles. The gastrointestinal tract ecosystem 
is divided into the stomach, small intestine, and large intestine, 
with secretions that come from associated organs such as the gall 
bladder, liver, and pancreas. It is possible that microbial com­
munities in one patch of the lung and gut meta­communities 
can protect the host by influencing the entry and growth of 
pathogens in a downstream patch.

Bronchoalveolar lavage fluid samples of the lungs reveal a 
substantial microbiota community with multi­kingdom interac­
tions due to air­borne fungi (217). The oral microbiota are the 
physiological source of lower respiratory tract microorganisms, 
predominately acquired through microaspiration and especially 
during sleep (218). It is also the source of disease­inducing 
pathogens in the lungs, especially pneumonia and cystic fibrosis. 
The sampled microorganisms of a healthy lung consist primar­
ily of transitory populations determined by a steady balance of 
incoming migration and outgoing expulsion through physi­
ological clearance or immune responses. In disease states, such 
as cystic fibrosis, regional growth conditions support the settled 
colonization and expansion of microbial communities (219, 220). 
The respiratory tract ecosystem is thus an excellent example of 
dominance in dispersal processes over processes of establishment 
and growth, similar to the metacommunity principles governing 
islands (220–224).

Microbial communities in the upper respiratory tract (e.g., 
oral cavity) are likely to confer resistance against the colonization 
and growth of pathogens in the lower respiratory tract. There is 
an association between oral dysbiosis and lower respiratory tract 
infections such as pneumonia. The absence of normal residents 
in the upper respiratory tract may thus contribute to the over­
whelming migration of residential or opportunistic pathogens to 
the lower respiratory tract (225). Pathogen “blooms” in the lower 
respiratory tract generally occur under two conditions: when 
there is a positive influx of microorganisms over those eliminated 
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or when altered local conditions favor pathogenic growth [see 
adapted island biogeography model in Ref. (223), and review in 
Ref. (224)]. We thus suspect that a loss of colonization resistance 
of upper respiratory tract residential microbiota may be the 
reason for lower respiratory tract microbial establishment and 
growth, resulting in disease.

Another possible downstream protective effect is in the 
gastrointestinal tract. The habitat of the gastrointestinal tract is 
similar to a river ecosystem (226). The intestine receives inputs 
from the source (nutrients and acids from the stomach) and 
associated organs (liver, gall bladder, and pancreas) and the 
flow slows down at the colon, which is dominated by greater 
bacterial loads and the accumulated nutrients and metabolites 
from upstream.

Secondary bile acids inhibit the germination and growth 
of C. difficile in the colon. Bile acids are released and mostly 
reabsorbed upstream in the small intestine, decreasing greatly 
in concentration further downstream (227, 228). However, small 
intestinal microbiota can inhibit re­absorption by deconjugating 
bile acids, thus promoting their excretion down and out of the 
large intestine (229). Downstream secondary bile acids in the 
colon can thus depend on upstream commensals. Indeed, anti­
biotic treatment that decreases colonization resistance against 
C. difficile also decreases bile acid amounts in fecal matter (64), 
which are both restored by fecal matter transfer (65). Upstream 
commensals can thus possibly protect the host from downstream 
pathogenic growth by releasing metabolite inhibitors.

Microbes can protect the host by regulating the migration 
flows between the lung “island” communities and by influencing 
“downstream” communities in the gut. The analogy between lung 
and gut ecosystems to island and river ecosystems, respectively, 
point to new perspectives. These are clearly local­to­local effects, 
although not necessarily organ­to­organ effects (they concern 
“subparts” of organs rather than organs per  se). Yet they point 
to the possibility of organ­to­organ protective effects, and offer 
insights about how these effects could be investigated in the future. 
It is worth investigating whether migrations between other sites, 
for instance, the upper respiratory tract and the stomach (218), 
or direct dispersal between oral and vaginal microbiota via sexual 
behavior, also exhibit upstream­to­downstream colonization 
resistance against infections.

CONCLUDiNg ReMARKS AND 
PeRSPeCTiveS

Previous studies have focused on the local colonization resist­
ance conferred by microorganisms at various sites within the 
host. Here we examined protective effects beyond colonization 
resistance through both direct and indirect modes of protection. 
We highlighted how common types of ecological interactions 
give rise to the resistance and tolerance against harmful microor­
ganisms as well as the containment of microorganisms, and how 
the innate and adaptive immune systems are activated by protec­
tive microbes, leading to resistance, tolerance, or containment 
toward pathobionts and pathogens. A better understanding of 
the range, mode, and effects of microbiota­mediated protection 
is crucial for therapeutic designs (Box  4). Although evidence 

for long­reaching microbe­conferred protection is scarce, we 
examined possible ways protective microbes can reach beyond 
their local sites, in part by investigating how pathogens spread 
their influence across the host.

Why is there so little evidence for long­reaching microbial 
protection? First, evidence for long­reaching protection is lim­
ited in part because microbiome research is still in its infancy. 
Therefore, despite growing interest in “protective microbes,” only 
very few detailed studies are available. Second, many protective 
mechanisms are localized actions. Classical dose­dependent 
toxicological effects (for instance, bacteriocin production) 
are unlikely to be involved in long­reaching mechanisms, as 
dilution volume is considerably higher in comparison with the 
production of local compounds. Third, technical limitations 
likely result in the underestimation of long­reaching protective 
microbes. Long­reaching effects rely probably more on low or 
even very low concentration mechanisms, with threshold effects 
(i.e., quorum­sensing molecules) that are extremely difficult to 
identify with classical shotgun metabolomics studies, thus requir­
ing targeted studies. Another difficulty is the transitory release of 
long­reaching microbes and signals. For instance, bacteremia or 
fungaemia are brief events that are difficult to detect. Last, there 
are very few within­host ecological analyses in animal models. 
Yet the processes that regulate lung microbiota, for instance, show 
that we cannot understand respiratory disease without a dynamic 
ecological point of view.

We suggest a form of “co­immunity” between the host and 
microbiota. The host is protected against pathogens both by 
its own immune system and by the direct or indirect action of 
microorganisms, not only at a local scale but also between local 
communities and systemically.

It is generally assumed that immunity is the immunity of 
one organism, and that this immunity is bounded by the con­
ventional frontiers of that organism (e.g., its skin). Yet it is now 
well­established that several immune phenomena transcend the 
boundaries of organisms (234). We suggest considering all these 
phenomena as instances of a more general process that we dub 
“co­immunity” (see also Box 2). We define co­immunity as a form 
of immune defense associating components of several organisms 
(it is, therefore, a “multi­organism” or “cross­organism” immu­
nity). Co­immunity can include the protection of the young 
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by maternal antibodies (235), microbiota­mediated immunity 
(as detailed in the present review), but also population­level 
phenomena such as social immunity in insects (236), and “herd 
immunity” (in particular through vaccination) (237, 238) in 
humans and cattle.

Rohwer and colleagues use the term “non­host derived 
immu nity” to describe bacteriophage­mediated immunity (98). 
But this term also applies to immunity mediated by other com­
ponents of the microbiota (not just bacteriophages) and, even 
more importantly, all these correspond to subcases of the wider 
category of what we call here “co­immunity.” This broad perspec­
tive helps us realize that the idea that immunity can transcend 
traditional boundaries of organisms is not as surprising as it 
might seem at first sight and is in fact certainly a widespread 
phenomenon in nature.

At the same time, the concept of co­immunity opens up 
many fascinating questions. One key question is to determine 
in which circumstances conflicts may arise between differ­
ent components, and whether these conflicts are regulated.  
A microorganism that was protective at one moment can become 
detrimental to the host at another moment, for instance, in 
immunocompromised states (239). Similarly, maternal antibod­
ies are generally protective for the infant, but they can inhibit 
the infant’s response to vaccination (240). Overall, a crucial 
advantage of the concept of co­immunity is that it reminds us 
that immunity should always be understood as a multi­actor 
and dynamic phenomenon.
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