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Mathematical modeling and computer simulations have become an integral part of
modern biological research. The strength of theoretical approaches is in the simplification
of complex biological systems. We here consider the general problem of receptor–ligand
binding in the context of antibody–antigen binding. On the one hand, we establish a
quantitative mapping between macroscopic binding rates of a deterministic differential
equation model and their microscopic equivalents as obtained from simulating the
spatiotemporal binding kinetics by stochastic agent-based models. On the other hand,
we investigate the impact of various properties of B cell-derived receptors—such as
their dimensionality of motion, morphology, and binding valency—on the receptor–ligand
binding kinetics. To this end, we implemented an algorithm that simulates antigen
binding by B cell-derived receptors with a Y-shaped morphology that can move in
different dimensionalities, i.e., either as membrane-anchored receptors or as soluble
receptors. The mapping of the macroscopic and microscopic binding rates allowed us to
quantitatively compare different agent-based model variants for the different types of B
cell-derived receptors. Our results indicate that the dimensionality of motion governs the
binding kinetics and that this predominant impact is quantitatively compensated by the
bivalency of these receptors.

Keywords: agent-based model, ordinary differential equations, antibody–antigen binding, receptor–ligand interac-
tion, dimensionality of motion, binding valency

1. INTRODUCTION

In recent decades, computational biology has developed into an autonomous scientific discipline
that has become indispensable for contemporary biological research. Major contributions of com-
putational biology comprise: (i) directing studies by providing insights that cannot otherwise be
obtained in wet-lab experiments, (ii) advancing biological research toward a quantitative science
through large-scale computations, and (iii) generating experimentally testable hypotheses through
simulations of mathematical models.

The strength of mathematical modeling is actually in the simplification of complex processes
by focusing on the most relevant aspects of a system. The art of modeling is in the appro-
priate choice of a mathematical approach that describes all existing experimental data and still
can make relevant predictions. At this point a reasonable compromise has to be made between

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 16921

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01692
https://creativecommons.org/licenses/by/4.0/
mailto:thilo.figge@leibniz-hki.de
https://doi.org/10.3389/fimmu.2017.01692
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01692&domain=pdf&date_stamp=2017-11-30
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01692/full
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01692/full
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01692/full
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01692/full
http://loop.frontiersin.org/people/230925
http://loop.frontiersin.org/people/29493
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Lehnert and Figge Agent-Based Model of Receptor–Ligand Interaction

the level of system complexity that is transferred into the math-
ematical model and the feasibility of simulations with regard to
computational resources.

Models based on ordinary differential equations (ODE) are
presumably most frequently applied in biological research, even
though this modeling approach is only valid if the system under
consideration consists of large amounts of constituents, e.g.,
molecules, that are homogeneously distributed or well stirred in
some spatial environment (1). This is because ODE models do
not explicitly account for any spatial aspects of a system and
changes in system variables, e.g., concentrations of molecules, are
consequently described by functions of time that are continuous
and deterministic. However, these assumptions, which may be
typically appropriate for chemical systems, are for biological sys-
tems at best applicable from a macroscopic point of view. In these
macroscopic models the biological processes are characterized by
two specific types of parameters, which are referred to as rates
or reaction rates. Rates characterize unimolecular processes that
occur spontaneously and have unit 1/time. Reactions involving
two types of molecules, i.e., bimolecular processes, are character-
ized by reaction rates with unit 1/(concentration× time). Typical
experimental assays to determine these macroscopic rates for uni-
and bimolecular processes are the adhesion frequency assay and
the surface plasmon resonance assay (2). The advantage of ODE
models is that they are based on a minimal set of parameters
and can be formulated with relative ease (1, 3), which makes
them belonging to the so-called simple modeling approaches (4).
Deterministic ODE models may be extended to account for the
stochasticity of chemical reactions in solution. Various numer-
ical schemes have been introduced by Gillespie to sample the
underlying master equation for the probability to find the system
in a particular state at a given time (5). These are referred to
as the direct method (6) and the first reaction method (7) and
were later advanced for computational speed-up with the next
reaction method by Gibson and Bruck (8). Albeit more detailed
than deterministic ODE models, all these approaches have in
common that a macroscopic viewpoint on the system is taken.

In contrast, agent-based models (ABMs), which belong to the
so-called detailed modeling approaches (4), consider biological
systems from a microscopic viewpoint by taking details of their
individual constituents in space and time into account. A sys-
tem’s constituents, e.g., molecules and/or cells, are represented by
agents in the model and their motion in a specific spatial envi-
ronment as well as their stochastic interactions with other agents
are monitored in the simulations. In this microscopic modeling
approach, all reactions are performed with a specific probability
per time-step. This implies that not only the rates for unimolecular
processes are measured in unit 1/time, but also the reaction rates
for bimolecular processes, because the microscopic reactions are
between two single molecules and not between concentrations of
molecules as is the case for macroscopic ODE models. The micro-
scopic rates for molecular interactions could be experimentally
measured using thermal fluctuation assays (2). However, the level
of detail represented byABMcomes at the price of a relatively large
number of model parameters, which may be unknown and/or
even inaccessible to experiment (1, 9), and simulations of ABM
are typically associated with a high computational load (10, 11).

In this study, we focus on specific receptor–ligand (RL) bind-
ing, i.e., antibody–antigen binding as a central part of the adap-
tive immune response, and model this process in a comparative
fashion by ODE models and by ABM. Binding between receptors
and ligands represents an essential process in the immune system
by which important information is transferred. For example, in
the process termed opsonization, pathogen-derived antigens can
be neutralized and labeled by antibodies for removal from the
organism. Antibodies are soluble molecules that play a key role
in the humoral response of adaptive immunity (12), because they
can bind antigens with high affinity and can provide life-long
protection against specific antigens. Of interest, antibodies do also
exist as membrane-anchoredmolecules on B lymphocytes and are
then referred to as B cell receptors (BCR). Binding of cognate
antigen by BCR activates naïve B cells in lymphoid organs, such
as spleen and lymph node (13), and this may initiate a germinal
center (GC) reaction for antibody affinitymaturation (12). During
aGC reaction, B cells are proliferating andmutating their BCR fol-
lowed by the selection of B cells with BCR that have high affinities
to presented antigens. B cells with BCR that successfully accom-
plished the selection procedure differentiate into plasma cells that
produce large amounts of these BCRas soluble antibodies. TheGC
reaction has been the subject of various interdisciplinary studies
combining experimental and theoretical investigations (5, 14–17).
In particular, it could be shown that the GC reaction is not only
initiated by antigen binding to BCRonB cells, but that its termina-
tion is as well regulated by the high-affinity antibodies produced
in soluble form (18). Taken together, antibodies represent a prime
example for this study because of three reasons: (i) they exist as
soluble as well as membrane-anchored receptors, (ii) they have
a peculiar Y-shaped morphology that raises the question on its
impact on RL binding as compared to spherically shaped recep-
tors, and (iii) they have two binding sites and can bind antigen
mono- or bivalently. The computational biology approach that is
pursued in this study allows investigating the relative importance
of receptor morphology, binding valency and dimensionality of
motion that depends on receptors being soluble or membrane
anchored on a cell. Applying different modeling approaches, e.g.,
ODE models and ABM, in a comparative fashion enables a quan-
titative mapping of the macroscopic and microscopic viewpoint
on RL binding dynamics.

2. MATERIALS AND METHODS

2.1. Microscopic Modeling of
Receptor–Ligand Binding
Agent-based models (ABMs) are widely used in computational
biology to simulate processes at the microscopic scale (9–11,
19). The individual constituents of the biological system under
consideration are represented as agents that canmove in a defined
spatial environment and can interact with each other according
to specific rules. We studied receptor–ligand (RL) binding and,
in particular, the impact of specific receptor properties on the
dynamics of the binding process. While ligands were modeled
as molecules in solution with spherical shape, we considered
receptorswith differentmorphologies, i.e., being either spherically
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shaped (O) or Y-shaped (Y), and in settings with different dimen-
sionality of motion, i.e., receptors in solution (SOL) or membrane
anchored (MEM) on the surface of a cell. The four combinations
of receptor properties are depicted in Figures 1 and 2, and give
rise to four different ABM variants. These are denoted by their
receptor properties, respectively, as O-SOL (see Figures 1A and
2A), O-MEM (see Figures 1B and 2B), Y-SOL (see Figures 1C
and 2C), and Y-MEM (see Figures 1D and 2D). Simulations of
the different ABM variants are shown in Videos S1–S5 in Supple-
mentary Material. While in what follows we describe the general
setup of the ABM, a detailed overview of the model parameters
and of their corresponding values is provided in the Table S1 in
Supplementary Material.

2.1.1. Model System
In this study, we considered the model system of a B cell with
Y-shaped B cell receptors (BCR), because these receptors do as
well exist in a soluble form as antibodies. In the ABM, BCR
with their Fab-fragments as binding sites are represented by a
cylindrical stem with two cylindrical arms and spherical binding
regions at the distal sides, which are hereafter referred to as binding
spheres. A schematic representation of the BCR in soluble and
membrane-anchored form is shown, respectively, in Figure 2C for
ABM variant Y-SOL and in Figure 2D for ABM variant Y-MEM.
The binding spheres on top of each arm represent the active

binding sites of the BCR, whose surface areas are estimated from
the size of Fv-regions, i.e., the variable parts of the BCR Fab-arms.
Thus, the binding spheres implicitly account for the attractive
short-range interactions between the binding sites of receptors
and ligands (20–23). For the reason of comparison between BCR
and spherically shaped receptors, we set the values of binding radii
such that the effective area of all binding spheres are of compa-
rable size, as can be inferred from the relative receptor sizes in
Figures 2A,B for ABMvariants O-SOL andO-MEM, respectively.
For the same reason, when comparing Y-shaped and spherically
shaped receptors, we impose the condition that receptors can only
bind one ligand at a time. In addition, we also compared Y-shaped
receptors that can bind mono- and bivalently.

2.1.2. Molecular Diffusion and Interaction
Receptors and ligands perform diffusive motion in the ABM. The
corresponding diffusion coefficients can vary by orders of mag-
nitude for soluble and membrane-anchored receptors. Diffusion
coefficients were estimated based on the Stokes-Einstein equation
(24) and the values for the corresponding ABM variants (see
Table S1 in Supplementary Material) were calculated as outlined
in Supplementary Material. In this study, we aim to investigate
the impact of the dimensionality of motion for different receptor
morphologies during the process of RL binding. In the ABM,
molecules with diffusion coefficient D move per time step ∆t

FIGURE 1 | Schemes of ABM variants for receptor–ligand binding. The ABM variants are composed of the same spherical environment (large gray sphere) containing
a spherical cell (small gray sphere) at the center. Ligands (orange) are always soluble, whereas receptors (blue) are studied in the variants: spherical receptor
morphology in (A) soluble (O-SOL) or (B) membrane-anchored (O-MEM) form and Y-shaped receptor morphology in (C) soluble (Y-SOL) or (D) membrane-anchored
(Y-MEM) form.
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FIGURE 2 | Detailed representation of receptor morphologies. Two-dimensional projection of three-dimensional receptors in ABM variants (A) O-SOL, (B) O-MEM,
(C) Y-SOL, and (D) Y-MEM. Each receptor consists of binding spheres and collision spheres that may be overlapping in position and size. Ligands can bind by
encountering a receptor’s binding sphere but are prohibited to penetrate receptors by the collision spheres. Details on the parameter values are provided in Table S1
in Supplementary Material.

the specific distance ∆s =
√

2dD∆t in a direction of the
d-dimensional space that is chosen from a uniformly random
distribution. This motion involves also a random rotation of
Y-shaped receptors around their two axes in a spherically uniform
fashion.

Two types of interaction processes are possible in the ABM:
binding of receptor and ligand to form a molecular complex
and dissociation of such a complex into individual receptor and
ligand. The latter process occurs with rate kmicro

off and translates
into the probability pmicro

off = kmicro
off ∆t that a complex dissociates

during one time step ∆t. In this study, we set the microscopic and
macroscopic dissociation rates to be equal, i.e., kmicro

off = kmacro
off .

As analyzed in detail in Supplementary Material, this approach is
valid for typical parameter values of antibody–antigen dissocia-
tion rates, implying that dissociation and rebinding are relatively
rare processes. On the other hand, binding of diffusing receptor
and ligand requires that thesemolecules first encounter each other
in the spatial environment. Then, upon contact of the ligand
with the respective binding sphere of a receptor, binding occurs
with probability pmicro

on = kmicro
on ∆t, where kmicro

on denotes the
microscopic binding rate with unit s−1. Note, that this rate is

conceptually different from the macroscopic reaction rate kmacro
on

with unit μm3 s−1, because the latter incorporates the process of
encounter of molecules in a spatially homogeneous system by
their concentrations. In this study, we establish a relation between
kmicro
on and kmacro

on by mapping the microscopic and macroscopic RL
binding kinetics onto each other.

2.1.3. Implementation and Simulation
We implemented the ABM in a spherical environment with the
cell positioned at its center and for reasons of comparison this
was the same in all four ABM variants. The boundary condition at
the outer boundary of the environment was chosen to be random-
periodic for molecule motion, i.e., a molecule leaving the system
at one point was entering the system at another random position
of this boundary, where the newly added molecule was given
an entirely new identity. At the inner boundary of the cell sur-
face, reflecting boundary conditions were imposed. By applying
these realistic boundary conditions, we ensure that the number of
molecules in the system is constant during the simulation time.

For a highly realistic implementation of RL binding dynamics,
a continuous space representation was used and combined with
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the neighbor-list method (25, 26) to speed up the detection of
interaction partners in this off-lattice approach. Molecules in
motion may approach each other and become overlapping. We
implemented a push-back procedure, such that the overlap by the
moving molecule was reduced to a point contact with the other
molecule. Thus, we imposed the condition that molecules cannot
penetrate each other and this choice impacts on the effective
reaction volume between the molecules.

For reasons of comparison between the different ABMvariants,
we use the same time step∆t in each simulation, such that changes
in the simulation results can be clearly attributed to differences
in the receptor morphology, the dimensionality of motion and/or
binding valency. To this end, we determine the time step

∆t = min
(
min

(
kmicro
off

−1
, kmicro

on
−1)

,min(∆tR, ∆tL)
)
, (1)

from the smallest considered rate of binding (kmicro
on ) and disso-

ciation (kmicro
off ) as well as the smallest time step associated with a

diffusion step in space that does not exceed the radius of receptors
(∆sR) and ligands (∆sL). The time steps of receptors (∆tR) and
ligands (∆tL) are given by

∆tR,L =
∆s2R,L

2dDR,L
. (2)

The simulation algorithm for RL binding dynamics is based on
random selection dynamics (5). Each molecule is updated per
time step with regard to its diffusion and interaction that are
performed in random order applying the acceptance-rejection
method (27). A flowchart of the algorithm is shown in Figure 3.
For the model system under consideration, i.e., a B cell with a
number of BCR in the order 105 and an equal amount of ligands,
simulation run times would exceed all limits. In fact, it can be
estimated that the ratio of the typical simulation time over the
simulated real time becomes as large as 109. Therefore, since the
size of the time step is determined by the accurate resolution of
molecular motion and interaction, we down-scale the number of
molecules and decrease the system size while keeping themolecu-
lar concentration constant. The details of the down-scaling proce-
dure are described in Supplementary Material and the associated
values are summarized in Table S2 in Supplementary Material.
All simulations were performed after down-scaling the number
of molecules by a factor s= 10−2, i.e., reducing the B cell size by a
factor 10 and the number of BCR to the order 103.

The ABM framework was implemented in the object-oriented
programming language C++.

2.2. Macroscopic Modeling of
Receptor–Ligand Binding
Modeling RL binding from a macroscopic point of view can
be done in a straightforward fashion using ordinary differential
equations (ODE). This approach is appropriate to describe chem-
ical processes where reaction partners occur in large amounts
and are homogeneously distributed in the spatial environment.
Consequently, ODE models represent time-dependent changes
of molecule concentrations in a continuous and determinis-
tic fashion. We considered the binding of receptors (R) and

FIGURE 3 | Flow chart of the ABM simulation algorithm for receptor–ligand
binding kinetics. The gray boxes represent operations and are connected by
directive arrows depicting the sequence of the ABM simulation algorithm. In
each time step ∆t, all agents perform diffusive motion and undergo
interactions with other agents in random order until simulation time t∞ is
reached. Simulations of all ABM variants are shown in Videos S1–S5 in
Supplementary Material.

ligands (L) to form a molecular complex (C) as well as their
unbinding:

R + L
kmacro
on�
kmacro
off

C. (3)

Here, kmacro
on is the reaction rate for binding, kmacro

off is the dissocia-
tion rate and the corresponding association constantKa is defined
by their ratio: Ka = kmacro

on /kmacro
off .

The reaction equation (3) was then translated into the coupled
system of ODE:

dR
dt = −kmacro

on RL + kmacro
off C, (4)

dL
dt = −kmacro

on RL + kmacro
off C, (5)

dC
dt = +kmacro

on RL − kmacro
off C. (6)
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Assuming that initially no molecular complexes exist,
C (t= 0)= 0, it follows from the relations R(t)=R(0) –C(t)
and L(t)= L(0) –C(t) that it is sufficient to solve the non-linear
equation for C(t):

dC
dt = αC2 − βC + γ, (7)

where we defined the constants

α = kmacro
on , (8)

β = kmacro
off + kmacro

on [R(0) + L(0)], (9)

γ = kmacro
on R(0)L(0). (10)

The ODE for C(t) can be solved by the separation of variables and
yields the analytical solution:

C(t) = C− C+
1 − eα(C+−C−)t

C− − C+ eα(C+−C−)t (11)

with

C± =
β

2α
±

√
β2

4α2 − γ

α
. (12)

Note that the concentration C(t) is associated with the number
of receptor–ligand (RL) complexes in the microscopic model (see
Materials and Methods section 2.1.2).

2.3. Mapping Microscopic and
Macroscopic Binding Kinetics
A relation between the macroscopic and microscopic viewpoint
on the binding kinetics of receptors and ligands can be established
via the corresponding reaction rates for RL binding kmacro

on and
kmicro
on . Given the concentration of molecular complexes C(t) (see

equation (11)), we fit this analytical solution from macroscopic
binding kinetics to the numerical results of simulations obtained
from ABM at the microscopic level. This yields the desired
relation kmacro

on (kmicro
on ) that can be compared for different ABM

variants.
The fitting procedure was performed within the open source

programming language R (28). We used the function nls() that
returns optimal parameter values of non-linear model equations
by least-squares fitting. In particular, we used the fitting algorithm
option “port” that refers to the adaptive non-linear least-squares
algorithm NL2SOL (29) provided by the Port library. The algo-
rithmadaptively switches between theGauss-Newtonmethod and
an augmented Hessian approximation (30).

In practice, we applied the fitting procedure in two different
respects: (i) The macroscopic binding rate kmacro

on in equation
(11) was estimated from fitting to the data points obtained from
numerical simulations with the ABM over time. (ii) The values
determined for kmacro

on were used as data points to fit the optimal
parameter values of the Hill equation kmacro

on (kmicro
on ) (see equation

(13)) in order to map the microscopic and macroscopic binding
kinetics.

3. RESULTS

In this section, we present our simulation results on recep-
tor–ligand (RL) binding by comparing the dynamics of individual
receptors and ligands at the microscopic level with the population
kinetics at the macroscopic level. The population kinetics can
be straightforwardly described by a coupled system of ordinary
differential equations (ODE), whereas agent-basedmodels (ABM)
resolve spatial structures of receptors and ligands and account
for the dimensionality of the spatial environment in which these
molecules diffuse and interact. In particular, we studymonovalent
receptorswith differentmorphologies, i.e., being either spherically
shaped (O) or Y-shaped (Y), and in settings with different dimen-
sionality of motion, i.e., in solution (SOL) or membrane anchored
(MEM). While ligands are throughout considered as being in
solution and as having spherical shape, the four combinations of
receptor properties give rise to four different ABM variants that
are denoted by their receptor properties, respectively, as O-SOL,
O-MEM, Y-SOL, and Y-MEM. These are schematically depicted
in Figure 1 and the differences between receptors are shown
in Figure 2. In addition, videos of simulations for the different
ABM variants with monovalent receptors are provided in Videos
S1–S5 in Supplementary Material, where Videos S1-S4 represent
down-scaled systems with factor s= 10−2, while Video S5 shows
a simulation of ABM variant Y-MEM with s= 1. A flow chart of
the simulation algorithm is provided in Figure 3 and details on
the implementation of the ABM and on the model parameters are
given in the Materials and Methods section.

3.1. Binding Kinetics for Different Receptor
Properties Qualitatively Comparable
The binding kinetics at the macroscopic level, which can be
determined from the analytical solution of the ODE model (see
Materials and Methods section), was observed to be in qualitative
agreement with the simulation results of all four ABM variants
with monovalent receptors at the microscopic level. This can be
seen from the ABM simulation results in Figure 4, where the
microscopic rate for RL dissociation was fixed at kmicro

off = 0.1 s−1,
while the microscopic rate for RL binding was set to kmicro

on =
106 s−1 (Figure 4A) and kmicro

on = 107 s−1 (Figure 4B). Note
that we provide the concentration of molecular complexes in
units 1/μm3 to enable the comparison of the binding dynamics
simulated byODE andABMvariants with soluble andmembrane-
anchored receptors. Since the initial numbers of receptors and
ligands as well as the system volumes are identical in all models
and simulations, we basically perform a comparisonwith regard to
the number of complexes in each system. In general, we observed
that the impact of the stochasticity on RL binding dynamics in the
ABM is small, e.g., the relative standard deviation in the number
of RL complexes was found to be around 1% for equilibrated
systems (see the thickness of curves in pale colors in Figure 4).
This is due to the large number of molecules in each simulation,
such that five repetitions—involving in total the simulation of 104

molecules—yielded vanishingly small standard deviations.
We generally found a decrease in the concentration of free

receptors and ligands with time, which was naturally associated
with an increase in the concentration of RL complexes. This
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FIGURE 4 | Receptor–ligand binding kinetics for the four ABM variants.
Time-dependent concentration of RL complexes with monovalent receptors
as obtained from simulations of all four ABM variants with dissociation rate
kmicrooff = 0.1 s−1 and binding rate (A) kmicroon = 106 s−1 or (B) kmicroon =
107 s−1. Dark and pale lines in different colors represent, respectively, mean
values and standard deviations of five simulation runs per ABM variant.
Dashed lines indicate the corresponding ODE models after fitting the
macroscopic reaction rate kmacro

on .

observation was robust against variations in the receptor prop-
erties, i.e., all four ABM variants—O-SOL, O-MEM, Y-SOL, and
Y-MEM—showed the same qualitative behavior. Thus, the qual-
itative agreement with the macroscopic binding kinetics based
on the ODE was not limited to the ABM variant O-SOL as its
direct microscopic counterpart. Therefore, in what follows, the
analytical ODE solution can be used to fit the simulation results
of all four ABM variants and to characterize them by their quan-
titative differences in the macroscopic binding rate kmacro

on . Note
that this is the only free model parameter, since the dissociation of
RL complexes occurs spontaneously at both the microscopic and
macroscopic level implying that the corresponding rates are iden-
tical: kmacro

off = kmicro
off . Arguments for this relation between macro-

scopic and microscopic dissociation rates are provided based on
the analysis in Supplementary Material.

3.2. Receptor Properties Have Quantitative
Impact on Binding Kinetics
At the quantitative level, we observed differences in the binding
kinetics depending on the receptor properties as well as on the
microscopic binding rate kmicro

on . As could be expected, formation
of RL complexes occurred slower for smaller kmicro

on = 106 s−1

(Figure 4A) than for larger kmicro
on = 107 s−1 (Figure 4B). More-

over, for a fixed value kmicro
on , the ABM variants with monovalent

receptors in solution—O-SOL (red lines) and Y-SOL (blue
lines)—exhibited quantitative agreement in the binding kinet-
ics. While for the corresponding ABM variants with membrane-
anchored receptors—O-MEM (orange lines) and Y-MEM (green
lines)—this quantitative agreement was also observed, a quan-
titative difference in the binding kinetics between receptors in
solution and membrane-anchored receptors was clearly visible
(see Figure 4).

Using the analytical ODE solution of the binding kinetics, we
fitted the simulation results of all four ABM variants to character-
ize themby their quantitative differences in themacroscopic bind-
ing rate kmacro

on . The fitted curves are shown in Figure 4 and yielded
for kmicro

on = 106 s−1 (Figure 4A) the values kmacro
on ≈ 1.9μm3 s−1

for the ABMvariants O-SOL andY-SOL and kmacro
on ≈ 0.6 μm3 s−1

for the ABM variants O-MEM and Y-MEM. For kmicro
on = 107 s−1

(Figure 4B), we obtained the values kmacro
on ≈ 10.5 μm3 s−1 for

the ABM variants O-SOL and Y-SOL and kmacro
on ≈ 1.7μm3 s−1 for

the ABM variants O-MEM and Y-MEM. It should be noted that
the goodness of the fit, which was evaluated by the error of least
squares fitting, was comparable for all simulations with micro-
scopic binding rates in the range 104 s−1 ≤ kmicro

on ≤ 106 s−1.
Even though for kmicro

on > 106 the error of least squares fitting
for ABM variants with membrane-anchored receptors can be up
to two orders of magnitude larger than for those with receptors
in solution (see Figure S1 in Supplementary Material), all fitted
curves still represented a fair representation of the simulation
results (see Figure 4B).

These results were the first indication that the receptor mor-
phology plays a relatively minor role in the binding kinetics com-
pared to the dimensionality of motion of receptors, i.e., whether
receptors diffuse in three-dimensional solution or on the surface
of a cell. To further analyze these findings, we decided to establish
a detailed quantitative mapping between the macroscopic and
microscopic binding rates.

3.3. Quantitative Mapping of the
Macroscopic and Microscopic Binding
Rates Reveals Impact of Dimensionality of
Motion
We performed numerical simulations to quantify the difference
in monovalent RL binding as a function of receptor properties.
All four ABM variants were applied using the fixed dissociation
rate kmicro

off = kmacro
off = 0.1 s−1 and varying the microscopic

binding rate in the range 104 s−1 ≤ kmicro
on ≤ 2.5 × 107 s−1. The

corresponding macroscopic binding rate kmacro
on was determined

for each numerical experiment from the best fit of the analytical
solution of the ODE model to the simulation result of the ABM.
The resulting function kmacro

on (kmicro
on ) is shown in Figure 5 for each

ABM variant. The steady state concentrations of complexes and
receptors obtained by fitting the ODE kinetics to the dynamics of
the four various ABM variants are summarized in Tables S3–S6 in
Supplementary Material.

As expected from our previous considerations, the quantita-
tive difference between morphologies of monovalent receptors is
negligible compared to the dimensionality of motion, i.e., whether
receptors were diffusing in solution or within the membrane on
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the surface of a cell. Moreover, the numerical results kmacro
on (kmicro

on )
in Figure 5 resemble Hill functions,

kmacro
on

(
kmicro
on

)
=

a kmicro
on

b + kmicro
on

, (13)

with parameters a and b that are specific for given receptor prop-
erties. Here, a denotes the upper limit for themacroscopic binding
rate, kmacro

on (kmicro
on ≫ b) → a, and b is a constant that determines

the slope of the Hill function, kmacro
on (kmicro

on ≪ b) → (a/b)kmicro
on ,

while at intermediate value kmicro
on = b the Hill function attains

half of its maximal value: kmacro
on (kmicro

on = b) = a/2. The
two parameters can be determined from a fit to the numerical
simulations and the resulting curves are shown in Figure 5 as solid
lines. The corresponding values are summarized in Table S7 in
Supplementary Material for the four ABM variants.

The observed functional dependence of kmacro
on on kmicro

on is in
agreement with theoretical considerations by Collins and Kimball
on binding reactions of diffusing receptors and ligands in three
spatial dimensions (31–33). They arrived at the expression

kmacro
on (κ) =

ks κ
ks + κ

, (14)

where ks = 4π(rL + rR)(DL + DR) denotes the diffusion-
controlled reaction rate that was previously introduced by Von
Smoluchowski (34) and that depends on the radii of receptor
(rR) and ligand (rL) as well as on the diffusion coefficients of
receptor (DR) and ligand (DL). This rate refers to the frequency
at which diffusing receptors and ligands come into contact, i.e.,
have the distance rR + rL. Furthermore, κ denotes the intrin-
sic reaction rate, κ = Vr kmicro

on , which is directly related to
the microscopic binding rate kmicro

on and the reaction volume

Vr = (4/3)π(rL + rR)3 (35, 36). Combining equations (13) and
(14) yields the following relationships:

a = ks, (15)

b =
ks
Vr

. (16)

It should be stressed that this correspondence can strictly speaking
only be applied to monovalent receptors with spherical mor-
phology and to RL binding in three-dimensional solution with
receptor and ligand being allowed to penetrate each other. In
other words, equations (15) and (16) could only be expected to
hold for the ABM variant O-SOL, however, even this scenario
is different from the theoretical considerations in that molecules
are not allowed to penetrate each other in our ABM. In the
ABM, we generally do not allow for molecular penetration in
RL interactions, which reduces their possible overlap to a point
contact. The implementation of push-back collisions between
molecules effectively reduces the reaction volume Vr, i.e., we set
Vr → frVr with scaling factor fr ≤ 1. This parameterwill only affect
the slope of the Hill function, while it was observed in Figure 5
that the upper limit of the macroscopic binding rate, ks, does
as well depend on the receptor properties. To account for these
observations, we set ks → fsks with scaling factor fs. It then follows
that fr and fs can be computed from the equations

fs =
a
ks

, (17)

fr =
fs ks
bVr

(18)

in terms of the two fitting parameters a and b (see Table S7
in Supplementary Material). The resulting scaling factors are
summarized in Table S8 in Supplementary Material.

FIGURE 5 | Mapping of microscopic and macroscopic binding rates for different ABM variants. Simulation of all four ABM variants for varying kmicroon and the fitted
reaction rate kmacroon of the ODE models. Solid lines represent Hill functions with parameters fitted to the data points kmacroon (kmicroon ). Results for ABM variants are similar
for the same dimensionality of motion for receptors, i.e., either in solution (O-SOL, Y-SOL) or membrane anchored (O-MEM, Y-MEM), but are distinct for ABM variants
with soluble and membrane-anchored receptors. The dotted line represents the binding rate as determined by Collins and Kimball (see equation (14)) that is, as
expected, comparable to the simulation result for ABM variant O-SOL.
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FIGURE 6 | Quantitative difference in the scaling factors of ABM variants
relative to O-SOL. The scaling factors fs and fr are calculated from equations
(17) and (18) for parameters specific to the considered ABM variant. ABM
variant O-SOL resembles the conditions of the theoretical considerations by
Collins and Kimball (31–33) most of all. Scaling factors of ABM variants with
membrane-anchored receptors that are either spherically shaped (O-MEM) or
Y-shaped (Y-MEM) exhibit similar but clear differences to ABM variant O-SOL,
whereas ABM variant Y-SOL is most similar to O-SOL.

As could be expected, for the ABM variant O-SOL we found
the scaling factor f O−SOL

s = 1.02 to be close to 1, implying that
the upper limit for the macroscopic binding rate as predicted
by Collins and Kimball was quantitatively recovered (31–33).
Regarding the increase of kmacro

on as a function of kmicro
on , we found

the difference in the underlying assumptions onRL interactions to
be reflected by a decrease in the reaction volume Vr with scaling
factor f O−SOL

r = 0.79.
We compared the scaling factors for the other ABM variants

and present the results relative to ABMvariant O-SOL in Figure 6.
The scaling factor f Y−SOL

r of ABM variant Y-SOL was found to
be similar to f O−SOL

r with a relative decrease of only 4%, whereas
this scaling factor for the ABMvariants withmembrane-anchored
receptors, i.e., f O−MEM

r and f Y−MEM
r , was decreased by 74 and 61%,

respectively. Furthermore, as shown in Figure 6, the scaling fac-
tors fO−MEM

s and f Y−MEM
s for membrane-anchored receptors were

found to be decreased from f O−SOL
s by 77 and 69%, respectively,

indicating a significant change in the upper limit of the macro-
scopic binding rate. On the other hand, this scaling factor was
always somewhat higher for membrane-anchored receptors, i.e.,
ABM variants O-MEM and Y-MEM, compared to their respective
counterparts with soluble receptors.

We checked the dependency of the mapping between macro-
scopic and microscopic binding rates (see Figure 5) as well as the
scaling factors fs and fr (see Figure 6) on the down-scaling factor
s of the simulated ABM variants. It was generally observed that
simulations for soluble receptors were not affected by the system
down-scaling, whereas in simulations for membrane-anchored
receptors increasing the down-scaling factor s resulted into lower

values for kmacro
on as a function of kmicro

on . This implies that the
difference between ABM variants with soluble and membrane-
anchored receptors as observed in Figure 5 as well as the distances
between the respective scaling factors in Figure 6 represents a
lower limit.

Since the diffusion coefficients of receptors in the soluble
(DR = 90 μm2 s−1) andmembrane-anchored (DR = 0.05 μm2 s−1)
variant differed by orders of magnitude, we checked whether
differences in the upper limit of themacroscopic binding rate were
indeed merely a consequence of the dimensionality of motion
rather than of themagnitude of the diffusion coefficient itself. This
was done by running simulations with interchanged diffusion
coefficients, i.e., ABMvariant O-SOLwithDR = 0.05 μm2 s−1 and
ABM variant O-MEM with DR = 90 μm2 s−1. However, even this
dramatic modification of diffusion coefficients did not eliminate
the significant difference in the dependence of kmacro

on on kmicro
on

between the ABM variants (see Figures S2 and S3 in Supplemen-
tary Material).

Taken together, our quantitative analysis of monovalent RL
binding kinetics revealed the impact of receptor properties on the
macroscopic binding rate and by that on the association constant
of the RL binding. It was shown that the diffusion coefficients
of receptors and their morphology have minor effects, whereas
the strongest impact was due to the dimensionality of motion.
Compared to soluble receptors in three dimensions, RL binding
kinetics of membrane-anchored receptors on a cellular surface
were retarded and could not achieve comparably high association
constants. In what follows, we consider the impact of the binding
valency by taking into account that the Y-shaped receptors can
bind a ligand at each receptor arm.

3.4. Binding Valency Reduces Differences
in the Binding Kinetics of BCR and
Antibodies
To investigate the influence of the receptor binding valency on
the binding kinetics for monovalent receptors (see Figure 5),
we modified ABM variants Y-MEM and Y-SOL as to allow for
bivalent binding of the Y-shaped receptors, i.e., a ligand can bind
at each of the two receptor arms. Thus, in these ABM variants the
term complex refers to receptors that are bound to either one or
two ligands. The simulations were performed with varied bind-
ing rate kmicro

on between 5× 106 and 2.5× 107 s−1. The temporal
course of the binding kinetics for simulations of the bivalent and
monovalent ABM variants is shown in Figure 7. The simulations
of kmicro

on = 1 × 107 s−1 exhibit the typical relations between
the binding kinetics of the ABM variants. As could be expected,
both ABM variants with bivalent receptors showed a faster bind-
ing kinetics and also reached higher association constants than
their monovalent counterparts. In Figure 8, we show the relative
difference in receptor-bound ligands for ABM variant Y-MEM
relative to ABM variant Y-SOL and for different values of kmicro

on .
This difference is significantly smaller (down to 72%) for bivalent
receptors compared to monovalent receptors, and in the limit
of long times this difference vanishes only for bivalent but not
for monovalent receptors. These results indicate that the binding
valency makes a clear difference for RL binding: In the case of
monovalent receptors, the dimensionality of motion induces a
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FIGURE 7 | Kinetics of bound ligands for Y-MEM and Y-SOL ABM variants with either monovalent or bivalent receptors. Time-dependent concentration of bound
ligands for ABM variants Y-MEM and Y-SOL for models with either monovalent receptors or bivalent receptors. All models were simulated with dissociation rate
kmicrooff = 0.1 s−1 and binding rate kmicroon = 107 s−1. Dark and pale lines in different colors represent, respectively, mean values and standard deviations of five
simulation runs per ABM variant.

significant difference in the binding kinetics, whereas this differ-
ence is largely compensated by the bivalency of receptors. Thus,
it turns out that membrane-anchored BCR and soluble antibodies
do reach comparable association constants for bivalent receptors.

In order to investigate whether these observations are caused
by the effectively twofold number of binding sites for the bivalent
receptors, we performed simulations with ABM variants that have
twice as much monovalent receptors than the so far applied phys-
iological number of receptors (NR

p ). The binding kinetics of ABM
variants withNR = 2×NR

p monovalent receptors turned out to be
even faster as the binding kinetics of bivalent ABM variants with
NR = NR

p (see Figure S4 in SupplementaryMaterial). Additionally,
the relative differences between binding kinetics of ABM vari-
ants with soluble and membrane-bound receptors vanishes with
increasing time, and this occurs slightly faster as for ABM variants
with bivalent receptors (see Figure S5 in SupplementaryMaterial).
These results indicate that comparable association constants of
membrane anchored and soluble receptors can be observed for
systems with higher amounts of binding sites at receptors.

4. DISCUSSION

The focus of this study on receptor–ligand (RL) binding was
twofold. Firstly, we established a quantitative mapping between
macroscopic binding rates of an ordinary differential equation
(ODE) model and their microscopic equivalents as obtained from
simulating the spatiotemporal binding kinetics by agent-based
models (ABM). Secondly, we investigated the impact of various
properties of B cell-derived receptors—such as their dimension-
ality of motion, morphology and binding valency—on the RL
binding kinetics.

Regarding the quantitative mapping of binding rates, we recov-
ered for fixed dissociation rates kmicro

off = kmacro
off = 0.1 s−1 the non-

linear relationship between the binding rates kmacro
on and kmicro

on . This
resembles a Hill-type function (see Figure 5), which is in line with
theoretical predictions by Collins and Kimball (31–33). Scanning

kmicro
on over more than four orders of magnitude, we obtained

upper limiting values for kmacro
on in the range 100–101 μm3 s−1,

which corresponds to 108–109 M−1 s−1 using Avogadro’s num-
ber. For kmacro

off = 0.1 s−1, the resulting association constant is
Ka = 1010 M−1. This is in agreement with experimentally mea-
sured values for BCR-antigen binding, where typical values up to
Ka = 1010 M−1 are reached (37, 38), which is a strong indication
for our ABM variants to be realistic and quantitative to-scale
representations of RL binding.

The ABM variants were implemented in three-dimensional
representations of continuous space and RL binding was sim-
ulated by the random selection method (5). We implemented
different ABM variants where binding of spherical ligands occurs
either with soluble receptors or with membrane-anchored recep-
tors. The receptors are either spherically shaped or Y-shaped and
can be mono- or bivalent. We simulated RL binding in identical
environments to allow for quantitative comparisons of the dif-
ferent scenarios. In particular, we considered the Y-shaped and
bivalent antibodies in solution and the B cell receptors (BCR) as
their membrane-anchored counterparts on a spherical cell to be
an appropriate example. In previous work on BCR binding, ABM
implementations typically involved simplifications with regard
to the spatial representation, i.e., using a planar cell surface and
imposing a spatial grid for molecule diffusion (39, 40) and have
been applied to simulate the immunological synapse involving B
cells (41–45) or T cells (46, 47). Besides this work on immune
cell receptor–ligand interaction, there exist software packages for
the simulation of various type, such as Smoldyn (48) and MCell
(49, 50). Even though these simulators represent molecular dif-
fusion in lattice-free continuous space, they lack features that are
essential in the present study. For example, Smoldyn represents
molecules in a point-like fashion (48, 51–53), while MCell does
only allow to determine an upper limit of the simulation time step
∆t (54) implying that simulations with different model systems
may differ in the time step ∆t. Therefore, we did not consider
these simulators suitable for the investigation of morphological
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FIGURE 8 | Relative differences between ABM variants Y-MEM and Y-SOL with either monovalent or bivalent receptors. Temporal evolution of the relative differences
of bound ligands between ABM variants Y-MEM and Y-SOL for models with either monovalent receptors (monovalent ABM variant) or bivalent receptors (bivalent
ABM variant). The colors refer to ABM variants with varying binding rates kmicroon .

aspects of receptors and for comparing models at the microscopic
and macroscopic scale. Moreover, the RL binding of soluble and
membrane-anchored receptors was previously also investigated
by non-spatial ODE models (55, 56). These two-step ODE mod-
els comprise the process of encounter formation by molecule
diffusion and the reaction process itself, so that molecular param-
eters, like diffusion constant and size, could also be incorpo-
rated. However, several simplifications were made, such as the
derivation of the binding rate of membrane-bound receptors from
cell–ligand interaction rate, which turned out to be not applicable
in general (55, 56).

To study the impact of various receptor properties on RL bind-
ing kinetics, we compared scenarios that differ in the dimension-
ality of motion, morphology and binding valency of receptors.
These receptor properties were investigated since they are char-
acteristic for B cell-derived receptors that play a key role in the
adaptive immune response. Interestingly, the RL binding kinetics
for monovalent Y-shaped receptors was observed to be quanti-
tatively comparable to that of spherical receptors (see Figure 5),
i.e., the difference in the morphology of monovalent receptors did
not reveal a substantial impact. In contrast, the dimensionality
of motion for BCR compared to soluble antibodies did reveal
a clear difference in the binding kinetics, i.e., the association
constants were found to be significantly lower for membrane-
anchored receptors compared to soluble receptors (see Figure 5).
Furthermore, our results show that the diffusion constant of recep-
tors, which is much smaller for membrane-anchored molecules
as for soluble molecules, does not strongly influence the observed
differences in the binding kinetics. This suggest that the difference
in the association constants for soluble and membrane-anchored
monovalent receptors originate from the difference in the dimen-
sionality of motion. However, this difference was largely compen-
sated by taking into account that BCR and soluble antibodies are

bivalent (see Figure 8), i.e., the relative difference in the binding
kinetics of membrane-anchored and soluble receptors vanished
only in the case of bivalent receptors. It is generally known that
the bivalency of BCR supports cross-linking in the binding to
multivalent ligands. However, the current findings suggest that
the bivalency of BCR does also compensate the difference in the
association constant that exist for monovalent receptors between
the soluble and membrane-anchored variants.

In the future, the extensibility of the current simulation frame-
work can be exploited to study more complex scenarios. For
example, antigens may be represented by multivalent ligands that
do not only allow for cross-linking of BCR but also binding to
coreceptors required for B cell activation. This enables to study the
important process of BCR clustering on the cell surface (57–59)
that has also been the subject of theoretical investigations (39, 40,
60, 61). We envisage that such studies will strongly benefit from
an image-based systems biology approach, for example, as applied
by Mech et al. (62) and conceptionally reviewed by Medyukhina
et al. (63). Recently, we took the first steps toward an image-
based investigation of B cell activation that requires the concerted
action of various receptors and ligands (64). Based on these data,
our ABM can be extended by various agent types with specific
properties to predict prerequisites for experimentally observed
molecular patterns. Moreover, the ABM variants could be mod-
ified to represent various receptor properties of different antibody
isotypes and/or subclasses, which would allow investigating the
impact of specific receptor properties on the RL binding kinetics.
Based on this modification, the impact of naturally occurring
antibody complexes, such as IgA dimers and IgM pentamers,
could be investigated. Furthermore, extending the ABM to rep-
resent arbitrarily shaped cells that are brought in close contact,
it can be used to simulate the molecular patterns during synapse
formation involving B cells, T cells as well as phagocytes (65–68).
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This would enable to investigate the impact of the dimensionality
of motion of ligands that is reported to be an important parameter
for regulating B cell activation and signaling (69).
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VIDEO S1 | Simulation of down-scaled scaled O-SOL ABM variant. ABM sim-
ulation with monovalent receptors (blue objects) that are spherically shaped and
move in solution by performing three-dimensional diffusion. Upon contact between
receptors and ligands (red objects) these may bind and form RL complexes (green
objects) depending on the binding rate kmicroon =2.5×107 s−1. The system is down-
scaled with factor s = 0.01 (see Supplementary Material) and values of model
parameters are provided in Tables S1 and S2 in Supplementary Material. The video
is composed of 15 frames s−1 and the simulation time between two consecutive

frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S2 | Simulation of down-scaled O-MEM ABM variant. ABM simulation with
monovalent receptors (blue objects) that are spherically shaped and move in the
cell membrane by performing two-dimensional diffusion. Upon contact between
receptors and ligands (red objects) these may bind and form RL-complexes (green
objects) depending on the binding rate kmicroon =2.5×107 s−1. The system is down-
scaled with factor s = 0.01 (see Supplementary Material) and values of model
parameters are provided in Tables S1 and S2 in Supplementary Material. The video
is composed of 15 frames s−1 and the simulation time between two consecutive
frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S3 | Simulation of down-scaled Y-SOL ABM variant. ABM simulation with
monovalent receptors (blue objects) that are Y-shaped and move in solution by per-
forming three-dimensional diffusion. Upon contact between receptors and ligands
(red objects) these may bind and form RL-complexes (green objects) depending on
the binding rate kmicroon =2.5×107 s−1. The system is down-scaled with factor s =
0.01 (see Supplementary Material) and values of model parameters are provided
in Table S1 in Supplementary Material and Supplementary Material. The video is
composed of 15 frames s−1 and the simulation time between two consecutive
frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S4 | Simulation of down-scaled Y-MEM ABM variant. ABM simulation
with monovalent receptors (blue objects) that are Y-shaped and move in the
cell membrane by performing two-dimensional diffusion. Upon contact between
receptors and ligands (red objects) these may bind and form RL-complexes (green
objects) depending on the binding rate kmicroon =2.5×107 s−1. The system is down-
scaled with factor s = 0.01 (see Supplementary Material) and values of model
parameters are provided in Tables S1 and S2 in Supplementary Material. The video
is composed of 15 frames s−1 and the simulation time between two consecutive
frames is 6.8×10−8 s. A high-resolution video is available for download from
https://asbdata.hki-jena.de/LehnertFigge2017_FrontImmun/.

VIDEO S5 | Simulation of Y-MEM ABM variant. ABM simulation with monovalent
receptors (blue objects) that are Y-shaped and move in the cell membrane by
performing two-dimensional diffusion. Upon contact between receptors and ligands
(red objects) these may bind and form RL-complexes (green objects) depending
on the binding rate kmicroon =2.5×107 s−1. The system is down-scaled with factor
s = 0.01 (see Supplementary Material) and values of model parameters are provided
in Table S1 in Supplementary Material. The video is composed of 15 frames s−1

and the simulation time between two consecutive frames is 6.8×10−8 s. A
high-resolution video is available for download from https://asbdata.hki-jena.de/
LehnertFigge2017_FrontImmun/.
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