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The HIV pandemic is still a major global challenge, despite the widespread availability 
of antiretroviral drugs. An effective vaccine would be the ideal approach to bringing the 
pandemic to an end. However, developing an effective HIV vaccine has proven to be 
an elusive goal. Three major human HIV vaccine trials revealed a strong trend toward 
greater risk of infection among vaccine recipients versus controls. A similar observation 
was made in a macaque SIV vaccine study. The mechanism explaining this phenomenon 
is not known. Here, a model is presented that may explain the troubling results of vaccine 
studies and an immunological paradox of HIV pathogenesis: preferential infection of HIV-
specific T cells. The central hypothesis of this perspective is that as “Trojan exosomes” 
HIV particles can directly activate HIV-specific T cells enhancing their susceptibility to 
infection. Understanding the biology of HIV as an exosome may provide insights that 
enable novel approaches to vaccine development.
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Carnathan et al. (1) employed the SIV/macaque model to evaluate immunization regimens under 
investigation in preclinical and clinical HIV vaccine studies. Their vaccine vectors did not include 
the envelope gene and could not induce neutralizing antibodies. Thus, the study specifically 
evaluated the role of cellular immune responses in protection against virus acquisition or control of 
replication after infection. All groups of animals showed SIV-specific CD8 T cells, but there was no 
correlation between the function or number of such cells and infection after rectal virus challenge. 
Notably, there were much higher levels of activated memory CD4 T cells in rectal biopsies from 
infected animals than from animals that remained negative after challenge. These data support the 
hypothesis that mucosal levels of activated CD4+ CCR+ T cells in virus-exposed animals predict 
the risk of virus acquisition.

It is well established that HIV preferentially infects activated memory CD4 T cells (2). For this 
reason, any factor that increases the number of such cells in mucosal tissues exposed to HIV may 
increase the risk of virus acquisition. Other sexually transmitted infections that cause accumula-
tion of mucosal inflammatory cells are among such factors (3). Preferential infection of activated 
CD4 T cells may also explain sequential loss of CD4 T cells of defined specificities. For example, 
Loré et al. demonstrated that HIV-infected dendritic cells (DCs) can present CMV antigens and 
activate CMV-specific CD4 T cells. In their study, HIV was transmitted to activated CMV-specific 
T cells but not to non-responding T cells (4). These observations raise the possibility that any HIV 
vaccine that induces strong CD4 T cell responses may increase risk of transmission. As noted above, 
results from three major clinical vaccine trials evaluating multiple vaccine regimens—the HVTN-
505, Phambili, and STEP trials—showed a strong trend toward greater risk of HIV acquisition 
among vaccine recipients versus placebo recipients (5–7). The mechanism explaining this troubling 
observation is unknown, but may be simply that the vaccines increased the pool of memory CD4 
T cells in mucosal tissues. Interestingly, when Douek et al. examined the specificity of HIV-infected 
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memory T cells from infected individuals, the data revealed that 
HIV preferentially infects HIV-specific CD4 T cells (8). These 
results suggest a peculiar immunological paradox for HIV: 
targeted infection of the very T  cells that are programmed to 
respond to it. This phenomenon also predicts that vaccination 
regimens that increase the pool of mucosal HIV-specific CD4 
T cells may result in greater risk of virus acquisition consistent 
with the trend toward higher risk of infection among HIV vac-
cine recipients (5–7).

One aspect of HIV biology may partly explain the paradoxi-
cal higher risk of HIV infection among vaccine recipients and 
preferential infection of HIV-specific T cells. Previously, we pro-
posed that HIV is a Trojan exosomes (9). This model reconciled 
the complex release pathway of HIV, its somewhat unique lipid 
composition, and its host protein phenotype. Furthermore, the 
model predicted that HIV vaccines might result in higher risk 
of infection due to the virus’ ability to exploit cellular immune 
responses. Considerable data demonstrate the striking bio-
chemical and biological parallels between HIV and exosomes 
(9–13). Exosomes are small virus-sized vesicles produced in 
late endosomes and released extracellularly by many cell types, 
including T cells, macrophages, and DC (11, 14). They package a 
variety of biologically relevant molecules and appear to function 
as a means of intercellular communication (15). Exosomes, like 
HIV, express a wide range of proteins on their surfaces. In both 
cases, the protein phenotype appears to reflect biogenesis from 

lipid rafts (15, 16) and includes adhesion molecules, major histo-
compatibility complex (MHC) proteins, and other proteins with 
immunological functions, including costimulatory molecules 
(15). In 2003, Hwang et al. showed that peptide-pulsed exosomes 
from DC could activate peptide-specific memory T cells in the 
absence of DC or added cytokines (17). A number of studies have 
confirmed that exosomes released from antigen-presenting cells 
are capable of activating memory T cells in the absence of the 
releasing cells (18, 19). Antigen-presenting cells, including mac-
rophages, DC, and activated T cells, are major host cells for HIV.

Typically, after viruses infects cells or are endocytosed, 
viral proteins are processed and viral peptides are loaded onto 
MHC proteins for presentation to T  cells (20). HIV acquires 
large numbers of both class I (HLA-A, B, and C) and class II 
(HLA-DR) MHC proteins from cells (21, 22) and some acquired 
HLA proteins are likely complexed with peptides from HIV 
proteins. This would allow HIV to present its own peptides to 
HIV-specific T cells and activate them. In the case of HIV pep-
tide/class II MHC complexes, the activated CD4+ T cells could 
then be productively infected by the virus (Figure 1). Since the 
predominant fate of HIV-infected activated T cells is death, HIV 
would eliminate cells that are key to immune responses against 
it. HIV-infected cells are known to release exosomes (23) and 
they also could potentially activate HIV-specific T cells, making 
them susceptible to infection. This model would explain the high 
frequency of HIV-specific T cells among infected T cells in vivo 
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Figure 1 | Activation of HIV-specific T cells by HIV. As Trojan exosome, HIV-1 acquires the proteins necessary to mediate antigen presentation to T cells. Emerging 
from HIV-infected antigen-presenting cells, HIV particles are likely to display class II HLA molecules loaded with HIV-derived peptides. Thus, the virus could activate 
HIV-specific CD4 T cells, making them highly susceptible to infection by the virus.
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(8). Also, virus-associated HLA class I molecules loaded with 
HIV peptides could activate HIV-specific CD8 T cells and con-
tribute to chronic activation of these cells in untreated patients 
(24). It could also explain the higher risk of HIV acquisition in 
HIV-vaccinated individuals, especially if the vaccine results in 
HIV-specific memory CD4 T cells at sites of HIV exposure. All 
aspects of the proposed model are consistent with published 
data, with an important exception: the nature of HLA-associated 
peptides on HIV has not been investigated. Given the impor-
tance of developing an effective HIV vaccine and the troubling 
paradoxical infections observed in HIV vaccine studies, such 
studies are highly warranted. The results of such studies could 

provide deeper understanding of HIV immunopathogenesis 
and valuable insights regarding epitope selection for HIV vac-
cine candidates.
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