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Next-generation sequencing of immunoglobulin gene repertoires (Ig-seq) allows the 
investigation of large-scale antibody dynamics at a sequence level. However, structural 
information, a crucial descriptor of antibody binding capability, is not collected in Ig-seq 
protocols. Developing systematic relationships between the antibody sequence informa-
tion gathered from Ig-seq and low-throughput techniques such as X-ray crystallography 
could radically improve our understanding of antibodies. The mapping of Ig-seq data-
sets to known antibody structures can indicate structurally, and perhaps functionally, 
uncharted areas. Furthermore, contrasting naïve and antigenically challenged datasets 
using structural antibody descriptors should provide insights into antibody maturation. 
As the number of antibody structures steadily increases and more and more Ig-seq 
datasets become available, the opportunities that arise from combining the two types of 
information increase as well. Here, we review how these data types enrich one another 
and show potential for advancing our knowledge of the immune system and improving 
antibody engineering.

Keywords: ig-seq, antibody modeling, B cell, Antibodies, Developability, computational modeling, Next-generation 
sequencing

iNTRODUCTiON

Antibodies are proteins produced by the B cells of jawed vertebrates. Their primary function is 
to recognize structural sequence motifs (epitopes) within molecules (antigens) usually related to 
pathogens, which may lead to direct neutralization of those pathogens or their toxins. Further 
functions of antibodies are activation of the complement system or tagging of antigens for elimina-
tion by other immune pathways. Antibodies have the capacity for binding an extraordinary variety 
of epitopes as a result of their sequence diversity, which is estimated at 1013 unique molecules in 
the human antibody repertoire (1). An antibody is a large complex molecule (~150 kDa). It can be 
divided into two parts, the crystallizable fragment (Fc) and the antigen binding fragment (Fab). 
The Fab fragment is further split into constant and variable regions. There are five possible main 
Fc portions in humans, and which one is used on a particular antibody is governed by the process 
of class switching (2). The variable region (Fv) is composed of two domains called the heavy (VH) 
and light (VL) chains. Within each B cell, the antibody Fv domains are built by somatic recombina-
tion between V(D)J segments (3, 4). Upon antigen recognition, somatic hypermutation introduces 
further diversification into the naïve Fv domains (5). Within each of the VL and VH chains lie 
three hypervariable loops, the complementarity determining regions (CDRs), which are the most 
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FigURe 1 | (A) Schematic representation of an antibody IgG structure. (B) Structure of the Fv region. (C) Genetic composition of VH and VL chains [IMGT 
numbering (9)]: VH is colored blue; VL is green; CDRs are labeled and depicted in different colors; and disulfide bonds are in yellow.
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diverse parts of the antibody (Figure 1). These loops form the 
majority of chemical interactions with antigens, thus defining 
the antigen-binding region, the paratope (6). The CDR3 of the 
heavy chain (CDR-H3) is the most diverse of the CDRs as it is 
being formed at the join between the V, D, and J gene segments 
and subject to high levels of hypermutation. As a result of this 
diversity, CDR-H3 plays a key role in antigen recognition and 
binding (7). The non-CDR sections of the variable domain are 
called the framework. Framework positions next to CDRs along 
with CDR sequence govern the structural shape of the loops (8).

The properties of antibodies, in particular designable antigen 
recognition specificity and binding affinity, have made them use-
ful as diagnostics and research agents as well as the most success-
ful class of biopharmaceuticals (10). Although small molecules 
constitute the largest proportion of potential therapeutics in 
clinical trials, the antibody market is steadily growing, with new 
antibody approvals at a rate of about four per year. As of 2016, 
five out of the 10 best-selling drugs worldwide were recombinant 
monoclonal antibodies (11).

Successful exploitation of antibodies relies on our ability to 
interrogate their diversity and function.  Application of next- 
generation sequencing of immunoglobulin gene repertoire 
(Ig-seq) to antibody profiling is able to produce comprehensive 
snapshots of the repertoire diversity (12). However, most Ig-seq 

techniques are currently unable to perform sequencing of paired 
heavy–light antibody sequences or to obtain an immunoglobulin 
gene repertoire solely from antibody-secreting B  cells (13–15). 
Advances in liquid chromatography tandem-mass spectroscopy 
(LC-MS/MS) now allow high-throughput analysis of serum 
antibodies at the amino-acid sequence level (16, 17). Previously 
transcriptomics and Ig-seq datasets have been used to deconvo-
lute MS spectra of serum antibodies into constituent full-length 
entities (18). Such combined Ig-seq and LC-MS/MS techniques 
have provided new insights in vaccination and autoimmunity 
studies (19, 20). Recent advances in computational tools that 
integrate de novo antibody sequencing, error correction data, and 
sequence homology databases now permit an accurate assembly 
of full-length antibodies based on the remit of LC-MS/MS spectra 
alone (21).

The biggest advantage of Ig-seq and LC-MS/MS techniques is 
their high-throughput nature. This means that the methods pro-
vide a broad-brush description and quantification of antibodies 
in the repertoire. However, this will often include inaccurate data 
caused by PCR or sequencing errors. The limitation of Ig-seq and 
LC-MS/MS methods is that they provide sequence information 
only, whereas it is the shape/structure of an antibody that deter-
mines its exact biological function. For instance, antibody CDRs 
with low-sequence identities can adopt structurally close shapes, 
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and hence present conformationally similar, though perhaps 
chemically different, binding sites (22). Knowledge of antibody 
structure is vital for inferring chemistry of antigen recognition 
as well as allowing binding site comparison between antibodies. 
Current experimental determination of antibody structures 
is achieved by X-ray crystallography or NMR spectroscopy. 
However, collecting such detailed experimental information lim-
its the rate of analysis to the level of individual or a small number 
of antibodies (23).

To help tackle the rising costs and time required for engineer-
ing and characterization of antibodies, a number of computational 
tools have been developed that can facilitate experimental efforts. 
Computational methods are used to profile the physico-chemical 
properties of antibodies, predict antibody–antigen contacts, and 
redesign antibody–antigen complexes (24, 25). The tools can 
be broadly divided into those that require only the sequence of 
an antibody as input and those that require the structure of the 
antibody. The inclusion of structural information where available 
has been shown to improve prediction of most properties over 
sequence-based methods (26). These improved predictions are 
only possible if a native structure or an accurate model of the 
antibody is available.

Since the structure of an antibody is key to its function 
and high-throughput crystallographic determination of the 
structures of every antibody is currently not feasible, compu-
tational modeling techniques may aid to reduce attrition in the 
biopharmaceutical industry and to accelerate drug discovery 
(27). The development of systematic relationships between the 
antibody information gathered from Ig-seq and techniques 
such as X-ray crystallography, NMR spectroscopy, and tandem 
LC-MS/MS could radically improve our understanding of 
antibody biology. As the number of antibody structures stead-
ily increases and more Ig-seq datasets become available, the 
opportunities that arise from combining them increase as well. 
As of October 9, 2017, more than 2,860 antibody structures 
were available in the Protein Data Bank (PDB) (28) as identified 
by the Structural Antibody Database (29). The publically avail-
able volume of sequences produced from Ig-seq experiments 
is now in the hundreds of millions (30). In this manuscript, 
we consider the information obtained from high-throughput 
sequencing experiments and antibody structures. We review 
how these datasets can enrich one another and with the help 
of computational techniques, advance our knowledge of anti-
body diversity, maturation, and selection and pave the way for 
improved antibody engineering.

iMMUNOgLOBULiN geNe RePeRTOiRe 
SeQUeNCiNg TeCHNOLOgieS

Ig-seq offers high-throughput characterization of immunoglobu-
lin gene sequences at great depth and typically includes several 
B-cell samples in a single-sequencing run. By controlling the 
number of samples that are combined and the number of B cells 
contained therein, it is possible to obtain a large fraction of an 
immunoglobulin repertoire from a sample. The potential applica-
tions of Ig-seq include vaccine and drug development as well as 

immunodiagnostics (12, 31, 32). Such applications rely on our 
ability to efficiently identify the population of antibodies respond-
ing to an antigen challenge. Ig-seq has already been successfully 
applied to isolate antigen-specific antibodies from immunized 
animals in conjunction with common laboratory screening plat-
forms such as phage display (33) or hybridoma (34) or even when 
the screening step was omitted (35). Furthermore, amino-acid 
sequence convergences in the CDR-H3 have been observed in the 
response to a variety of antigens, and may serve as an additional 
way to isolate antigen-specific antibodies through identifying 
sequences common among several individuals exposed to the 
same antigen (30, 36–39).

Heavy and light chains are products of two independent mRNA 
transcripts that co-assemble into full-length immunoglobulin 
molecules in the endoplasmic reticulum of the B cell. However, 
cognate pairing is lost after B-cell bulk lysis prior to Ig-seq 
and most Ig-seq studies therefore only consider heavy chains 
(12). However, for human and mouse native pairing is crucial 
for antibody folding, stability, expression, and antigen binding 
(40–42). Furthermore, information on the heavy/light chain 
dimer is required to create an accurate three-dimensional (3D) 
model of the Fv region and of its antigen-binding pocket which 
is essential for rational antibody engineering (43). Such models 
can map antibody sequences to structural space (44), identify the 
paratope and its physico-chemical properties (45), interrogate 
the mode of interaction with antigens (46), and predict antibody 
developability properties (47, 48). Predicting or experimentally 
obtaining the native VH/VL pairing of the antibody is therefore 
crucial for our understanding of antibody biology and our ability 
to engineer these molecules (49).

Several approaches have been devised to circumvent the loss 
of native pairing in current Ig-seq experiments. Reddy et al. (35) 
assigned VH/VL pairs based on relative variable chain frequencies 
in VH and VL chain Ig-seq datasets. This methodology required 
an accompanying VL Ig-seq dataset and does not always produce 
antibodies with good pharmacodynamics properties, indicating 
that it is not always accurate (35). Researchers have also used 
protein expression platforms, such as recombinant cell lines or 
phage display, to assign VL to VH chains in a combinatorial 
fashion followed by experimental screening to identify produc-
tive VH/VL combinations (20, 50). Dekosky et al. (15, 51) pub-
lished the first high-throughput paired VH/VL gene sequencing 
approach by using single-cell linkage PCR to physically join the 
VH and VL chains prior to Illumina sequencing. The limitation 
of this approach is that the current Illumina read length cannot 
cover the entire paired sequence, so the analysis is restricted 
to only CDR-H3, CDR-L3, and neighboring framework 4 and 
proximal positions of framework 3 of respective chains. Once 
sufficient paired datasets are available, these can potentially act 
as a reference for guiding computational pairing when VH-only 
Ig-seq is performed (52). Paired Ig-seq techniques currently 
yield smaller dataset sizes than unpaired sequencing––for 
instance, there were 200k sequences for the paired dataset from 
Dekosky et al. (15) as opposed to 40-m unpaired VH sequences 
in a recent study (53). The unprecedented speed and depth of 
Ig-seq techniques both paired and unpaired is unfortunately 
accompanied by high-sequencing error rates as discussed below.
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The four main high-throughput sequencing platforms used 
to interrogate the immunoglobulin gene repertoire are Illumina, 
Roche 454, PacBio, and IonTorrent (39, 54–57). Earlier stud-
ies often used the Roche 454 technology as it offered greater 
read lengths than the Illumina methodology. In recent years, 
Illumina sequencing platforms are usually preferred as they have 
increasing read length, higher read depth, lower error rates, and 
lower costs per base (57, 58). Employment of unique molecular 
identifiers (UIDs) now permits sequencing of the entire anti-
body chain together with a fragment of a constant domain which 
holds antibody isotype information (59, 60). Unfortunately, any 
high-throughput Ig-seq technique suffers from significant error 
rates (61). Sequencing error can be introduced into Ig-seq data-
sets from incorrect base calling and sequencing primer artifacts, 
and has distinct features depending on the sequencing platform 
used. Error and biases can also originate from the process of 
preparing sequencing material including reverse transcriptase 
and polymerase error, amplification of nonproductive V(D)J 
variable domains during DNA sequencing and multiplex PCR 
amplification biases (62, 63). Such error may result in the over-
estimation of the actual number of unique clones in an Ig-seq 
dataset (62).

Several computational and experimental approaches have 
been developed to identify and remove or correct erroneous reads 
(58, 63), though no single-error correction strategy is currently 
widely used in Ig-seq repertoire analysis (30, 58). In particular, 
the recent application of UID to Ig-seq can help to correct errors 
in sequenced transcripts by generating a consensus of reads 
originating from the same mRNA molecule. As many studies 
are confined to CDR-H3 analysis, erroneous reads may also be 
corrected for by using a consensus CDR-H3 sequence for analysis 
following CDR-H3 clustering (39, 51, 64).

ANTiBODY STRUCTURAL PROPeRTieS

The structure of an antibody is crucial in order to understand 
its function. Antibody–antigen recognition relies on the 3D 
conformation of the antibody binding site, the paratope, in 
relation to the cognate epitope on the antigen. In their 3D form, 
antibodies adopt a Y-shape conformation which can exist in 
monomer (IgG, IgD, and IgE), dimer (IgA) or pentamer (IgM) 
forms in humans (65). Several disulfide bonds help to maintain 
the immunoglobulin fold (Figure 1). One set of disulfide bonds 
hold the heavy constant domains together in the hinge region 
and another set connects the light and heavy chains (66). Intra-
variable domain cysteine pairs play a crucial part in shaping the 
antibody Fv region and artificial disruption of these bonds leads 
to impaired stability, folding and antigen recognition (67). These 
cysteines therefore have a crucial role in delineating the structural 
features of an antibody.

Equivalent residue positions across immunoglobulin sequences 
and structures can be identified by applying an antibody number-
ing scheme. Several numbering schemes have been developed to 
confer consistency and standardization on antibody sequence 
annotation (9, 22, 68–71). The most commonly used scheme in 
Ig-seq analysis is the IMGT scheme (12, 39). This numbering was 
built considering both structural and sequence information (9). 

The IMGT scheme supports symmetrical amino-acid insertions 
inside CDRs which ensures that structurally equivalent resides 
will be annotated the same regardless of CDR length. In contrast, 
Chothia numbering is often used by structural biologists for its 
simple CDR loop indel management and inherently structural 
focus (69, 71).

One of the principal differences between numbering schemes 
is how they define CDRs. Wu and Kabat (68) were the first to 
discover and define CDRs as portions of Fv chains that display 
high-sequence entropy, but as with numbering schemes, there 
is not a single widely adopted CDR definition and different 
schemes are used for legacy reasons or for specific features (such 
as insertion management in IMGT). The different numbering 
schemes define antibody CDR positions very consistently with 
the exception of CDR-H1 and CDR-H2 (70). Structural analysis 
of CDR loops has suggested that all CDRs, except for CDR-H3, 
adopt a restricted number of conformations, termed canonical 
classes (22, 72). The canonical classes link sequence patterns 
to a defined structure (22, 44). This enables the prediction of 
canonical class structure from sequence. Over the last 30 years, 
there have been several attempts to cluster CDR sequences/
structures (22, 44, 69, 70, 72, 73). On the sequence level, the 
presence of certain cluster defining key residues indicates the 
shape the loop can adopt (22, 69, 73). Hence, some changes to 
the canonical CDRs can be tolerated with no explicit change to 
loop conformations. The different clustering methods tend to 
recapitulate previously found groups and find new canonical 
forms as a result of new data. Most algorithms incorporate CDR 
loops into clusters with the same number of residues (note that 
the number of residues varies with different CDR definitions). 
More recently, Nowak et al. (44) created a novel method of defin-
ing length-independent canonical classes based on findings 
that loops of mismatching lengths can be structurally related. 
This method allowed fast and accurate structural assignment of 
a far wider spectrum of canonical CDRs from Ig-seq datasets 
into fewer canonical clusters (44).

Complementarity determining region-3 of the heavy chain 
shows a high degree of sequence, length, and structure variation. 
Due to this diversity, it has so far proved impossible to classify 
CDR-H3 loops into canonical classes in the manner of the other 
CDRs. It has been proposed that CDR-H3 can be categorized 
into “bulged” or “extended” conformations based on the pres-
ence of asparagine at position 116 (IMGT numbering) (74, 75). 
However, increasing knowledge of CDR-H3 structural diversity 
has shown that the CDR-H3 bulged/extended configuration is 
difficult to predict solely from sequence (76). The relationship 
between sequence and structure in CDR-H3 can be important 
in Ig-seq as current approaches of clonotype assignment are 
based on CDR-H3 similarity. In this review, we define clono-
types by the presence of identical V, J genes, matching CDR-H3 
lengths and CDR-H3 sequence identities greater than 85% (77). 
However, structural data show that CDR-H3 sequences within 
distinct clonotypes (sequence-dissimilar) can adopt similar 
3D conformations, while those in the same clonotype (similar 
sequences) can adopt different 3D conformations (Figure  2). 
This suggests that the sequence alone is not a reliable indicator 
of similarity/difference between structures and therefore cannot 
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FigURe 2 | Two aligned pairs of VH chains extracted from SAbDab, the antibody structural database (29). Complementarity determining region-3 of the heavy chain 
(CDR-H3) sequences in pair (A) belong to different CDR-H3 clonotypes but adopt very similar structural configurations with a root mean square deviation (RMSD) of 
~1 Å. Pair (B) includes germline precursor (4JDV) and matured (3U7W) anti-gp120 antibodies (78, 79). Although CDR-H3 sequences of pair (B) are members of the 
same clonotype, the RMSD shows that their CDR-H3 shapes are structurally distinct (RMSD > 2 Å). CDR-H3 loops and their amino-acid sequences are in purple 
and cyan colors, mismatched amino acid are in bold. The RMSD of the backbone atom positions of proteins provides a pairwise measurement of the three-
dimensional dissimilarity between two sets of coordinates where solved or predicted structures are available. Sub-Angstrom RMSD indicates structurally identical 
shapes, while an RMSD value greater than 2 Å for a short segment indicates structurally distinct configurations (80).
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reliably indicate similar/different binding sites, functional prop-
erties and clonotype assignment.

The discrepancy between traditional clonotype assignments 
and native structure only illustrates how 3D information could 
be used to draw much more meaningful comparisons between 
antibodies in an Ig-seq dataset. Such comparisons should not be 
confined to CDR-H3 alone, but can be extended to the canonical 
CDRs and the entire Fv region, allowing for much more accurate 
grouping of functionally related antibodies.

COMPUTATiONAL TOOLS LeveRAgiNg 
ANTiBODY STRUCTURe iNFORMATiON

The increasing number of potential applications of antibodies as 
therapeutics has led to the development of computational tools 
which aim to streamline discovery pipelines. Some groups have 
already demonstrated the viability of in silico antibody engineer-
ing methodologies in conjunction with experimental workflows 
(81–84). Computational methods can be broadly divided into 
those that require a sequence as input and those that require a 
structure. Methods that require a structure as input accept experi-
mental as well as computational models of the antibody. The large 
number of experimentally determined antibody structures has 
enabled researchers to rapidly and accurately model antibodies 
by leveraging homology methods (8, 85). Below we review cur-
rent antibody modeling approaches and their applications.

Computational Antibody Modeling
The standard antibody modeling workflow includes four steps 
(Figure 3) (8, 86, 87). The first step is homology modeling of the 
VH and VL frameworks. The framework template can either be 
selected by sequence identity to the full-length chain (87) or to 
individual framework regions (8). Due to framework structure 
and sequence invariance, current computational tools can model 
framework structures very accurately (sub-Angstrom precision) 
(80). The second step is determining the VH/VL orientation, 
which can be achieved by copying the orientation angle from 
structures with high Fv sequence identity using VH/VL orien-
tation methods such as AbAngle (88), analytical estimation of 
the angle using energy functions (89), tailored protein–protein 
docking (49) or structure-trained machine learning (90). Once 
the VH/VL orientation is set, it constrains the geometry of the 
binding site, allowing for the third step, which is modeling of 
non-H3 CDRs. At this stage, either the canonical classes are used 
(91) or template-based modeling such as FREAD (92) or ABGEN 
(93). In the final step, CDR-H3 is modeled using either homol-
ogy or ab initio techniques (94). The resultant antibody model 
is refined for feasibility of dihedral angles from Ramachandran 
distribution, side chain orientations and side-chain clashes (89).

Homology modeling approaches can be fast at generating 
models if a template structure is available. Models can be created 
using online services: PIGSpro (86), Kotai Antibody Builder 
(95), and ABodyBuilder (8). Homology modeling is highly 
dependent on the availability of a similar template structure in 
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FigURe 3 | Generalized workflow of antibody modeling. First, heavy and light chain frameworks are determined by homology modeling using templates from known 
structures. Next, the VH/VL orientation is calculated. The third step is modeling non-H3 complementarity determining regions (CDRs), followed by modeling and 
grafting of CDR-H3 onto the pre-assembled scaffold. Finally, sidechains are added to the resultant structure and it is refined.
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current databases, which can be a problem for CDR-H3 where 
templates for longer loop length are often unavailable (94). This 
lack of templates is primarily due to the huge diversity of CDR-H3 
shapes (96). An alternative to homology methods in such cases is 
ab initio modeling which does not rely on knowledge of already 
solved structures. These modeling methods create a large number 
of potential conformations, often referred to as decoys (97), which 
makes them computationally expensive compared with homol-
ogy methods. Ab initio approaches include RosettaAntibody 
(98) and PLOP (99). RosettaAntibody is accessible online via 
the ROSIE (100) website, where a quick antibody modeling 
option is available which omits the step of intensive searching 
for low-energy CDR-H3 conformations. Hybrid loop mod-
eling methodologies leverage the advantages of both modeling 

paradigms. For instance, Accelrys creates an initial loop model 
with a knowledge-based approach followed by ab initio loop 
refinement (101). More recently, a novel CDR-H3 modeling tool, 
Sphinx, was developed (102), inspired by the length-independent 
canonical CDR clustering of Nowak et al. (44). Sphinx outper-
formed all modeling tools on CDR-H3 structure prediction in an 
ex post facto comparison to the antibody modeling assessment 
(80). Despite development of different approaches, no single tool 
currently exists that is able to reliably model native CDR-H3 
configurations. Accurate predictions of the CDR-H3 specifically 
and other CDRs in general are crucial to structurally characterize 
the antibody–antigen complex.

Performance of antibody modeling tools has been assessed in 
two blind studies, AMA-I and AMA-II (80, 103), where several 
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computational tools were benchmarked against a small number 
of X-ray solved but unpublished antibody crystal structures. 
Models of frameworks and canonical CDRs are usually accurate 
within 1–1.5 Å root mean square deviation (RMSD), respectively 
(see Figure 2 for description of RMSD), which is very close to 
native structure. However, CDR-H3 prediction remains the 
biggest hurdle for computational antibody modeling as aver-
age accuracies for this step ranged between 2 and 3 Å RMSD, 
indicating a decidedly different structure to the native fold. 
Predictions of this quality are usually not suitable for rational 
design applications (80, 104).

AMA-II suggested that antibody modeling tools on average 
produce models of approximately similar accuracies with higher 
RMSD for longer loop lengths. However, the time required is 
radically different between homology and ab initio approaches 
(80). Homology modeling can produce a model on average in 
under a minute [ABodyBuilder (8)], whereas ab initio approaches 
may require up to tens of CPU hours per model [RosettaAntibody 
takes 482 CPU hours on average per model (100)]. To be able 
to use a fast homology method a suitable template is needed. 
Such templates are becoming more frequently available as the 
number of solved antibody structures increases (29). In order to 
model millions of sequences in a typical Ig-seq dataset, speed is 
crucial. Modeling at such high throughput can currently only be 
achieved by tools such as ABodyBuilder, which is able to generate 
a model within ~30 s (8). However, further increasing the rate 
and accuracy of antibody modeling, and developing new ways of 
speeding up CDR-H3 prediction, are needed if we are to structur-
ally characterize complete Ig-seq datasets.

The accuracy and speed of some computational tools mean 
that thousands of sequences from Ig-seq datasets can be mod-
eled. Such structurally annotated Ig-seq datasets allow more 
relevant comparisons of CDRs, binding sites and thus a more 
accurate grouping of molecules (Figure 2). The improved capac-
ity to compare and group antibodies allows us to better visual-
ize the antibody structure space and to investigate structural 
convergences of paratopes, which can be important for vaccine 
development (36, 37). In addition, modeled Ig-seq data can be 
used as input for several computational tools which annotate 
structure-derived antibody properties, such as therapeutic 
viability of the molecule (105).

Computational Prediction of 
Developability
Developing an antibody of high specificity and affinity against a 
target is only the initial step in engineering a therapeutic molecule. 
The resulting antibody can carry an array of risks, collectively 
described as developability, which includes low-expression yields, 
high-aggregation propensity, and off-target effects (106, 107). In 
the process of identifying therapeutic candidates, structurally 
mapped Ig-seq data can be computationally further refined for 
entities that pass developability criteria (45).

High-aggregation propensity is one of the most undesirable 
features of antibody therapeutics. Since aggregation is related to 
the hydrophobicity of the molecule, knowledge of structure is 
crucial as it allows the calculation of solvent accessible surface 

area. Structure-based aggregation propensity prediction tools 
operate by either locating surface-exposed aggregation hot spots 
and/or leveraging physico-chemical properties of the structure 
(105, 108). AGGRESCAN3D, a tool inspired by identification 
of hot spots in the beta amyloid peptide, distinguishes between 
buried, conformation engaged, and solvent-exposed aggrega-
tion prone hydrophobic patches (48). The drawback of this 
method was that it was not initially designed for antibodies. The 
Developability Index (DI) was designed for antibodies and is a 
structure based computational tool that quantitatively assess anti-
body’s propensity to aggregate (105). The DI function considers 
the net charge of the full-length antibody and hydrophobicity of 
solvent-exposed sidechains of CDRs.

Such computational tools can be employed early in drug 
development pipelines to either isolate therapeutically viable 
drug candidates from the entirety of Ig-seq-derived antibody 
repertoire (47). Application of such structurally oriented tools 
requires large-scale modeling of Ig-seq datasets. Nevertheless, to 
date, there have not been many attempts to combine Ig-seq with 
structural and computational methods systematically.

COMBiNiNg ig-seq, STRUCTURAL, AND 
COMPUTATiONAL APPROACHeS

Current approaches to delineate immune repertoires usually 
employ Ig-seq methodology only, remaining firmly within the 
remit of information that can be derived from sequences (31, 
109, 110). The only study which has attempted to combine paired 
Ig-seq and structural information to characterize antibody 3D 
space was that of Dekosky et  al. (45). Using high-throughput 
RosettaAntibody modeling, more than 2,000 models in naïve and 
antigen-experienced Ig-seq datasets were analyzed. These models 
helped to obtain a set of structural descriptors such as net charge, 
surface hydrophobicity of solvent accessible surface area for 
computationally determined paratopes. However, the choice of 
methodologies for this study imposed several limitations. Paired 
VH/VL data did not contain information about the full-length Fv 
region. Hence, all paired reads had to be completed using respec-
tive V germline gene sequences. Moreover, RosettaAntibody 
modeling speed only permitted the prediction of structure of 1% 
of the total Ig-seq dataset (2,000 sequences) in 570k CPU hours. 
Finally, the paired reads with CDR-H3 sequences longer than 16 
amino acids were not included in the structural analysis as the 
modeling accuracy of such loops is currently low. This emphasizes 
the challenges of modeling longer CDR-H3 configurations (94, 
96). Hence, novel fast and reliable CDR-H3 ab initio prediction 
as well as technologically optimized paired VH/VL gene Ig-seq 
are urgently needed for improved Ig-seq data modeling and 
interrogation.

RosettaAntibody (98) is a well-established antibody modeling 
tool and is able to structurally model sequence data; however, its 
run times make it difficult to structurally characterize the millions 
of sequences that are gathered during a typical Ig-seq experiment. 
For this reason, streamlined approaches are being developed to 
tackle the structural annotation of Ig-seq datasets. For instance, 
Nowak et al. (44) performed the structural clustering analysis of 

http://www.frontiersin.org/Immunology/
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TABLe 1 | Summary of currently available resources for computational/structural annotation of antibody sequences.

Tool type Tool name and reference Short tool description

ANTIBODY NUMBERING ANARCI (113) Variety of schemes (North, Chothia, Kabat, IMGT, AHo). Both online and command line 
versions are available

ANTIBODY NUMBERING Abnum (71) Online numbering tool that operates with Kabat and Chothia schemes
SEQUENCE ANALYSIS IgBLAST (114) Nucleotide and amino-acid antibody sequence analysis in IMGT and KABAT schemes
SEQUENCE ANALYSIS IMGT/HighV-QUEST (115) Online antibody nucleotide sequence analysis in IMGT numbering scheme
STRUCTURE DATABASE SabDab (29) Weekly updating database of all publically available antibody structures.
STRUCTURE/SEQUENCE DATABASE abYsis (116) Database of antibody structures and sequences
SEQUENCE DATABASE DIGIT (111) Database of antibody sequences
ANTIBODY MODELING ABodyBuilder (8) Homology modeling (30 s per model)
ANTIBODY MODELING PIGSPro (86) Homology modeling
ANTIBODY MODELING Kotai Antibody Builder (95) Homology modeling (90 min per model)
ANTIBODY MODELING Accelrys (101) Hybrid modeling (30 min per model)
ANTIBODY MODELING RosettaAntibody (87) Ab initio modeling (482 CPU hours per model)
ANTIBODY MODELING (COMMERCIAL) Chemical Computing group (80) Homology modeling tool combined with molecular dynamics (30 min per model)
CDR-H3 MODELING Sphinx (102) Length-independent hybrid modeling (30 min per model)
CDR-H3 MODELING PLOP (99) Ab initio modeling
CDR-H3 MODELING FREAD (85) Homology modeling (2 min per model)
PARATOPE PREDICTION Paratome (117) Structural consensus to identify additional antigen recognizing regions outside the CDRs
PARATOPE PREDICTION i-Patch (118) Statistical inference to devise a likelihood for a position to form a potential contact
PARATOPE PREDICTION proABC (119) Sequence-based method that leverages machine learning to predict residues that form 

interactions

Many of these tools have online presence and links to these are available on our website http://antibodystructure.org.
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antigen-stimulated B-cell receptor repertoire (12, 32). On the 
other hand, low-throughput techniques such as X-ray crystal-
lography can provide detailed information about individual 
antibody structures. Computational methodologies can offer 
a bridge between the two fields by allowing structural annota-
tion of Ig-seq experiments (8, 44, 45). Availability of antibody 
structures and maturity of modeling techniques means it is now 
possible to perform large-scale structural characterizations of 
Ig-seq samples. This enriched structural content can be used to 
perform more precise characterization of antibodies allowing 
inter-antibody comparisons and grouping of structurally simi-
lar sequences (that may not be possible on the sequence level) 
as well as annotation of developability information. Large-scale 
Ig-seq datasets can also direct computational tools for targeted 
interrogation of antibody structural space. Statistical knowledge 
of the distribution of the antibody structures and sequences 
can offer crystallographers an idea of the common but cur-
rently unknown antibody variants. The Ig-seq and structural 
communities will benefit from cross-fertilization of ideas and 
methodologies. Together they will advance our knowledge of 
the antibodies in health and disease and pave the way for more 
advanced antibody-based therapeutics.
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