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The stimulator of interferon genes (STING) is a key adaptor protein mediating innate 
immune defense against DNA viruses. To investigate the role of STING in acute exac-
erbation of idiopathic pulmonary fibrosis (AE-IPF), we isolated primary peripheral blood 
mononuclear cells (PBMCs) from patients and healthy controls (HCs). Raw264.7 and 
A549 cells were infected with herpes simplex virus type 1 (HSV-1). Mice with bleomycin- 
induced lung fibrosis were infected with HSV-1 to stimulate acute exacerbation of the 
lung fibrosis. Global gene expression profiling revealed a substantial downregulation of 
interferon-regulated genes (downstream of STING) in the AE-IPF group compared with 
the HC and stable IPF groups. The PBMCs of the AE-IPF group showed significantly 
reduced STING protein levels, increased levels of endoplasmic reticulum (ER) stress 
markers, and elevated apoptosis. HSV-1 infection decreased STING expression and 
stimulated the ER stress pathways in Raw264.7 and A549 cells in a time- and dose- 
dependent manner. HSV-1 infection exacerbated the bleomycin-induced lung injury in 
mice. In the primary bone marrow-derived macrophages of mice treated with bleomycin 
and HSV-1, STING protein expression was substantially reduced; ER stress was stimu-
lated. Tauroursodeoxycholic acid, a known inhibitor of ER stress, partially reversed those 
HSV-1-mediated adverse effects in mice with bleomycin-induced lung injury. STING lev-
els in PBMCs increased after treatment in patients showing improvement but remained 
at low levels in patients with deterioration. Viral infection may trigger ER stress, resulting 
in STING deficiency and AE-IPF onset.

Keywords: stimulator of interferon genes, acute exacerbation of idiopathic pulmonary fibrosis, endoplasmic 
reticulum stress, viral infection, apoptosis

inTrODUcTiOn

Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is the leading cause of death in patients 
with IPF (1, 2). Although the exact etiology of AE-IPF remains unclear, recent studies suggest that 
viral infection may contribute to the pathogenesis of AE-IPF (2). Wootton et  al. have identified 
respiratory viral infection in some patients with AE-IPF via pan-viral arrays and polymerase chain 
reaction (3). Stimulator of interferon genes (STING), also known as MITA or MPYS, is encoded by 
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FigUre 1 | Patient flow chart and chest X-ray and high-resolution computed tomography (HRCT) images of patients. (a) Patient flow chart. (B) HRCT image of a 
patient with IPF. (c) HRCT image of the patient in D who developed AE-IPF.
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the TMEM173 gene and plays a key role in viral DNA-sensing 
pathways by regulating the expression of numerous host defense 
genes, including type I interferons (IFNs) and pro-inflammatory 
cytokines (4–7). TMEM173 gene mutation has been found in 
patients with severe pulmonary fibrosis, suggesting that STING 
may be involved in AE-IPF (8). The molecular mechanism under-
lying the role of STING in AE-IPF is unknown.

Stimulator of interferon genes is an endoplasmic reticulum 
(ER) resident protein. Thus, ER functional disorder may dam-
age STING, which may consequently compromise the host 
defense mechanism against virus. A wide range of pathological 
stimuli including virus can cause unfolded protein accumula-
tion in the ER, triggering unfolded protein response (UPR). 
Early-stage UPR restores ER homeostasis, but prolonged or 
severe UPR can lead to ER stress, inducing cell death and 
damaging host immune response (9, 10). Herpes virus proteins 
and the ER stress markers have been found to co-localize in the 
alveolar epithelium of patients with IPF (11). In animal models, 
ER stress in the alveolar epithelium exacerbates lung fibrosis 
by stimulating alveolar epithelial cell apoptosis (12). STING 
and ER stress simultaneously contribute to the development 
of liver fibrosis (13). This study aims to investigate the role of 
STING and ER stress in AE-IPF and the underlying molecular 
mechanism.

MaTerials anD MeThODs

Patients
This study was approved by the Ethics Committee of Shanghai 
Pulmonary Hospital (Approval No: 2014FK04, Approved date: 
February 25, 2014). Of the 1,494 patients, who were admitted to 
Shanghai Pulmonary Hospital for interstitial lung disease between 
February 2014 and August 2016, 166 had confirmed IPF according 
to the 2013 ATS/ERS guidelines (1). Thirty-two patients with IPF 

developed acute respiratory deterioration within 1 month before 
hospital admission. Of the 32 cases, 26 met the diagnostic criteria 
for AE-IPF (1) and were included in the study. The diagnostic 
criteria for AE-IPF are provided in the Supplementary Material 
(1). Patient flowchart is displayed in Figure 1A. Written informed 
consent was obtained from all study participants.

Improvement after treatment was defined as alleviated respir-
atory symptoms, ≥10% decrease in radiographic lesions, and/or 
≥10% improvement in arterial partial pressure of oxygen (PaO2) 
within 1 month of treatment compared to the condition prior to 
treatment. Deterioration was defined as aggravated respiratory 
symptoms, continuously expanded radiographic lesions, and/
or a progressive decrease in PaO2. All study participants with 
complete data were followed up until August 30, 2016.

gene expression Profiling
Blood samples were collected from study participants before 
treatment and from healthy individuals who had routine physical 
examination in the hospital. Total RNA was extracted from the 
whole blood samples and global gene expression was analyzed. 
Details are provided in the Supplementary Material.

isolation and analysis of Primary 
Peripheral Blood Mononuclear cells 
(PBMcs)
Primary PBMCs were prepared by density gradient centrifugation 
of the whole blood samples. The STING ligand, cyclic guanosine 
monophosphate-adenosine monophosphate (cGAMP, 5 µg/mL, 
BioVision, Milpitas, CA, USA) was used to stimulate PBMCs at 
37°C for 24 h as previously described (14). The primary PBMCs 
were analyzed by flow cytometry, RT-PCR (15), Western blot (16), 
and TUNEL assay. Details are provided in the Supplementary 
Material. PCR primers are displayed as Table S1 in Supplementary 
Material.
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TaBle 1 | Demographic and clinical characteristic of patients.

ae-iPF (n = 26) stable iPF (n = 134) p-value

Age, year 65.3 ± 8 66.4 ± 7.8 0.52
Male, gender 26 (100%) 119 (88.8%) 0.16
Smoking 18 (69.2%) 89 (66.4%) 0.15
History of recent cold 11(42.3%) 12 (9%) 0.01*
WBC, ×109/L 11.5 ± 3.2 7.1 ± 2.3 0.01*
CRP, mg/L 31.6 ± 16.1 10 ± 17.6 0.01*
LDH, IU/L 300.3 ± 90.3 216 ± 56.3 0.01*
PH 7.4 ± 0.0 7.4 ± 0.0 0.63
PaO2, mmHg 58.4 ± 10.8 75.5 ± 13.6 0.01*
PaCO2, mmHg 38.8 ± 7.9 39.2 ± 4.3 0.74
P/F 140 ± 9.1 269.5 ± 69.1 0.01*
Mechanical ventilation 19 (73.1%) 8 (6%) 0.01*
Length of stay, days 17.8 ± 6.6 6.2 ± 3.5 0.01*
1-year mortality 18 (69.2%) 10 (7.4%) 0.01*

Data are presented as means ± SEM.
*p < 0.05.
CRP, C-reactive protein; LDH, lactate dehydrogenase; P/F, ratio of arterial oxygen 
partial pressure and fraction of inspiratory oxygen concentration.
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cell culture and Treatment
Mouse macrophage cell line Raw264.7, human lung adenocar-
cinoma cell line A549, and herpes simplex virus type 1 (HSV-1) 
were kindly provided by Dr. Qiang Wang (Shanghai Institutes 
for Biological Sciences, Chinese Academy of Sciences). HSV-1 
was propagated and tittered by plaque assay on Vero cells as the 
previous description (16). Raw264.7 cells and A549 cells were 
infected with HSV-1. A549 cells were treated with transform-
ing growth factor-β1 (TGF-β1, 5  ng/mL) for 48  h to induce  
epithelial–mesenchymal transition (EMT), and then infected with 
HSV-1 (17). Tauroursodeoxycholic acid (TUDCA, 500  µg/mL,  
Sigma-Aldrich) was added during EMT process (18). Cells were 
analyzed by Western blot and TUNEL assay. Details are provided 
in the Supplementary Material.

Mouse Model of Pulmonary Fibrosis
C57BL/6 male mice were purchased from Shanghai SLAC 
Laboratory Animal Co., Ltd. The procedures for animal mainte-
nance and experiments were approved by the Institutional Animal 
Care and Use Committee at Tongji University. Pulmonary fibrosis 
was induced by intratracheal bleomycin injection (40 µL of 5.0 U/kg,  
Nippon Kayaku, Japan) as previously described (19). Mice were 
injected intranasally with 5 × 105 plaque-forming units (pfu) HSV-1 
at day 14 after bleomycin injection. Previous study has shown that 
pulmonary fibrosis is established 14  days after bleomycin injec-
tion in mice (20). TUDCA (100 µL of 250 mg/kg) was injected 
intraperitoneally daily after HSV-1 infection (18). The procedure 
of mouse experiment is displayed as Figure S1 in Supplementary 
Material. Details of histology of mouse lung tissue, mouse lung 
function measurement (21), RT-PCR, Western blot, and ELISA 
assay for cytokines are described in the Supplementary Material. 
PCR primers are displayed as Table S1 in Supplementary Material.

isolation of Bone Marrow-Derived 
Macrophages (BMDMs) from Mice
Primary BMDMs were isolated from mice and cultured as previ-
ously described (22). Mature mouse BMDMs were identified as 
the subpopulation with CD11b+F4/80+ based on flow cytometry 
(Figure S2 in Supplementary Material).

Data analysis
Statistical analyses were performed using GraphPad Prism 5.0 
(GraphPad Software, San Diego, CA, USA). Differences between 
two groups were analyzed using unpaired Student’s t-test. 
Differences among multiple groups were analyzed using one-way 
analysis of variance and between groups using Bonferroni’s multi-
ple comparison tests. For mouse survival, Kaplan–Meier survival 
curves were plotted and analyzed by log-rank test. The correlation 
between STING levels and PaO2 was analyzed by Pearson correla-
tion analysis. Results are present as means ± SEM. p values ≤0.05 
were considered significant.

resUlTs

clinical characteristics
Mean age, gender distribution, and proportion of cases with a 
history of cigarette smoking were similar in AE-IPF and stable 

IPF groups (Table  1). By contrast, significantly higher propor-
tion of patients with AE-IPF (42%) than patients with stable IPF 
(9%) had a history of recent cold (p < 0.01, Table 1). The AE-IPF 
group also had significantly higher serum mean levels of white 
blood cell count, C-reactive protein, and lactate dehydrogenase 
than the stable IPF group (all p <  0.01, Table  1), indicating an 
increased inflammation in the AE-IPF group. Compared with the 
stable IPF group, the AE-IPF group showed poorer lung function, 
significantly lower mean PaO2, lower mean ratio of arterial oxygen 
partial pressure and fraction of inspiratory oxygen concentration 
(P/F), higher proportion of mechanical ventilation use, and longer 
hospital stay (all p < 0.01, Table 1). The 1-year mortality in the 
AE-IPF group (69%) was significantly higher than that in the stable 
IPF group (7%, p < 0.01, Table 1), suggesting a poorer prognosis.

High-resolution computed tomography (HRCT) of a patient 
with IPF displayed usual interstitial pneumonia (UIP) character-
ized by bibasal, peripheral predominant reticular opacities with 
traction bronchiectasis, and honeycombing (Figure  1B). At 
the onset of AE-IPF, his HRCT demonstrated newly developed 
diffuse ground glass opacities in both lungs in addition to the 
existing UIP lesions (Figure 1C).

sTing signaling Pathway Was impaired in 
the PBMcs of Patients with ae-iPF
Stimulator of interferon genes signaling pathway plays a critical 
role in mediating immune defense against DNA viruses, such as 
HSV-1 (23). Type I IFNs and inflammatory factors, such as C-X-C 
motif chemokine 10 (CXCL-10), are downstream factors of the 
STING signaling pathway (24). Global gene expression profiling 
revealed a significant downregulation of IFN-regulated signa-
ture genes in PBMCs of four patients with AE-IPF (Figure 2A; 
Table S2 in Supplementary Material) compared with healthy 
controls (HCs) and patients with stable IPF, suggesting that the 
STING signaling pathway may be impaired in AE-IPF. Although 
STING mRNA levels in the primary PBMCs were similar in the 
AE-IPF, stable IPF, and HC groups (Figure  2B), the STING 
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FigUre 2 | Continued
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FigUre 2 | Continued  
The stimulator of interferon genes (STING) signaling pathway was impaired in the primary PBMCs of patients with AE-IPF. (a) Heat map of expression of interferon-
regulated genes of 12 study participants from the AE-IPF, IPF, and HC groups (4 study participants of each group). Red color represents increased gene expression 
levels and green color represents reduced gene expression levels. (B) Relative mRNA levels of STING in PBMCs in HC, IPF, and AE-IPF groups (n = 12).  
(c) Western blot analysis of STING protein expression in the primary PBMCs of the three groups (n = 12). The intensity of the band was normalized to β-actin. (D) 
Flow cytometry histogram of STING expression in CD4 T cells, CD19 B cells, and CD14 monocytes. (e) MFI of the flow cytometry assay in human PBMCs were 
isolated from patients in the IPF and AE-IPF groups and from HCs (n = 6). (F) Relative mRNA expression of IFNβ and CXCL-10 in PBMCs with (+) or without (−) 
cGAMP stimulation (n = 8). Data are presented as means ± SEM, *p < 0.05; **p < 0.01; n. s., not significant. Abbreviations: AE-IPF, acute exacerbation of idiopathic 
pulmonary fibrosis; HC, healthy control; PBMC, peripheral blood mononuclear cell; MFI, mean fluorescence intensity; IFNβ, interferonβ.
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protein levels in the AE-IPF group were reduced approximately 
twenty-fold compared with those in the IPF and HC groups 
(Figure  2C). Flow cytometry further confirmed that STING 
protein expression was particularly reduced in monocytes but 
remained unchanged in T and B lymphocytes (Figures 2D,E) 
in the AE-IPF group.

The mRNA levels of IFNβ and CXCL-10 were significantly 
downregulated in the PBMCs of the AE-IPF group compared 
with the IPF and HC groups (Figure 2F). cGAMP stimulated the 
expression of downstream factors of STING at substantially lower 
extent in the PBMCs of the AE-IPF group. cGAMP increased the 
gene expressions of IFNβ and CXCL-10 by 2 times in the AE-IPF 
group, whereas by more than 200 times in the HC and IPF groups 
(Figure 2F). Similarly, both baseline and cGAMP-induced mRNA 
levels of IFNα in PBMCs were lower in the AE-IPF group than in 
the IPF and HC groups (Figure S3 in Supplementary Material). 
IFNβ proteins were not detected in the serum of the AE-IPF group 
but were found in the serum of the HC and IPF groups (Figure S4 in 
Supplementary Material). These results indicate that patients with 
AE-IPF may have decreased STING proteins and impaired STING 
signaling pathway in PBMCs, which may compromise their innate 
immune function. The impairment of the STING signaling pathway 
in PBMCs of AE-IPF may be associated with severe viral infection-
induced ER stress and the consequent ER functional disorder.

er stress, UPr, and apoptosis Were 
increased in the PBMcs of ae-iPF
In mammalian cells, UPR is orchestrated by three ER transmem-
brane proteins: inositol-requiring enzyme 1α (IRE1α), pancreatic 
endoplasmic reticulum kinase (PERK), and activating transcription 
factor 6 (ATF6) (9). Western blot (the same samples used in STING 
protein Western blot) showed that the ER stress markers, ATF6, 
IRE1α, binding immunoglobulin protein (also known as GRP78), 
X-box protein 1 (XBP1, the downstream molecular of the IRE1α 
pathway), and C/EBP homologous protein (CHOP) were upregu-
lated significantly in the PBMCs from the AE-IPF group compared 
to the IPF and HC groups (all p < 0.05, Figure 3A; Figure S5 in 
Supplementary Material), indicating the activation of ER stress and 
UPR in the PBMCs of the AE-IPF group. The protein levels of ATF4, 
a downstream transcription factor of PERK, were not significantly 
different in the three groups (Figure S6 in Supplementary Material).

E3 ubiquitin ligase ringer protein 5 (RNF5) can catalyze the 
K48-linked poly-ubiquitination of STING and promote protea-
some-dependent degradation of STING (25). In the PBMCs of 
the AE-IPF group, RNF5 protein levels were increased 8 times of 
those in the HC group and 2.5 times of those in the IPF group. The 
ubiquitination was significantly increased in the AE-IPF group 

compared to the stable IPF and HC groups (Figure 3B), which 
may cause the STING protein reduction in the PBMCs of AE-IPF. 
In addition, TUNEL assay showed that PBMC apoptosis was 
significantly elevated in the AE-IPF group compared with that in 
the IPF and HC groups (Figures 3C,D). Based on these results, 
we speculated that ER stress might contribute to the impaired 
STING signaling pathway in the PBMCs of AE-IPF.

hsV-1 infection Triggered er stress and 
Downregulated sTing Protein expression 
in raw264.7 and a549 cells
Stimulator of interferon genes protein expression increased grad-
ually and reached a maximal level 4–6 h after HSV-1 infection, and 
then gradually reduced to the baseline level 24 h after the infection 
in both Raw264.7 cells (Figure 4A) and A549 cells (Figure 4C). 
STING expression reduced progressively as HSV-1 dose increased 
in both Raw264.7 (Figure 4B) and A549 cells (Figure 4D). ATF6 
in Raw264.7 cells and IRE1α in A549 cells were stimulated by 
HSV-1 infection in a time-dependent (Figures 4A,C) and dose-
dependent (Figures 4B,D) manner. CHOP, a proapoptotic protein, 
was upregulated in both cell lines by HSV-1 infection time depend-
ently (Figures 4A,C) and dose dependently (Figures 4B,D). The 
two UPR factors, IRE1α and XBP1, were not induced by HSV-1 
infection in Raw264.7 cells, neither was ATF6 in A549 cells (Figure 
S7 in Supplementary Material).

The hallmark of IPF is aberrant myofibroblast proliferation. 
EMT has been considered as a principal source of myofibroblast 
(26). We treated A549 cells with TGF-β1 to induce EMT and 
mimic myofibroblast differentiation (A549-EMT  cells). The 
expression of α-SMA, a biomarker for myofibroblast differentia-
tion, was increased substantially by TGF-β1, and the expression 
of E-cadherin, an epithelial adhesion molecule, was markedly 
downregulated by TGF-β1 (Figure 5A). STING protein expres-
sion was reduced substantially by HSV-1 infection (MOI 10) in 
A549-EMT cells, whereas was not affected by the same dose of 
HSV-1 in TGF-β1-untreated A549 cells (Figure 5A). The protein 
expressions of RNF5, IRE1α, XBP1, and CHOP were stimulated 
in A549-EMT  cells by HSV-1 in a dose-dependent manner 
(Figure  5A). In addition, TUDCA, which is a small molecule 
chaperone regulating proper protein folding in ER and can alleviate 
ER stress, partially reversed the HSV-1-mediated effects. TUDCA 
treatment increased STING expression and reduced RNF5, IRE1α, 
XBP1, and CHOP expressions in HSV-1-treated A549-EMT cells 
(Figure 5A). TUDCA also dramatically reduced the apoptosis of 
HSV-1-treated A549-EMT cells (Figure 5B). These data suggest 
that HSV-1 infection may induce ER stress, which consequently 
reduce STING protein expression by degradation and apoptosis.
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hsV-1 infection exacerbated Bleomycin-
induced Pulmonary Fibrosis in Mice and 
TUDca Partially attenuated the adverse 
effects
Histological examination showed that HSV-1 infection exacer-
bated the inflammation and collagen deposition in the lung of 
mice with bleomycin-induced pulmonary fibrosis (Figure 6A). 
The diffuse alveolar damages in the mice with pulmonary 

fibrosis, which were characterized by interstitial edema, intra-
alveolar hemorrhage, alveolar epithelial denudation, and hyaline 
membranes, resembled the lung histopathology of patients with 
AE-IPF (Figure  6A; Figure S8A in Supplementary Material). 
HSV-1 infection increased the acute lung injury score and fibrosis 
score in mice with bleomycin-induced pulmonary fibrosis (Figure 
S8B in Supplementary Material). The accumulation of HSV-1 
virus particles in lung tissues was significantly higher in the mice 
receiving both bleomycin and HSV-1 than in the mice treated 
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with HSV-1 alone (Figure  6B). HSV-1 infection also reduced 
forced vital volume (FVC) and lung compliance in the mice with 
bleomycin-induced lung fibrosis (Figure S8C in Supplementary 
Material). The mortality of mice treated with bleomycin and 
HSV-1was the highest, and approximately 75% of the mice died 
within 14 days after HSV-1 infection (Figure 6C).

Primary BMDMs were isolated from mice on day 21 or day 
28 after bleomycin injection. STING protein expression was dra-
matically increased in the BMDMs of mice without bleomycin- 
induced lung fibrosis after HSV-1 infection (Figure 6D). By con-
trast, STING protein levels were entirely absent in the BMDMs 
isolated on day 21 from the mice treated with bleomycin and 
HSV-1 and substantially reduced in the BMDMs isolated on day 
28 (Figure  6D). Contrarily, RNF5, ATF6, and CHOP protein 
levels were increased in BMDMs from the mice treated with 
bleomycin and HSV-1 (Figure  6D). In mouse lung tissues, 
although STING protein expression was not changed, ATF6 
and CHOP protein expressions were increased considerably by 
HSV-1 infection (Figure S9 in Supplementary Material). The ratio 
of phosphorylated IFN regulatory factor 3 (IRF3) to total IRF3 in 
the lung tissue of the mice treated with bleomycin and HSV-1 was 

increased by three times compared with that of the mice treated 
with saline and mock infection on day 7 after HSV-1 infection 
(day 21 after bleomycin injection) but remained unchanged on 
day 14 after HSV-1 infection (day 28 after bleomycin injection) 
(Figure S9 in Supplementary Material). In addition to inducing 
ER stress in the lung and BMDMs, HSV-1 infection also increased 
protein levels in BALF, promoted inflammatory cytokine release, 
including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 
and monocyte chemoattractant protein-1 (MCP-1), and reduced 
anti-inflammation cytokine IL-10 production (Figures S10A–C 
in Supplementary Material).

Notably, TUDCA, an inhibitor of ER stress, exerted protec-
tive effects in the mice treated with bleomycin and HSV-1. 
TUDCA reduced bleomycin-induced pneumonitis and fibrosis 
and improved lung function and survival (Figures 6A,C; Figures 
S8A–C in Supplementary Material). Consistent with the results 
from Raw264.7 and A549 cells, TUDCA also partially restored 
STING protein expression and reduced RNF5, ATF6, and CHOP 
levels in mouse BMDMs isolated on day 28, even though STING 
protein was nearly absent on day 21 (Figure  6D). In lung tis-
sues, TUDCA reduced HSV-1 infection-mediated upregulation 
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of ATF6 and CHOP (Figure S9 in Supplementary Material). 
Furthermore, TUDCA decreased the content of total protein in 
BALF and IL-6, TNF-α, and MCP-1 expression, and increased 
IL-10 levels (Figures S10A–C in Supplementary Material). Taken 
together, these data indicate that HSV-1 infection may stimulate 
ER stress, which may lead to STING deficiency by stimulating 
RNF5 pathway, ultimately causing an exacerbation of bleomycin-
induced lung injury in mice.

sTing Protein levels in PBMcs reflected 
the effectiveness of Therapies for ae-iPF
To investigate the dynamic changes of STING at different disease 
status, we collected primary PBMCs from 10 patients with AE-IPF 
before and after treatment. Of the 10 patients, 6 showed improve-
ment and 4 had deterioration after treatment. Before treatment, 
STING protein levels in all the 10 patients were very low, whereas 
after treatment, STING protein levels were substantially increased 
in patients showing improvement and remained at low levels in 
patients showing deterioration (Figures 7A,B). STING protein levels 
may indicate the effectiveness of therapies for AE-IPF. Furthermore, 
Pearson correlation analysis revealed a significant positive correla-
tion between pre-treatment STING protein levels and PaO2 level 
(R2 = 0.8405, p < 0.0001, Figure 7C). Thus, STING protein levels in 
PBMCs may reflect the severity of pulmonary dysfunction in IPF.

DiscUssiOn

The current study showed 15.7% patients with IPF (26/166) 
experienced at least one episode of acute exacerbation during 

a 30-month follow-up period and the 1-year mortality rate of 
AE-IPF was 69%. These findings are consistent with the previous 
reports, which have found that the annual incidence of AE-IPF 
is 5–15% and the short-term mortality of AE-IPF is higher than 
50% (27–29). Viral infection may be the “second hit” to further 
exacerbate genetic or environmental factor-mediated lung 
injuries (3, 20, 30, 31). In the current study, 42.3% of patients 
with AE-IPF had a history of cold before the onset of AE-IPF and 
HSV-1 infection exacerbated bleomycin-induced lung fibrosis in 
mice.

Stimulator of interferon genes plays a key role in activating 
host antiviral responses. In normal physiological condition, 
HSV-1 infects cells and the viral DNA enters the cell, which 
triggers the cytosolic DNA sensor, cyclic GMP-AMP synthase, to 
produce the second messenger, 2′3′-cGAMP. The 2′3′-cGAMP 
binds STING to activate TANK-binding kinase 1, resulting in 
IRF3 phosphorylation, which consequently induces the expres-
sion of type I IFNs and innate immune response (Figure  8)  
(23, 29). Infection of STING-deficient mice failed to induce IFN-
β and pro-inflammatory cytokine secretion (32). Furthermore, 
STING-deficient mice seemed highly unlikely to survive HSV-1 
infection (6, 33). Consistent with these findings, our data 
show that STING deficiency may contribute to viral infection-
mediated AE-IPF. Severe viral infection may trigger UPR and 
ER stress, inducing RNF5 over-expression so to promote STING 
degradation via ubiquitination (Figure 8). The activated UPR can 
also trigger apoptosis, which further reduce STING production 
(Figure 8). STING deficiency may then reduce IFN expression 
and compromise host immune response, ultimately leading to 
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FigUre 6 | Continued  
Herpes simplex virus type 1 (HSV-1) infection exacerbated lung injury, induced endoplasmic reticulum stress, and downregulated stimulator of interferon genes 
(STING) protein expression in mice with bleomycin-induced lung fibrosis. (a) Representative image of mouse lung sections with hematoxylin and eosin staining. The 
microscopic appearance of diffuse alveolar damage (DAD) with hyaline membranes (box) was founded in the lungs from mice treated with Bleomycin and HSV-1. 
Original magnification: ×200. Scale bars represent 100 µm (n = 10). (B) Immunohistochemistry analysis of HSV-1 particle deposition in mouse lung tissues (n = 10). 
Solid black arrows are pointing to cells infected by HSV-1. Percentages of cells infected by HSV-1 were quantified. Original magnification: ×200, scale bars represent 
100 µm. (c) Kaplan–Meier analysis of mouse survival (n = 20). (D) The expression of STING, RNF5, activating transcription factor 6 (ATF6), and CHOP in primary 
bone marrow-derived macrophages (BMDMs) isolated from mice on day 21 and day 28 after bleomycin injection. Left: representative western blot image. Right: 
densitometry analysis of the western blot bands (n = 5). The intensity of the protein bands was normalized to β-actin. Data are presented as means ± SEM, 
*p < 0.05; **p < 0.01; n.s., not significant.
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the onset of AE-IPF. Our findings appear to support this AE-IPF 
scenario. We found that HSV-1 infection stimulated UPR and ER 
stress in Raw264.7 cells, A549 cells, and primary mouse BMDMs 
and lung tissue of mice treated with bleomycin and HSV-1. 
UPR and ER stress were also detected in the primary PBMCs of 
patients with AE-IPF. STING deficiency was detected in those 
cells with ER stress, and the expression of the downstream factors 
of STING, including IFN-regulated gene and cytokines that are 
involved in immune response such as CXCL-10, was downregu-
lated in the STING-deficient cells. Our results from the TUDCA 
treatment appear to further support the scenario. TUDCA, a 
known inhibitor of ER stress, not only partially alleviated HSV-1 
induced ER stress and partially restored STING protein levels in 
A549-EMT cells and the primary BMDMs of mice treated with 
bleomycin and HSV-1 but also attenuated the apoptosis of HSV-1 
infected A549-EMT  cells and improved the survival of mice 
treated with bleomycin and HSV-1.

Liu et al. reported that STING expression was induced at both 
mRNA and protein levels in A549 cells infected with HSV-1 

(MOI of 0.1) (34, 35). Surprisingly, HSV-1 infection with high 
dose (MOI of 10 or 100) downregulated STING protein expres-
sion in our study. In addition to ER stress, other posttranslational 
regulatory mechanisms may also contribute to the STING 
deficiency in AE-IPF. For example, the autophagy-related serine/
threonine protein kinases ULK1 and ULK2 can specifically phos-
phorylate S366 in STING to promote STING degradation (36). 
Recently, it was reported that HSV-1 infection induced tripartite 
motif-containing protein 29 (TRIM29) expressions in human 
airway epithelial cells. The E3 ubiquitin ligase TRIM29 inhibited 
the antiviral innate immune response by promoting the STING 
ubiquitination and degradation (37). Thus, the causal association 
between ER stress and STING deficiency in AE-IPF needs to be 
further investigated.

Notably, the positive correlation between pre-treatment STING 
and PaO2 levels suggests that monocyte STING levels appear to 
reflect the severity of pulmonary dysfunction in IPF and may be 
an effective biomarker to evaluate AE-IPF. Furthermore, the asso-
ciation between restoration of STING levels and post-treatment 
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FigUre 8 | Schematic diagram of virus-induced endoplasmic reticulum (ER) 
stress and the consequent downregulation of the stimulator of interferon 
genes (STING) pathway in acute exacerbation of idiopathic pulmonary 
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infection activates the cytosolic DNA sensor, cyclic GMP-AMP synthase 
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the downstream signaling pathways. TANK-binding kinase 1 (TBK1) is 
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improvement indicates STING levels may reflect the effective-
ness of therapies for AE-IPF.

In conclusion, severe viral infection could induce ER stress to 
promote STING degradation by upregulating RNF5 and to reduce 
STING production by inducing apoptosis of immune cells, result-
ing in STING deficiency and immune response disorder, which 
ultimately may trigger AE-IPF.
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