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Influenza is a major cause of respiratory disease leading to hospitalization in young 
children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to 
be ineffective and poorly immunogenic in this population. The development of live- 
attenuated influenza vaccines and adjuvanted vaccines are important advances in the 
prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant 
systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent 
influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with 
non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent 
antibody response for both homologous and heterologous influenza strains in infants 
and young children. Evidence of a significant improvement in vaccine efficacy with these 
adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted 
vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal 
MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action 
of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory 
cytokines and chemokines, including CXCL10, but independently of type-1 interferon. 
This proinflammatory response is associated with improved recruitment, activation 
and maturation of antigen presenting cells at the injection site. In young children MF59 
ATIV produced more homogenous and robust transcriptional responses, more similar 
to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate 
immune response, which correlated with antibody titers were also identified. Differences 
were detected when comparing child and adult responses including opposite trends in 
gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation 
between magnitude of plasmablast response at day 7 and antibody titers at day 28 
in children. These insights show the utility of novel approaches in understanding new 
adjuvants and their importance for developing improved influenza vaccines for children.
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iNFLUeNZA AND NON-ADJUvANTeD vACCiNeS

Influenza causes significant morbidity and mortality worldwide and it is estimated that 20–30% of 
children become infected with influenza each year (1). Although influenza infection often results in a 
self-limiting illness, young children are at increased risk of secondary pneumonia, hospitalization, and 
death (2, 3). The global incidence of influenza-associated acute lower respiratory infections (ALRI)  
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in children less than 5 years old has been estimated at 20 million 
in 2008 (13% of all cases of pediatric ALRI) (4). In the same year, 
an estimated 28,000–111,500 deaths in children less than 5 years 
old were attributable to influenza-associated ALRI. The mortality 
burden is seen most in developing countries, where 99% of these 
deaths occurred. Moreover, influenza-related illness is responsible 
for substantial economic burden, contributing to an increasing 
number of outpatient appointments, missed school and antibiotic 
use in children (5, 6). Laboratory-confirmed influenza-related 
medical attendances in children less than 5 years of age have been 
reported as high as 27 emergency department visits per 1,000 
children and 95 outpatient visits per 1,000 children (7).

Prevention of influenza is most effectively provided through 
vaccination and would ideally offer cross protection against 
drifted non-vaccine influenza virus strains. Children play an 
important role in transmission of influenza virus therefore the 
vaccination of this population is not only an important preven-
tion strategy for direct protection but also indirect protection for 
the wider population (6, 8, 9). Licensed non-adjuvanted influ-
enza vaccines for children include split or subunit inactivated  
influenza vaccines (IIV) and the live-attenuated influenza vaccine 
(LAIV). Young children are often naive to the influenza virus, 
have not previously been vaccinated, and are therefore unprimed. 
For this reason it is recommended that children receive two doses, 
28 days apart, of an influenza vaccine in the first influenza season 
they receive immunization. Both IIV and LAIV have significant 
limitations for use in the pediatric age group. IIV is not licensed 
for use before the age of 6  months; it is poorly immunogenic 
in younger children, with an efficacy of 59% against confirmed 
influenza infection and 36% effectiveness against influenza-like 
illness (ILI) in children 6 months to 2 years old (10). Additionally, 
IIV provide poor cross-protection for mismatched influenza 
virus strains (10). LAIV has significantly better efficacy than IIV, 
with 55% fewer cases of confirmed influenza following LAIV 
compared with IIV (11). However, LAIV is not recommended for 
children less than 2 years of age due to increased rates of wheezing 
episodes postvaccination (11).

Currently, trivalent or quadrivalent influenza vaccination is 
recommended only for high-risk children in most countries—or 
for all children aged 6  months and older in certain developed 
countries including the US, UK, Australia, and Canada (12–15). 
In the UK the LAIV is funded through the routine immuniza-
tion schedule for children aged 2–11  years (though roll out of 
the program to all these age groups is not yet complete) with 
evidence from surveillance data demonstrating direct protec-
tion in children against influenza infection and hospitalization  
(13, 16, 17). Conversely, LAIV has shown poor effectiveness in 
children in the US over the last three influenza seasons and was 
not recommended for the 2016–2017 season (18). Irrespective 
of these recommendations, uptake is suboptimal. Recent surveil-
lance in the USA estimates only 26% of laboratory-confirmed 
influenza-associated pediatric deaths in children 6  months 
to 17  years having received an influenza vaccine prior to their 
illness (19). The common perception that influenza is a benign 
illness compared with other childhood infections, and the partial 
efficacy of influenza vaccines in young children limit its recom-
mendations, its promotion and thus its uptake.

The limitations of IIV and LAIV in young children and the 
poor vaccination coverage result in one of the highest risk groups 
for influenza-related comorbidities receiving inadequate preven-
tion and subsequent lack of herd protection for the remaining 
population. An approach to improving protection in children 
is the addition of adjuvants to the traditional IIV. Adjuvants are 
designed to enhance the immunological response to a vaccine 
and, when used for influenza vaccines, have afforded antigen 
dose sparing and improved cross-protection against non-vaccine 
influenza virus strains. A range of adjuvant formulations have 
been developed and there has been progress toward fully 
understanding the mechanisms involved their action in recent 
years. Historically there have been challenges involving the use 
of adjuvanted influenza vaccines in humans due to unacceptable 
adverse events (20–22). New and improved adjuvant systems have 
overcome this issue and there have been a number of approved 
adjuvanted influenza vaccines for children, including prepan-
demic, pandemic, and seasonal vaccines. This article provides 
an overview of the oil-in-water-adjuvanted influenza vaccines in 
children, MF59 and adjuvant systems 03 (AS03) (Table 1), high-
lighting their ability to provide improved protection for children 
against influenza.

ADJUvANTeD iNFLUeNZA vACCiNeS

MF59-Adjuvanted influenza vaccines
MF59 is an oil-in-water emulsion composed of squalene and two 
surfactants, Tween 80 and Span 85. Squalene is a naturally occur-
ring oil synthesized in the human liver and is a direct precursor to 
cholesterol (23). The Chiron Vaccines company developed MF59 
and it was first licensed as part of a seasonal influenza vaccine for 
the elderly population in Italy in 1997. Over 100 million MF59-
containing vaccines have been distributed in over 30 countries 
around the world. The MF59-adjuavanted inactive trivalent 
influenza vaccine (TIV) [Fluad®, MF59-adjuvanted trivalent 
influenza vaccine (ATIV), Novartis Vaccines] contains 15 μg of 
each influenza strain surface antigen and the MF59 adjuvant and 
is administered as a 0.5  ml dose. It is licensed for adults aged 
65 years and over. Fluad Pediatric®, a 0.25 ml dose, has now been 
licensed for children aged 6 months to 2 years in Canada since 
2015. Two MF59-adjuvanted monovalent A/H1N1 pandemic 
influenza vaccines (Focetria® and Celtura®, Novartis Vaccines) 
were licensed for children during the H1N1 influenza pandemic 
in 2009. Focetria® is an egg-based inactivated subunit vaccine and 
Celtura® a cell-culture-based inactivated subunit vaccine.

AS03-Adjuvanted influenza vaccines
The AS03 adjuvant is an oil-in-water emulsion composed of 
squalene, polysorbate 80 and α-tocopherol (vitamin E). AS03 
was first used in the prepandemic H5N1 vaccine Prepandrix 
(GlaxoSmithKline Biologicals s.a.) and was subsequently 
included in two influenza A(H1N1)pdm09 pandemic vaccines—
Pandemrix®, GlaxoSmithKline Biologicals s.a., and Arepanrix®, 
GlaxoSmithKline Inc. Two AS03 formulations with differing 
amounts of tocopherol, AS03A (11.86 mg tocopherol) and AS03B 
(5.93 mg tocopherol), were used in the full dose and half dose 
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TAbLe 1 | AS03- and MF59-adjuvanted vaccines for children.

Adjuvant vaccines Trade name Hemagglutinin  
(HA) dose

influenza 
vaccine type

Culture  
medium

Dose 
(pediatric)

Countries licensed 
for children

AS03 Oil-in-water emulsion
Squalane, polysorbate 
80 and α-tocopherol

A/H1N1 pandemic 
influenza vaccine

Pandemrix® (GSK) 3.75 μg in 0.5 ml Inactivated, 
split-influenza

Egg 0.25 ml Europe

Arepanrix® (GSK) 3.75 μg in 0.5 ml Inactivated, 
split-influenza

Egg 0.25 ml Canada and Latin 
America

MF59 Oil-in-water emulsion
Squalene, Tween 80  
and Span 85

Seasonal trivalent 
influenza vaccine

Fluad® (Novartis) 15 μg (in 0.5 ml) of 
each influenza strain 
surface antigen

Inactivated, 
subunit

Egg 0.25 ml Canada 

Fluad Pediatric™ 
(Novartis)

7.5 μg (in 0.25 ml) of 
each influenza strain 
surface antigen

A/H1N1 pandemic 
influenza vaccine

Focetria® (Novartis) 7.5 μg in 0.5 ml Inactivated, 
subunit

Egg 0.5 ml Europe and Latin 
America

Celtura® (Novartis) 3.75 μg in 0.5 ml Inactivated, 
subunit

Madine-Darby 
canine kidney 
(MDCK) cells

0.25 ml Some countries in 
Europe and Latin 
America

GSK, GlaxoSmithKline.
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vaccines, respectively. The 2009 A(H1N1) influenza pandemic 
was the first time the global deployment of a pandemic influenza 
vaccine had been undertaken. The benefit of using the AS03 
adjuvant as part of a pandemic vaccine is its ability to induce 
high antibody titers with a reduced antigen dose (3.75 or 7.5 μg 
per strain compared with 15ug per strain in conventional TIV), 
making it possible to meet the global demand. Pandemrix® was 
accepted for fast track authorization and had been given to less 
than 200 children aged 3–9  years before it was licensed (24). 
Approximately 4.7 million doses of AS03-adjuvanted A(H1N1) 
vaccines have been administered to children since 2009 (25).

iMMUNOLOGY

effect of Adjuvants on Systemic Antibody 
Responses to influenza  
Hemagglutinin (HA)
A number of clinical trials have demonstrated that the 
seroprotection induced by the MF59-adjuvanted vaccines is 
superior to TIV, even in the very young (26–33) or the elderly 
(34). The threshold of protection was defined in immunized 
adults as HAI titers ≥40 (50% protection from reinfection) or 
a fourfold rise from baseline (35). However, this was proven 
to be insufficient to protect infants and young children and 
new protective thresholds were defined by Black et  al. (36). 
Here, children aged 16–72  months received two doses of an 
MF59 ATIV (Fluad®) or a TIV vaccine (Influsplit®). Follow 
up for any influenza like illness was confirmed by RT-PCR. 
Immunogenicity and surveillance data collected allowed the 
investigators to model a protective HAI titer that would give 
80% (≥330) and 90% (≥629) protection in this age group. In 
a subsequent, similar study of children aged 14–24  months, 
100% of children achieved thresholds of both ≥330 and ≥629 
after two doses of MF59 ATIV in response to A/H1N1 and A/
H3N2 vaccination in comparison with those receiving TIV 

(Imuvac®) where 8 and 47% of children achieved ≥330 to 
H1N1 and H3N2, respectively (29).

It seems that in all age groups, primed individuals respond 
more robustly to both TIV and ATIV vaccines (37–39).

Adjuvants induce Recruitment of innate  
b Cells and igM Production
Murine models have shown that influenza viruses cause inflam-
mation of epithelial cells in the respiratory tract (40, 41). These 
innate inflammatory signals trigger local and systemic responses, 
resulting in a protective immune response against influenza virus 
(40, 41) and adaptive T and B cell responses (42).

The MF59 adjuvant has been shown, in mice and humans, 
to induce proinflammatory chemokines such as CXCL10 and 
cytokines [independently of type-1 interferon (IFN)] at the 
injection site, with recruitment of CD11b+ blood cells (43–45). 
These chemokines and cytokines promote more efficient antigen 
uptake by, and differentiation of, monocytes, macrophages and 
granulocytes, and differentiation of monocytes into immature 
dendritic cells (DCs) (46). MF59 also primes for enhanced 
processing and presentation of antigen for broader recognition 
of epitopes (47, 48).

There is extensive evidence, mainly from murine studies, to 
show that influenza HA-specific IgM can mediate protection from 
initial infection and re-infection (42, 49–54). In mice, innate B1 
cells have a clearly defined role in systemic and local protection 
through spontaneous, steady state secretion of natural IgM anti-
bodies (49, 51, 52). Murine models of influenza infection noted 
that B1a cell secretion of viral–specific IgM is enhanced locally, but 
not systemically, following infection (52, 53). While the systemic 
response was mediated by conventional, B2 cell-derived IgM  
(49, 51, 52). In human infants (aged 14–24  months), systemic 
serum IgM, IgM-plasma cells (PCs) and IgM-memory B  cell 
responses, specific to vaccine H3N2 and H1N1 components, were 
observed 1 month after two doses of TIV or ATIV, although no 
difference was observed between the groups (29).
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The role of IgM and innate B cells in human responses is not 
clearly understood since HAI titers are a measure of total Ab 
function and not just IgG; however, the contribution of IgM in 
influenza virus neutralization assays has been demonstrated 
(55, 56), so it could be proposed that IgM also has a role in 
hemagglutination.

Memory b Cells (bMeM), Antibody 
Secreting Cells (ASCs), and Cross-
Reactive Antibodies Are enhanced by 
Adjuvant
Influenza infection induces a mucosal (nasopharygeal lamina 
propria) B  cell, antibody and cellular response which is main-
tained over time (37). In mice it was shown that BMEM localized 
to the lung could provide protection from reinfection, while the 
bone marrow resident long-lived plasma cell (LLPC), spontane-
ously secreted antibody to provide immediate protection (57).

There seems to be some separation of the mucosal response 
from the systemic response (peripheral blood and tonsils) 
induced by intramuscular (i/m) immunization (37, 58). However, 
detection of PCs or ASC in peripheral blood may be the best 
marker of recent infection or response to immunization in naive 
subjects (59).

While there is very little information in the literature on 
BMEM and ASC responses in infants and very young children 
there are some age group comparisons. The ASC responses in 
adults versus children (aged 2–3 years) immunized with TIV were 
similar between primed children and adults, but in unprimed 
children only the IgM-ASC response was equivalent to adults, 
while the IgG and IgA-ASC response was significantly lower (60). 
IgG-ASC responses have also been detected in other age groups 
following either TIV [in children aged 6 months to 4 years (39)] 
or TIV versus MF59 ATIV immunization [in children aged 
14–26  months (29), and in adults (61)]. However, even with 
adjuvant use in younger children, the day 7 peak in frequency of 
IgG-ASC in children is less than in adults, which may be related 
to maturity of the immune system and previous priming (61). 
The peak in ASC at day 7 postimmunization is almost always 
referring to IgG response; however, similar peaks in IgA, and to 
a lesser extent, IgM are also described (37).

Induction of IgG-BMEM has been observed in both primed 
and unprimed adults, although the magnitude of the response 
was enhanced in the presence of MF59 (38). In children aged 
14–24 months both TIV and ATIV vaccines induced a greater 
frequency of IgM-BMEM than IgG-BMEM. However, the func-
tional, HAI, responses were more robust and long lived following 
MF59-ATIV than after TIV (29).

Even in the absence of adjuvant, Influenza HA induces 
polyclonal stimulation of B cells and production of IgM antibod-
ies, some of which are cross-reactive with different flu strains 
(62–64). In vitro studies have revealed HA stalk-specific antibod-
ies that show different binding patterns, which indicates multiple 
conserved epitopes (65).

Specificity of ASC and antibody in response to TIV is more 
strain specific, with little cross-reactivity in comparison with con-
trolled infection (H3N2) where ASC were reactive with a number 

of different strains (66). Repeated exposure via TIV immuniza-
tion also limited induction of cross-reactive stem antibodies while 
response to the immunodominant head structure increased (67), 
suggesting that primary responses (in younger cohorts) induce 
stem antibodies while the recall response, mediated by BMEM 
and LLPCs (in older cohorts), is to the head structure (68).

Thus, the presence of preexisting HA-specific-BMEM may 
reduce (or focus) the breadth of subsequent Ab and ASC specific-
ity and presence of high titers of serum HA-specific antibodies 
corresponds with a poorer ASC response (61, 69–71). It was 
suggested that cross-strain responses could be improved if strains 
included in the seasonal vaccines varied more frequently (70). 
However, in the presence of MF59-adjuvanted vaccines, more 
robust BMEM responses to clade mismatched H5 viruses (38) 
and A/strain group mismatched viruses (H5N1 vs. H7N9) were 
achieved than with TIV alone (69).

The cross-reactive antibodies undergo affinity maturation 
following immunization (H1N1-pdm09), which correlates with 
increased expression of activation-induced cytidine deaminase 
(72). MF59 and AS03 have been shown to enhance the produc-
tion of cross-reactive (38, 73) and strain-specific antibodies 
compared with non-adjuvanted versions of the same influenza 
A/strains (46, 61, 65, 74–83). A similar effect was also seen with 
rintatolimod (a TLR-3 adjuvant), given intranasally with LAIV 
against H5 and H7 strains (84). However, this approach was not 
as successful for B/strains of the virus (79).

The role of somatic hypermutation, during memory B  cell 
development, in broadening the cross-specificity of preexiting 
memory was described by Fu et  al. (85) who demonstrated 
acquisition of H5 specificity following a single mutation of an 
H1/H3-specific germline VH sequence (IGVH3-30, Mab 3I14) 
directed against the HA stem.

The A/strain-specific cross-reactive antibodies have been 
identified following immunization in adults, the elderly (47, 75),  
and in children (31, 86). Generation of these cross-reactive anti-
bodies is one of the main aims of new influenza vaccine develop-
ment in order to help protect against future, related, pandemic 
strains (38, 61, 64, 71).

Role of T Follicular Helper cells (Tfh) and 
enhancement by Adjuvant
Kopf et al. (53) suggested a primary role for B1 cell-derived IgM 
may be to enhance CD4+ T  cell priming at sites of infection. 
IgM-opsonized viral antigen may be captured by DCs that can 
prime T  cell responses (53). IgM-Ag complexes may also flow 
back to draining lymph nodes (LNs), enhancing viral-specific 
CD4+ T cell-B cell interactions and subsequent germinal center 
formation (53).

Thus the enhanced recruitment of antigen presenting cells 
induced by MF59 to sites where these CD4+T cell-conventional 
B cell interactions are occurring may partly explain the enhanced 
IgG memory responses achieved by ATIV vaccines and that the 
innate and adaptive mechanisms are required to achieve protec-
tive responses.

The role of CD4+ T cells in supporting antibody responses 
against influenza HA has been accepted for many years (42). 
However, in recent years a subset of CD4+ T cells, known as 
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T follicular helper (Tfh) cells have been strongly implicated 
to be involved in robust, long-lived antibody responses to 
influenza infection (87, 88) and immunization with TIV (89) 
and ATIV (90).

Tfh cells differentiate under certain conditions at the T-B cell 
border of the lymphoid follicles and require proinflammatory 
conditions (91). Activated B cells secrete IL-6 which induces Bcl6 
expression and enhances IL-21 secretion by CD4+ T cells. IL-21 
triggers differentiation of CD4+ T cells into Tfh cells which secrete 
IL-21, maintaining their function.

There is some redundancy and only mice deficient in both 
IL-6 and IL-21 fail to make Tfh responses (91). IL-7 has also been 
implicated in Tfh development (87).

Immunization of adults and children with TIV induced 
robust Tfh responses by day 7 postimmunization, but only in 
the presence of immune memory (89). In naive children there 
was limited Tfh response—as was observed in infant mice (92). 
The frequency of Tfh cells also correlated with rise in antibody 
HAI titers (89), and immunization using LAIV induced circula-
tory (c)Tfh responses that strongly correlated with increased 
antibody avidity and expansion of HA-specific Tfh clones  
(93, 94). The cTfh population was identified in the peripheral 
blood prior to immunization and characterized as CXCR5+PD
1+ICOS+CD38+, with higher expression of CD27, CD25, CD28, 
CTLA4, PD1, Helios, and Ki67, but lower CD127 than total 
CD4+ T cells (94).

While influenza infection and administration of non-adju-
vanted influenza vaccines induced robust Tfh responses in adults, 
addition of MF59 as an adjuvant significantly enhanced the 
response (95) with expansion of HA-specific Tfh (CD4+ICOS+, 
CD4±ICOS+CXCR5+IL-21+) by day 7 postimmunization that 
highly correlated with HAI titers 1 and 6 months later (95).

Previous infection or repeated immunization led to competi-
tion for virus-specific CD4+ T cells limiting naive Tfh expansion, 
but inducing expansion of preexisiting, clonal populations that 
subsequently resided in a memory population of ICOS-CD38-
cTfh (94, 96).

Thus it could be proposed that cross-reactive, IgM antibod-
ies, produced by innate B  cells, trap antigen on DCs within 
the lymphoid follicles. This antigen activates B  cells and is 
presented to CD4+ T cells, enhancing Tfh responses and B cell 
help, leading to robust, highly avid IgG antibody production. 
In naive infants, lacking preexisting pools of memory Tfh, the 
response to influenza would be predominated by IgM, but 
priming of a Tfh population would occur following infection 
or immunization. Thus subsequent immunization induces 
protective IgG responses. In adults, primed by infections, Tfh 
memory pools exist enabling strong IgG responses. The impor-
tance of adjuvants, such of MF59, therefore, may be to induce 
cross-reactive cellular subpopulations with each dose, helping to 
avoid narrowing of HA-specificities present within the memory 
populations, increasing likelihood of protection against future, 
related pandemic strains of influenza virus. Accordingly, MF59 
was described in mice as mediating its adjuvanticity on influenza 
HA by promoting Tfh and thus Germinal Center responses in 
adult and early life—but not to fail inducing Tfh cells and thus 
humoral responses in neonatal mice (92).

innate Responses and Transcriptomes
A protective role for IFN-related genes during influenza infection 
has been demonstrated in mice (97) and in humans (98). A study of 
mice knocked-out for the IFN-inducible transmembrane protein 
(IFITM) demonstrated the importance of this gene in protection 
from severe influenza infection with enhanced pathogenesis and 
overproduction of proinflammatory cytokines (97). A human 
minor IFITM allele (SNP rs12252-C) was also associated with 
hospitalization in pandemic A(H1N1)pdm09 influenza patients 
(97). The SNP rs12252-C allele was further investigated and 
associated with influenza infection severity in a study of Chinese 
patients infected with severe pandemic A(H1N1)pdm09 (98).

Although these findings suggest a role of type I IFN in 
limiting viral replication, these cytokines might also play a role 
in modulating adaptive immune responses capable of eliciting 
better protection against reinfection. Indeed mouse studies have 
shown that adjuvants triggering innate immune responses via 
activation of innate immune receptors such as TLR4 and TLR7 
are superior in inducing protective immunity when compared 
with vaccines unable to do so (99).

Squalene-based adjuvants such as MF59 and AS03 are 
also capable of triggering innate immune responses via a yet 
unknown mechanism.

A study (100) comparing the immune response induced by 
vaccines containing alum, TLR7 agonists and MF59 found that 
MF59 is far superior to alum alone in its capacity to promote 
immune cell infiltration to the injection site in the muscle, 
resulting in antigen uptake by neutrophils, monocytes, and 
myeloid and plasmacytoid DCs and migration exclusively to the 
vaccine-draining LNs. This resulted in priming of higher num-
bers of antigen-specific CD4+ T cells in the vaccine-draining LNs, 
increased T follicular helper cell differentiation and germinal 
center formation, and better antibody responses. Although this 
study failed to identify a type 1 IFN response in mice immunized 
with MF59, this adjuvant has been shown to induce increased 
IFN expression in infants (29). This innate response has been 
previously described in adults and is associated with stronger 
antibody responses (101). A similar observation was made 
in children aged 6  months to 14  years vaccinated with TIV or 
LAIV, where an association was found between upregulation of 
IFN genes at day 1 post-TIV and enhanced antibody responses, 
but only in children more than 5 years of age (102). In younger 
children (aged less than 5 years) IFN responses were not observed 
until day 7 post-LAIV (102).

A recent study (103) compared innate and adaptive immune 
responses in hepatitis B virus (HBV) naive individuals fol-
lowing receipt of a vaccine containing HBV surface antigen 
(HBsAg) adjuvanted with one of the following: AS01 [TLR4 
ligand 3-O-desacyl-4′-monophosphoryl lipid A (MPL) and the 
purified saponin QS-21], AS03 (α-tocopherol and squalene in 
an oil-in-water emulsion), AS04 [MPL adsorbed on aluminum 
salt (AlPO4)], or Alum/Al(OH)3. Consistent with a role of innate 
responses in vaccine immunogenicity, the authors found that 
the adjuvanted vaccines capable of eliciting more pronounced 
antibody and CD4 T  cell responses to HBsAg (AS01 and 
AS03), also induced an early mobilization of neutrophils and 
monocytes. Following vaccination with the AS01-adjuvanted 
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vaccine, accumulation of cytokines, specifically IL-6, in serum 
was detectable as early as 3–6  h after vaccination. In addition, 
upregulation of IFN response genes was observed following the 
second dose of the AS01-adjuvanted vaccine but not following 
first or second dose of the other adjuvants. Notably, an increase in 
innate response and immunogenicity also correlated with more 
pronounced reactogenicity.

Recently, systems biological approaches have been used to 
define molecular signatures induced by vaccination in humans, 
and to understand their mechanisms of action. A systems-based 
approach was used to define the molecular signatures in response 
to vaccination with the live attenuated yellow fever vaccine 
(YF-17D), and to use such signatures to predict the immu-
nogenicity of this vaccine (104). This offered proof of concept 
evidence of the utility of systems-based approaches in predict-
ing vaccine immunity (104). In an independent study of the 
response to YF-17D, Sekaly and colleagues undertook a similar 
approach and obtained similar results (105). Subsequently, this 
approach has been extended to other vaccines such as the sea-
sonal influenza vaccine (106–109), meningococcal vaccines (101) 
and shingles vaccines (110, 111), and in the infant population  
(29, 102). Importantly, recent studies have extended this approach 
to identifying signatures that predict vaccine-induced protection 
from disease (112, 113).

In addition, systems vaccinology approaches have been 
used to study responses to adjuvanted influenza vaccines. Both 
oil-in-water-based adjuvants, AS03 and MF59, induce specific 
transcriptional responses. These responses have been analyzed 
both in non-clinical mouse models and in clinical cohorts. In 
a non-clinical setting, upon injection of AS03 adjuvant, potent 
transcriptional responses have been observed both at the site of 
the injection and in the draining LNs as soon as 4 h postinjec-
tion (114). These changes affect a large number of chemotactic 
chemokines, believed to be involved in the recruitment of 
monocytes (CCL2, CCL3, CCL7), neutrophils (CXCL1, CXCL5, 
CXCL2, CSF3), eosinophils (CCL5), and DCs (CXCL9, CXCL10, 
CCL3, and CCL4). Of interest, while similar patterns of gene 
expression changes was observed in draining LNs, these changes 
tend to be more transient, with a peak at 4 h and diminishing 
signal at 24  h postinjection (114). It was also demonstrated 
that these responses were largely mediated by the α-tocopherol 
component of AS03, both in terms of the kinetics of the response, 
and the spectrum of chemokines being induced. In vitro studies 
identified monocytes and macrophages as the primary target 
cell type for α-tocopherol, and responsible for the production of 
chemokines in response to AS03 stimulation (114). In a clini-
cal setting, a systems biology analysis of the effects of AS03 on 
responses to influenza vaccine has not yet been done in pediatric 
cohorts. However, in adults transcriptional responses in sorted 
cell populations were compared in cohorts receiving adjuvanted 
and non-adjuvanted H5N1 split-virion vaccine with high tem-
poral resolution (115). This analysis demonstrated distinct gene 
expression patterns specific to distinct cell populations in periph-
eral blood, although different immune cell types responded at 
different time points. These responses were shown to correlate 
with cytokine production and antibody response (115). In 
another study, a large cohort of adult volunteers was followed 

longitudinally pre- and postadministration of A(H1N1) AS03 
adjuvanted vaccine (Pandemrix®) (116). Early postvaccination 
the authors observed a transient decrease of expression of a large 
number of T cell-specific transcripts, accompanied by a strong 
upregulation of a large number of IFN response genes. Serum 
IFN gamma levels were accordingly elevated. Of special interest, 
age was a factor in gene expression patterns observed at day 1 
postvaccination, with volunteers aged 35 or older demonstrat-
ing altered expression of several transcripts involved in early 
responses (116). While no pediatric subjects were included in 
this study, these results are relevant in light of the striking dif-
ferences between responses to the same vaccine in infants and 
adults, discussed below.

Effects of MF59 on transcriptome have been extensively stud-
ies both in clinical setting (29) and mouse models (43, 44, 117), 
and reviewed by Olafsdottir et  al. (118). MF59 induced strong 
localized transcriptional response, far exceeding in magnitude 
the response to CpG and Alum adjuvants (44), including the 
induction of a wide spectrum of cytokines and cytokine recep-
tors, which included all (Alum), or nearly all (CpG), cytokines 
induced by other adjuvants. This potent transcriptional response 
was accompanied by a stronger recruitment of MHC class II and 
CD11b bearing cells to the site of injection (44). In a later study 
it was demonstrated that the observed effects on localized gene 
expression, cellular recruitment, antigen-specific humoral and 
T-cell responses, and antigen translocation to draining LN were 
all due to the combination of components of the adjuvant, as 
none of the individual components were able to elicit comparable 
responses (117). Further dissecting the functional transcriptional 
responses at the site of injection, Caproni et  al. were able to 
demonstrate that the induction of proinflammatory genes, as 
well as genes relevant to transendothelial leukocyte migration 
correlated with the recruitment of CD11b+ cells to the site of 
injection, and antibody and cellular responses (43). Of interest, 
in a mouse model, MF59 induced very weak IFN type I response, 
and IFN signaling through its cognate receptor was not required 
for mounting potent humoral response (43).

These results, however, were not recapitulated in a pediatric 
clinical study in which the effects of MF59 ATIV were compared 
with those of an unadjuvanted TIV (29). Indeed, in infants it 
was shown that MF59-adjuvanted TIV induces a strong and 
transient expression of a large number of IFN type I response 
genes, and that the induction of these genes at day 1 postboost 
vaccination tracked positively with HAI responses. Overall, 
MF59 ATIV induced a much stronger transcriptional response 
at day 1 postboost vaccination, although the magnitude of this 
response was much lower than in the adult cohorts investigated 
in a separate and independent study. These early responses were 
dominated by a large number of gene modules relevant to DC 
activation, antigen presentation, monocytes, IFN and antiviral 
response (Figure  1A). A notable feature of the responses to 
vaccination in infants is the high heterogeneity of responses. 
The unadjuvanted vaccine was able to induce gene expression 
patterns characteristic of innate immune responses in only a 
minority of subjects. In contrast, inclusion of MF59 adjuvant 
allowed the number of transcriptional responders to be pushed 
much higher, with only one subject still failing to mount an innate 
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transcriptional response. Innate type transcriptional response 
early postvaccination is a correlate of immunogenicity in adults, 
and these correlates were recapitulated in the infants receiv-
ing MF59 ATIV. In contrast, the weak induction of an innate 
transcriptional response by unadjuvanted vaccines results in the 
lack of such correlates at day 1 postvaccination. In fact, it takes 
7 days for the vaccines in an unadjuvanted arm to develop the 
spectrum of transcriptional correlates of immunogenicity similar 
to correlates that are evident in adjuvanted arm as early as day 1 
postvaccination (Figure 1B). Even then, the correlations between 
the expression of innate immunity gene modules and HAI titers 

are weaker and encompass fewer modules than in the adjuvanted 
arm. Together, these data suggest that unadjuvanted vaccines 
induce weak and delayed innate transcriptional response, result-
ing in lower HAI titers, while the inclusion of MF59 adjuvant 
allows the development of a stronger and more uniform innate 
response, and a spectrum of transcriptional correlates of antibody 
responses resembling correlates observed in adults. An intrigu-
ing observation made in this study was an inverse relationship 
between the correlates of antibody responses observed at day 3 
postvaccination in infants and those in adults. Further studies are 
currently underway to directly compare the effects of MF59 ATIV 
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in adults and infants and to shed more light on the molecular 
mechanism of action of MF59-adjuvanted influenza vaccine in 
pediatric population.

eFFiCACY AND eFFeCTiveNeSS

MF59
The efficacy of MF59 ATIV against RT-PCR-confirmed influenza 
infection was assessed in a randomized controlled phase III 
study in Germany and Finland, including 4,707 children aged 
6–72  months across two consecutive influenza seasons. MF59 
ATIV was compared with a conventional TIV and control 
(meningococcal C conjugate vaccine) (119). The absolute vaccine 
efficacy against all influenza virus strains for the MF59 ATIV was 
86% (95% CI, 74–93) compared with 43% (95% CI, 15–61) for 
the non-adjuvanted TIV, with a relative efficacy of 75% (95% 
CI, 55–87) (119). These results are supported by the superior 
immunogenicity of MF59 ATIV seen in the same study. Given 
the limited use of TIV and LAIV in children less than 2 years 
of age, TIV secondary to immunogenicity and LAIV secondary 
to safety concerns, it is particularly important to highlight that 
the efficacy of MF59 ATIV in children aged 6–24 months against 
matched strains was 75% (95% CI, 20–92) compared with 2% 
for TIV. It should be noted that the overall efficacy in this study 
predominantly reflects protection against H3N2 (94 of the 110 
culture-confirmed influenza cases were H3N2). Based on these 
promising study results and others, an application for marketing 
authorization with the European Medicines Agency (EMA) was 
submitted to the Committee for Medicinal Products for Human 
Use (CHMP). During the application process concerns were 
raised by the CHMP regarding flaws in good clinical practice 
(GCP) in the clinical trial described above. This application was 
withdrawn in 2012 following the initial assessment by the CHMP 
due to ongoing unresolved issues regarding the concerns with 
compliance with GCP (120).

Currently, there are no postlicensure data available to assess 
the effectiveness of MF59 ATIV in children. However, this infor-
mation should be available in the future given the recent licensure 
of MF59 ATIV in Canada for children aged 6 months to 2 years.

There are limited data on the effectiveness of the monovalent 
A/H1N1 MF59 adjuvanted vaccine in children during the 2009 
H1N1 pandemic. The MF59 adjuvanted pandemic vaccine 
Focetria® was one of several pandemic vaccines available and 
millions of doses were administered to children mainly in Europe 
and Latin America. The effectiveness against ILI and laboratory 
confirmed A(H1N1)pdm09 infection was estimated in the 
Netherlands; however, the children included were only those 
with an underlying medical condition indicating their need for 
vaccination. In the total cohort there was a crude vaccine effec-
tiveness (VE) against ILI of 17.3% (95% CI, −8.5–36.9%). For 
children aged between 5 and 19  years the adjusted VE against 
ILI was 51% (95% CI, −50–84%) and VE of children 4 years or 
less was not able to estimate due to the small number of children 
included (121). One report from Spain did not show significant 
VE in children aged 1–17 years against medically attended ILI 
(VE: 12%, 95% CI, −142–68%) (122). Lastly, a recently published 

systematic review of 2009 pandemic influenza A(H1N1) vaccines 
did not find any studies fulfilling inclusion criteria that included 
children who had received an MF59-adjuvanted vaccine (123).

The monovalent, cell culture-derived inactivated subunit 
vaccine adjuvanted with MF59 (Celtura®) gained local regula-
tory approval in four countries in Europe and Latin America 
(Germany, Switzerland, Chile, and Peru). However, there have 
not been any published studies reporting the effectiveness of this 
vaccine in children.

Overall, despite some promising results in this published 
literature, further efficacy and effectiveness data are required 
for MF59 adjuvanted vaccines to strengthen the argument for 
licensure in young children.

AS03-Adjuvanted Pandemic vaccines
The VE and efficacy in children of the AS03-adjuvanted 
A(H1N1) vaccine has been assessed in many studies, including 
three systematic reviews (123–125). The recently published 
systematic review by Lansbury et al. (123) reported pooled VE 
against laboratory-confirmed influenza from four studies with a 
total of 932 children (126–129). Pooled VE was estimated at 88% 
(95% CI, 69–95%, p  <  0.0001) for adjuvanted H1N1 vaccines 
compared with 45% (95% CI, −13–73%, p  =  0.83) for non-
adjuvanted vaccines. This difference was statistically significant 
and the result did not differ if the studies included were limited 
to only those which measured VE from 14 days after vaccination. 
Pooled VE against hospitalization due to laboratory-confirmed 
influenza A(H1N1) illness was estimated at 86% (95% CI, 
67–94%, p < 0.00001) using results from two studies (130, 131). 
The majority of studies assessing effectiveness were done in 
Europe and Canada, as described below.

One multinational RCT reported a vaccine efficacy against 
RT-PCR confirmed influenza of 76.8% (95% CI, 18.5–93.4%) 
in children aged 6 months to less than 10 years of age receiving 
an AS03-adjuvanted vaccine (Arepanrix®, GSK) compared with 
non-adjuvanted vaccine during 2010–2011 influenza season 
(132).

Europe
The EMA recommended the pandemic vaccine (Pandemrix® in 
most countries) should, in the first instance, be provided to “risk 
groups,” which included children less than 2 years of age, followed 
by “target groups” (which included children of all ages over 
6 months). Target groups were offered vaccination in a staggered 
fashion throughout Europe, with children often being included 
in the early stages to help reduce transmission and provide indi-
rect protection. For example, in the United Kingdom children 
6 months and older who were in a clinical risk group were eligible 
for a two 0.25 ml dose course of Pandemrix® vaccine initially. This 
was changed in December 2009 due to the increasing numbers 
of hospital admissions in children, and all healthy children aged 
6 months to 5 years were eligible for one 0.25 ml dose (133).

Effectiveness of AS03-adjuvanted H1N1 vaccine (Pandemrix®) 
against RT-PCR positive A(H1N1) influenza infection was exten-
sively evaluated in Stockholm County, Sweden. In Sweden at the 
time of the study two 0.25 ml doses were recommended for chil-
dren aged 6 months and older, with a vaccination coverage of 52% 
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for children aged 6 months to 2 years receiving at least one vaccine 
dose and 70% in children aged 3–18 years. The estimated VE for 
children aged 6 months to 12 years during the peak weeks of the 
2009–2010 season was 89–92%, with most children having only 
received one dose of the vaccine (134). VE against hospitalization 
(used as a surrogate indicator for severe disease) in children aged 
6 months to 17 years due to influenza in the same population, 
adjusted for comorbid conditions, was 91% (130). Örtqvist et al. 
followed this cohort in a long term effectiveness study in the sub-
sequent influenza seasons (135). During the 2010–2011 influenza 
season the adjusted VE for those vaccinated with Pandemrix® 
in 2009 was estimated at 91.7%; however, during the 2012–2013 
season, there was no evidence of ongoing protection from previ-
ous vaccination. There was almost no H1N1 virus circulating in 
the 2011–2012 season therefore VE was unable to be estimated. 
Very few children received the seasonal influenza vaccine in sea-
sons following the 2009 pandemic, likely due parents’ concerns 
regarding safety, therefore the long-term effectiveness reported 
here is thought to truly reflect the 2009 vaccination program 
rather than vaccination in subsequent seasons.

Similarly impressive results were observed in an English case 
control study which estimated a VE against laboratory-confirmed 
influenza in children aged less than 10 years of 77% (CI, 11–94) 
and 100% (95% CI, 80–100) in those aged 10–24 years (126). In 
another case control study across England and Scotland includ-
ing over 2000 children aged less than 15 years no vaccine failures 
occurred, therefore the VE estimate in children less than 15 years 
of age was 100% (95% CI, 74–100) (136).

The comparison of VE between these studies is difficult due 
to varying methods used to estimate VE, the broad range of age 
groups, differing number of doses administered and a variety 
of approaches to collect confirmed influenza infection cases. 
Two methods to estimate the VE of the pandemic vaccine were 
compared in a German population, one a test-negative case-
control method using virologic surveillance data and the other 
an innovative case-series methodology using nationally reported 
laboratory-confirmed influenza case data (128). In children less 
than 14 years of age the estimate of VE using both methods were 
similar, with the first estimating a VE of 79% (95% CI, 35–93, 
p = 0.007) and the second 87% (95% CI, 78–92, p < 0.001).

Canada
In Canada, children aged 3–10  years were recommended to 
receive a single 0.25 ml dose of an AS03-adjuvanted A(H1N1) 
vaccine (Arepanrix®), and children 6  months to less than 
3  years of age to receive two doses. In the Canadian province 
Manitoba, the VE against laboratory-confirmed influenza cases 
was estimated at 97% (95% CI, 72–100) in very young children 
(aged 6–35 months) compared with no protection provided by 
the seasonal TIV (127). Although statistically significant results 
for this same age group were not found in another community-
based study due to small sample size, an even higher VE against 
laboratory-confirmed influenza of 100% (95% CI, 79.5–100) was 
reported in children aged 3 years to less than 10 years (129).

Varying results have been reported regarding VE against 
pneumonia and hospitalization in Canada. In Quebec, the 
effectiveness of a single pediatric vaccine dose in preventing 

hospitalization due to influenza in children aged 6  months to 
9 years was 85% (95% CI, 61–94) (131), whereas the VE against 
hospitalization was considerably less, 58% (30–75%), for children 
less than 5 years of age in another study (137).

SAFeTY

MF59-Adjuvanted influenza vaccines
There are extensive data regarding the safety of MF59-adjuvanted 
influenza vaccines which have demonstrated an acceptable safety 
profile in young children (26, 27, 30, 32, 33, 119, 138–147). Most 
adverse reactions are mild-to-moderate and transient in nature 
and serious adverse reactions are rare. A systematic review and 
meta-analysis has provided an overview of safety for both seasonal 
and pandemic MF59-adjuvanted influenza vaccines in children 
(144). The analysis reported no increase in serious adverse events 
(SAEs) compared with control vaccines. The rate of SAEs in the 
adjuvanted group was 0.0–10.4% with a pooled relative risk of 
0.74 (95% CI, 0.57–0.97) (144). The relative risk for the most 
common solicited adverse events including redness and pain at 
the injection site and systemic reactions such as fever, irritability 
and loss appetite were significantly higher for MF59-adjuvanted 
vaccines compared with control vaccines. The rates of solicited 
adverse reactions included 1.0–59.0% for pain (<1% for grade 
3 pain) and 4.0–19.0% for fever (144). There were similar rates 
of unsolicited adverse event reporting between children who 
received adjuvanted compared with non-adjuvanted vaccines.

An integrated analysis evaluated the safety of MF59- 
adju vanted vaccines (predominantly the seasonal trivalent or 
tetravalent vaccine) in children 6  months to 18  years of age 
(139). The analysis included five clinical trials—four trials with 
a seasonal MF59-adjuvanted vaccine and one trial with the 
prepandemic H5N1 vaccine. A total of 1,181 children received 
an MF59-adjuvanted vaccine compared with 545 children who 
received a non-adjuvanted vaccine. There was an increased inci-
dence in solicited local and systemic reactions compared with 
non-adjuvanted vaccines; however, these were mostly mild and 
transient, resolving by day 3 postvaccination. Across all ages 55% 
experienced local reactions and 48% systemic reactions after the 
first dose in the MF59-adjuvanted groups, and 43% and 34%, 
respectively, in the non-adjuvanted group. These were slightly 
lower in both groups following the second vaccination. There 
was no difference in the rate of SAEs.

Following this analysis, safety data have been published 
in large immunogenicity and efficacy studies. The study by 
Vesikari et  al. reported minimal difference in local reactions 
between adjuvanted and non-adjuvanted influenza vaccines 
aged 6–36 months, and fever was reported in 15.3 versus 13.3%, 
respectively (119). Similar results were demonstrated in a large 
phase III, randomized, multicenter study which included 3,125 
children who received ATIV (143).

Studies focusing on the pandemic H1N1 and prepandemic 
H5N1 vaccines have also shown MF59 to have an acceptable 
safety profile in children (31, 148–156). Transient mild pain or 
tenderness and erythema were the most commonly reported 
local reactions and fatigue and myalgia the most common 
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systemic reactions. Few, if any, children reported severe reactions 
including fever >40°C.

Theoretical concerns have been raised that MF59 vaccina-
tion may induce antibodies to squalene. Squalene is a naturally 
occurring product in the body and antibodies to the squalene 
component of the vaccine would therefore pose a risk of autoim-
mune disease in a vaccine recipient. Subsequent studies have 
demonstrated that vaccination with MF59 adjuvant did not 
induce antisqualene antibodies nor enhance preexisting antis-
qualene antibody levels (157).

Despite the association between the AS03-adjuvanted pan-
demic vaccine Pandemrix® and narcolepsy (described below), 
there has been no evidence to date of any increased risk of nar-
colepsy associated with MF59-adjuvanted vaccines in children or 
adults (158); however, postlicensure surveillance in children will 
be important to continue monitoring for this as the frequency 
reported for Pandemrix® was too low to detect in clinical trials.

AS03-Adjuvanted influenza vaccines
Prior to the licensing of the pandemic AS03-adjuvanted influ-
enza vaccines, evidence on the safety of the AS03 adjuvant was 
available from clinical trials, which demonstrated an acceptable 
reactogenicity profile (159–161). Following the rapid licensure 
of Pandemrix® in Europe and Arepanrix® in Canada, passive 
and active surveillance programs were initiated. During the 
2009–2010 influenza season 31 million doses of Pandemrix® 
were distributed throughout Europe, and 12 million doses of 
Arepanrix® mainly in Canada and Latin America (162) with the 
collection of safety data via these national surveillance programs. 
With limited safety data available prior to its distribution, it was 
not until postlicensure surveillance revealed concerns regarding 
Pandemrix® in children.

Clinical trials have demonstrated acceptable rates of solicited 
local and systemic adverse events, albeit higher than non-
adjuvanted vaccines, following vaccination with the AS03-adju-
vanted pandemic vaccines (132, 163–170). A recent systematic 
review included four clinical trials enrolling children who 
received an AS03-adjuvanted influenza vaccine. There were sig-
nificantly increased rates of local adverse reactions including pain 
and swelling, although mostly mild and transient, after receiving 
the AS03-adjuvanted vaccine compared with non-adjuvanted 
control vaccines (144). Pooled data from these studies showed 
local pain as the most frequent adverse event following AS03-
adjuvanted vaccines in children, experienced by 31.7–84.6% of 
children, with rates of grade 3 pain between 4.3 and 12.4%. The 
rate of fever following vaccination was 11.0–23.8% and there 
was no significantly increased risk of developing an unsolicited 
adverse event (RR 1.0, 95% CI, 0.97–1.04) or convulsion (RR 
1.14, 95% CI, 0.42–3.14) compared with non-adjuvanted vac-
cines. Moreover, there was no increased risk of SAEs, with 
0.0–8.0% of children experiencing an SAE. There is evidence in 
children that the second vaccine dose, given 21–28  days after 
the first, results in higher rates of local and/or systemic reac-
tions compared with the first dose, although this is not consistent 
across all studies (132, 163, 166). Immunocompromised children 
have experienced similar rates of adverse events compared with 
immunocompetent children (171, 172).

The EMA announced on August 27, 2010, that a safety 
review had been initiated following concerns raised in Sweden 
with a case series of six adolescents diagnosed with narcolepsy 
within 2 months of vaccination with Pandemrix® (173, 174). An 
investigation by the European Centre for Disease Prevention and 
Control (ECDC) and Vaccine Adverse Event Surveillance and 
Communication Consortium (VAESCO) was then undertaken in 
late 2010 (175). Following the initial report, formal studies assess-
ing an association between Pandemrix® and narcolepsy have 
been undertaken in Finland, Sweden, France, Ireland, United 
Kingdom, and Norway which have confirmed an increased 
incidence of narcolepsy in young vaccine recipients (176–182). 
In Finnish children aged 4–19 years there was a rate ratio of 12.7 
(95% CI, 6.1–30.8), with a vaccine-attributable risk of 1:16,000 
(95% CI, 1:13,000–1:21,000) of developing narcolepsy following 
receipt of Pandemrix® (176). The EMA Eudravigilance database 
had received almost 1,400 reports of narcolepsy in Pandemrix®-
recipients by 2015 (183).

Narcolepsy is a rare sleep condition with onset often in ado-
lescence which is characterized by excessive daytime sleepiness, 
episodes of unintended sleep and cataplexy. It is thought to be 
due to immune-mediated destruction of neurons which results 
in deficiency in hypocretin production in the hypothalamus, 
although no specific antibodies involved in this process have been 
identified. The majority of individuals with narcolepsy and cata-
plexy express the HLADQB1*0602 allele, and infections includ-
ing influenza A and Streptococcus pyogenes have been implicated 
in triggering narcolepsy in susceptible individuals (184).

The biological plausibility linking Pandemrix® and narcolepsy 
has been explored although the exact mechanism is yet to be iden-
tified. The AS03 adjuvant itself and specific components of AS03 
(e.g., α-tocopherol) not present in other adjuvants were suggested 
to be responsible; however, the lack of association between other 
AS03-containing vaccines (e.g., Arepanrix®) and narcolepsy may 
refute this theory (162, 176, 185). Molecular mimicry has been 
proposed as a possible mechanism behind the association, with 
one study reporting a similarity between a peptide on the influenza 
nucleoprotein A and an extracellular domain of the hypocretin 
receptor 2 (186). This study was subsequently retracted due to 
inability to replicate results but, despite this, did not adequately 
explain why narcolepsy would not be associated with other H1N1 
vaccines. Further studies investigating the presence of neuronal 
antibodies have not identified narcolepsy-specific antibodies in 
the sera or CSF of vaccinated children with narcolepsy (187).

Arepanrix®, the AS03-adjuvanted pandemic vaccine used in 
Canada, has not been associated with such a significant risk of 
narcolepsy, with only one extra case of narcolepsy per million 
doses received (183, 188). This is despite both Pandemrix® and 
Arepanrix® vaccines containing similar amounts of HA and 
AS03. The different method of production of the H1N1 antigen 
between the two vaccines, resulting in antigenic differences, has 
been suggested to result in enhanced levels of IgG-antibodies that 
may be implicated in the association of Pandemrix® with narco-
lepsy (189). However, in a separate study sera and CSF samples 
from 13 vaccinated patients with narcolepsy were compared with 
44 vaccinated patients without narcolepsy, revealing no increase 
in narcolepsy-specific autoantibodies (187).
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CONCLUSiON

Conventional influenza vaccines have suboptimal immuno-
genicity in young children and adjuvanted influenza vaccines 
offer a superior alternative. MF59 and AS03 have proven to be 
immunogenic in young children, provide cross protection against 
mismatched influenza virus strains and allow for antigen sparing 
which is important in the setting of pandemics where the global 
demand is high. Despite these positive results, the association 
between AS03 and narcolepsy has resulted in the future use of 
the current AS03 formulation in children limited. MF59 ATIV 
is efficacious in children leading to its licensure in Canada in 
children; however, further studies investigating the effectiveness 
of MF59 seasonal vaccines would potentially improve the likeli-
hood of licensure in young children in other countries and more 
widespread use of this vaccine in children.

Looking to the future, the recent advancements in under-
standing the mechanism of adjuvants through elucidating the 
innate and adaptive immune response and relating these with 
gene expression profiles will allow both the improvement of 
current adjuvants and development of novel adjuvants. The 
progress with some newer adjuvanted influenza vaccines is 
promising. Adjuvants based on toll-like receptor agonists 
including TLR4 and TLR9 agonists used in pandemic and “uni-
versal” influenza vaccines, respectively, have shown excellent 
results in phase I trials. A variety of bacteria-derived adjuvants 
(e.g., flagellin, Escherichia coli heat-labile toxin patch, menin-
gococcal outer membrane protein) which take advantage of the 
ability of bacterial components to activate the innate immune 
system have been incorporated in seasonal trivalent influenza 
vaccines, with some moving to phase III clinical trials. New 
technologies have allowed the development of these adjuvants 
among a myriad of others (e.g., liposomes, virus–like particles, 
saponins, viral vectors, and newer oil-in-water emulsions); 
however, many remain in the experimental phase in animals 

and there is a lack of robust human data for the majority of these 
currently. Finally, a “universal” influenza vaccine which pro-
vides protection against all influenza virus strains, regardless 
of antigen drift or shift, with long-lasting protection remains 
an ultimate goal in the development of improved influenza 
vaccines. The combination of novel antigen formulations and 
adjuvants underlies many candidate vaccines currently in 
development. A number of these vaccines have entered clinical 
trials in recent years with the most advanced (recombinant M2e 
fused with flagellin, VAX102) reaching phase II trials. These 
vaccines face the challenge of providing an equivalent, if not 
better, immunogenic response than current seasonal influenza 
vaccines and ensuring an acceptable safety profile. Given it 
has been 20  years since the licensure of an MF59-containing 
vaccine and licensure of an influenza vaccine adjuvanted with 
MF59 for children has only occurred recently, it is likely to be 
some time before adjuvanted vaccines are widely used in the 
pediatric population.

The aim continues to be provision of the best possible protec-
tion of children from influenza while minimizing reactogenicity. 
That no vaccine against influenza is yet licensed for the most 
vulnerable, less than 6-month-old term or preterm-born infants 
is a challenge that may not remain unaddressed.
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