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The perception that transplantation of hematopoietic stem cells can confer tolerance 
to any tissue or organ from the same donor is widely accepted but it has not yet 
become a treatment option in clinical routine. The reasons for this are multifaceted but 
can generally be classified into safety and efficacy concerns that also became evident 
from the results of the first clinical pilot trials. In comparison to standard immunosup-
pressive therapies, the infection risk associated with the cytotoxic pre-conditioning 
necessary to allow allogeneic bone marrow engraftment and the risk of developing 
graft-vs.-host disease (GVHD) constitute the most prohibitive hurdles. However, sev-
eral approaches have recently been developed at the experimental level to reduce or 
even overcome the necessity for cytoreductive conditioning, such as costimulation 
blockade, pro-apoptotic drugs, or Treg therapy. But even in the absence of any haz-
ardous pretreatment, the recipients are exposed to the risk of developing GVHD as 
long as non-tolerant donor T cells are present. Total lymphoid irradiation and enriching 
the stem cell graft with facilitating cells emerged as potential strategies to reduce 
this peril. On the other hand, the long-lasting survival of kidney allografts, seen with 
transient chimerism in some clinical series, questions the need for durable chimerism 
for robust tolerance. From a safety point of view, loss of chimerism would indeed be 
favorable as it eliminates the risk of GVHD, but also complicates the assessment of 
tolerance. Therefore, other biomarkers are warranted to monitor tolerance and to 
identify those patients who can safely be weaned off immunosuppression. In addition 
to these safety concerns, the limited efficacy of the current pilot trials with approxi-
mately 40–60% patients becoming tolerant remains an important issue that needs to 
be resolved. Overall, the road ahead to clinical routine may still be rocky but the first 
successful long-term patients and progress in pre-clinical research provide encour-
aging evidence that deliberately inducing tolerance through hematopoietic chimerism 
might eventually make it from dream to reality.

Keywords: tolerance, chimerism, allograft rejection, transplantation immunology, immunosuppression

Abbreviations: ATG, α-thymocyte globulin; HLA, human leukocyte antigen; MHC, major histocompatibility complex; NK, 
natural killer; NKT, natural killer T cells; TLI, total lymphoid irradiaton; TBI, total body irradiation; Treg, regulatory T cells.
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THe LONG-LASTiNG JOURNeY OF 
TOLeRANCe

Transplantation is the treatment of choice for patients with 
end-stage organ failure (1, 2) as it improves their survival and 
quality of life (3). Nevertheless, long waiting lists, side effects of 
immunosuppressive medication, and limited graft survival still 
perpetuate the dream of tolerance. Initial enthusiasm was fueled 
in the 1950s by the observation of Medawar and Billingham that 
dizygotic twins of free martin cattle readily accept skin grafts 
from each other (4). They attributed this phenomenon to the 
coexistence of red blood cells from their siblings (mixed chimer-
ism) as a result of a common placental circuit (5). Since fraternal 
erythrocytes also persisted in adult animals, they concluded 
that stem cells had to be exchanged which constantly give rise 
to short-lived red blood cells. Based on this observation, they 
demonstrated for the first time that tolerance to alloantigens can 
actively be acquired in neonatal mice by the intrauterine injec-
tion of allogeneic cells (6). Since then, a myriad of mouse studies 
established bone marrow transplantation as promising approach 
to achieve donor-specific transplantation tolerance (7). In the 
clinical setting, the usability of this approach was corroborated 
by anecdotal cases in which patients developed immunological 
tolerance to a renal allograft after having previously received a 
hematopoietic stem cell transplant from the same donor for a 
hematological disorder (8). Despite this knowledge, the estab-
lishment of tolerance inducing protocols as a clinical routine is 
still long in coming.

Three groups in the US from Harvard University, Stanford 
University and the association between the Universities of 
Louisville and Northwestern have pioneered the first steps toward 
clinical implementation. All three groups have elaborated distinct 
approaches with individual assets and drawbacks and so far, 
nearly 70 patients have been enrolled (9–11). Here, we discuss 
the current state of affairs of chimerism-based tolerance, what 
we have learned so far and which new challenges we have to face.

TOLeRANCe—iS iT wORTH iT?

Continuous suppression of the immune system puts transplant 
recipients at risk of increased morbity and mortality through 
cardiovascular disease, de novo diabetes, dyslipidemia, and 
malignancies. By now, death with a functioning graft has become 
a leading cause of graft loss (2). Some of these side effects result 
from impaired immune surveillance while others constitute 
drug-specific toxicities of the immunosuppressive medication. 
Cyclosporine was initially celebrated as “wonder drug,” until it 
was realized that it is fairly toxic at higher doses (12). In the light 
of this, a substantial number of non-renal organ transplant recipi-
ents develop renal failure due to calcineurin inhibitor-toxicity 
(13). Apart from that, immunosuppressive drugs are ineffective 
in preventing late graft loss from chronic rejection (14) which is 
why long-term graft survival has improved only marginally over 
the last decades (2).

Since tolerance is expected to provide remedy, the search 
for the “Holy Grail” of transplantation has never ceased.  
To assess whether tolerance actually meets these high expectations, 

tolerant kidney transplant recipients have recently been com-
pared to a matched cohort receiving conventional immunosup-
pression. The tolerant group experienced significantly longer 
initial hospital stays and more frequent readmissions leading 
to three times higher costs during the first year in comparison 
to conventional transplant recipients. In turn, tolerant patients 
required significantly less treatment for hypertension and none 
of them developed new-onset diabetes, dyslipidemia, or malig-
nancy. In this survey, the continuous costs for medications of 
conventional patients exceeded those of tolerant patients after 
10 years (15, 16). The sample size was small but this preliminary 
study emphasized the potential benefit of tolerance inducing 
protocols. Another group estimated the expected lifetime savings 
through tolerance induction for a 40-year old patient receiving 
a kidney from a human leukocyte antigen (HLA)-matched liv-
ing donor to approximately 92.000$ (17). Besides, it should be 
taken into account that innovative treatment options become 
less expensive if employed as clinical routine, especially if they 
are also applicable to other medical fields. In this regard, mixed 
chimerism becomes increasingly attractive as treatment option 
for autoimmune disorders (18, 19).

In addition, tolerant patients evidently enjoy a higher quality 
of life (16), which is not only a matter of convenience but also 
correlates with reduced morbidity and mortality (20). The dis-
comfort resulting from the immunosuppressive therapy increases 
the probability of non-adherence which in further consequence 
leads to decreased donor organ survival. Considering that kidney 
transplant recipients take a median of 15 capsules a day (21), it 
appears not surprising that non-adherence is estimated to occur 
roughly in a third of all transplant recipients (2).

Tolerance inducing protocols are currently measured 
against kidney transplant recipients receiving conventional 
immunosuppressive therapy. One-year graft survival rates of 
over 90% and half-lives of 16 years set the bar fairly high (22, 
23). Innovative strategies aiming to improve patient and organ 
survival will further increase the high demands for tolerance 
inducing strategies. New algorithms have been developed to 
allocate best-quality organs to those recipients expected with 
the highest survival (24) and paired living kidney donation 
programs optimize allograft survival (25). Furthermore, the 
long-lasting supremacy of calcineurin inhibitors has recently 
been challenged by the advent of costimulation blockers in the 
clinical setting. Belatacept was associated with enhanced overall 
patient and graft survival in subsets of patients, improved kidney 
allograft function and avoided major side effects of calcineurin 
inhibitors (26).

In summary, tolerance is still of great value, particularly in the 
longer run, but the question remains whether it can be achieved 
at an acceptable prize in terms of safety. Tolerance would certainly 
obviate the common risks of immunosuppressive medication but 
at the same time expose patients to other serious hazards.

GRAFT-vS.-HOST DiSeASe (GvHD)—THe 
PROBLeM CHiLD OF CHiMeRiSM

When it comes to clinical translation, patient safety takes 
the highest priority. Therefore, the conditioning necessary to 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Mahr et al. Tolerance through Mixed Chimerism

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1762

achieve allogeneic bone marrow engraftment is a matter of 
great concern. In contrast to conventional kidney allograft 
recipients, patients receiving hematopoietic stem cell trans-
plantation for the purpose of tolerance induction are addi-
tionally exposed to a considerable risk of developing GvHD. 
Approximately 15% of patients undergoing hematopoietic 
stem cell transplantation for hematological diseases succumb 
to GvHD (27). The incidence and severity of acute GvHD can 
directly be correlated with the degree of HLA mismatch (28). 
Since tolerance is particularly desirable for HLA-mismatched 
recipients, the prevention and treatment of GvHD is a delicate 
issue. The occurrence of GvHD is highly dependent on the 
recipient conditioning and the composition of the allograft. 
Therefore, we will discuss which efforts the individual groups 
have made to minimize the risk of GvHD in the clinical pilot 
trials of chimerism-based tolerance.

irradiation
Ionizing irradiation mostly affects mitotically active cells by caus-
ing breaks in DNA double strands. The cells of the hematopoietic 
system and the gastrointestinal tract exhibit a high degree of 
proliferation and are, thus, particularly sensitive to irradiation 
(29). Accordingly, high doses of total body irradiation (TBI) do 
not only obliterate the bone marrow compartment as required 
but also cause damage to the gastrointestinal tract. Bacterial 
molecules leaking from the injured gut elicit the release of inflam-
matory cytokines (e.g., TNF-α, IL-1, IL-6) through activation of 
innate immune receptors which promotes the induction of acute 
GvHD (30). In current clinical practice, the total dose is typically 
partitioned into lower doses to allow normal tissues to partially 
recover between the individual fractions (31). In addition, cur-
rent effort is focused on the targeted neutralization of major 
inflammatory cytokines (32).

The clinical trials from the Stanford group are built upon a 
specific form of irradiation which was actually designed for the 
treatment of lymphomas (33). At this, irradiation is restricted to 
lymphatic tissues, including supradiaphragmatic lymph nodes, 
thymus, subdiaphragmatic lymph nodes, and spleen. Since a large 
part of the marrow volume is outside the radiation fields, recovery 
of blood elements occurs without severe neutropenia or throm-
bocytopenia (34). Total lymphoid irradiation (TLI) depletes the 
majority of lymphocytes within the targeted tissue end enriches 
the residual cells for CD8+ dendritic cells and natural killer T cells 
(NKT) cells. CD8+ dendritic cells prompt NKT cells to secrete 
IL-4 which prevents lethal GvHD through the expansion of 
donor Tregs (35, 36).

The group from Louisville adapted a conditioning regimen 
that was originally elaborated at the Johns Hopkins University 
for hematological disorders. This approach uses a single dose of 
200  cGy TBI together with high-dose cyclophosphamide post-
transplant to purge proliferating alloreactive T cells while sparing 
Tregs (37, 38). In this way, the increased proportion of donor 
Tregs prevents GvHD (39). Notably, the groups from Stanford 
and from Louisville both aim at increasing the number of donor 
Tregs to prevent GvHD. Donor Tregs have a vital role in reducing 
GvHD (40) and the infusion of donor Tregs has likewise been 
reported to prevent GvHD in the clinic (41).

The group from Boston attempted to reduce irradiation-
related toxicities by specifically targeting those mechanisms 
resisting allogeneic bone marrow engraftment. In the murine 
setting, it was observed that depleting T cells with monoclonal 
antibodies allowed reducing myeloablative TBI. However, chi-
merism remained transient unless high doses of TBI were used 
(42), since these monoclonal antibodies efficiently depleted 
T cells in the periphery but did not reach T cells in the thy-
mus. Hence, they combined T cell depleting antibodies with 
the targeted irradiation of the thymus to further decrease the 
required TBI to a non-myeloablative dose (43). Despite being 
successful in the murine setting, this regimen failed to induce 
stable mixed chimerism in non-human primates but instead 
led to transient chimerism. Nevertheless, the conditioning 
was sufficient to achieve tolerance to renal allografts across 
major histocompatibility complex (MHC) barriers as long 
as the kidney was transplanted before the loss of peripheral 
chimerism (44).

To exploit hematopoietic stem cell transplantation as clini-
cal routine for tolerance induction it would be desirable, or 
indeed necessary, to avoid any form of irradiation. Several 
approaches have been elaborated in the murine setting to 
eliminate the cytotoxic preconditioning necessary to achieve 
allogeneic bone marrow engraftment. Costimulation blockade 
in the form of α-CD40L and CTLA4-Ig can only obviate the 
need for cytoreductive conditioning when clinically unrealis-
tic marrow doses are administered (45, 46). The required bone 
marrow dose can be reduced through the addition of rapamy-
cin or α-LFA-1 to the conditioning (47, 48). By contrast, con-
ventional, clinically obtainable, doses of fully allogeneic bone 
marrow engraft in non-irradiated mice under costimulation 
blockade and rapamycin if in  vitro activated Tregs from the 
recipient are administered at the time of donor bone marrow 
transplantation (49). An adjusted version of this approach has 
recently confirmed the feasibility of Treg therapy to enhance 
bone marrow engraftment in non-human primates (50).  
As clinical trials deploying Treg therapy without concomitant 
bone marrow transplantation are already underway, clinical 
translation of the combined cell therapy appears possible in 
the near future (51). Alternatively, the pro-apoptotic molecule 
ABT-737 synergized with α-CD40L and cyclosporine to induce 
chimerism and tolerance without the need for any cytoreduc-
tive conditioning (52). Both approaches, however, rely on 
CD40L blockade which is currently not available in the clinic 
due to unacceptable prothrombotic toxicities of conventional 
α-CD40L mAbs (53). In order to circumvent the unaccepta-
ble side effects of the original conventional α-CD40LmAbs, 
efforts were made to target its binding partner CD40 which 
is not expressed on thrombocytes. The humanized α-CD40 
antibody ASK1240 has already been tested in a phase 2 trial of 
de novo kidney transplant recipients. The preliminary results, 
however, suggest a disappointing efficacy of CD40 blockade 
in a calcineurin inhibitor free regimen (54). Recently, next 
generation α-CD40L antibodies lacking thromboembolic side 
effects have shown promise in preclinical development and 
might become an option for use in tolerance protocols in the 
future (55).
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Graft Composition
The identification of donor T cells as the driving force of GvHD 
conveyed the idea that transplanting purified stem cells could 
promote engraftment while avoiding GvHD. But it was soon 
realized that highly purified mouse stem cells would only engraft 
in MHC-matched but not -mismatched recipients (56). This 
failure of purified stem cells to engraft was traditionally ascribed 
to their rejection by host immune cells. However, it could also 
be envisioned that non-stem cell components contained within 
the donor bone marrow compartment are required to facilitate 
stem cell engraftment in allogeneic recipients. Therefore, the 
group from Louisville set themselves the task to prove this latter 
assumption and to identify such a cell population that facilitates 
bone marrow engraftment without causing GvHD. Adding 
selected donor cell populations to a mixture of T cell depleted 
syngeneic and allogenic bone marrow revealed a heterogeneous 
mixture of cells expressing CD8+ albeit without a T cell receptor 
to promote stem cell engraftment (57). Further characterization 
of these murine “facilitating cells” unmasked plasmacytoid-pre-
cursor dendritic cells, B cells, granulocytes, as well as monocytes 
(58). Recipients of hematopoietic stem cells and “facilitating 
cells” displayed an increased RNA expression of GITR, CTLA4, 
and Foxp3 in the spleen 28 days post transplantation (59). In a 
subsequent study, the authors observed that CD8+ plasmacytoid 
precursor DCs were primarily responsible for the induction of 
antigen-specific Foxp3 Tregs. These induced Tregs were able 
to enhance stem cell engraftment and to suppress alloreactive 
T cells in vitro (60).

Human “facilitating cells” are composed of two equally divided 
cell populations which can be differentiated on the basis of their 
CD56 expression. Most CD56bright cells are CD11c+ CD11b+ and 
exhibit a dendritic morphology. The majority of CD56neg cells 
expresses CD3ε and displays a lymphoid shape. Both cell popula-
tions express the chemokine receptor CXCR4 which promotes 
homing to the bone marrow compartment (61). Although it 
remains speculative, it is reasonable to assume that CD8+ TCR− 
CD56bright “facilitator cells” and CD8+ DCs enriched through TLI 
share common features. The identification of this cell population 
constitutes the basic building block for the clinical trials of the 
Louisville/Northwestern group. A cell product containing hemat-
opoietic stem cells and “facilitating cells” (also designated FCRx) 
is engineered through a proprietary, undisclosed procedure from 
G-CSF mobilized donor peripheral blood stem cells. The cell 
product is usually cryopreserved until it is infused 1  day after 
renal transplantation (62).

As already mentioned, the group from Stanford employed a 
regimen that was originally developed for patients with hema-
tological malignancies. The key change for patients without 
malignancies was the alteration of graft composition in order 
to achieve mixed instead of full chimerism. While patients with 
malignancies received unmanipulated mobilized blood stem 
cells containing a high number of T cells (2–3 × 108/kg), kidney 
recipients are transplanted with column enriched CD34+ cells 
supplemented with low numbers of T  cells (1  ×  106/kg) (36). 
Under these circumstances kidney recipients have to be HLA 
matched in order to achieve stable mixed chimerism. Accordingly, 
this approach is only applicable to a restricted cohort of patients 

which enjoys anyhow best survival rates with current standard 
of care immunosuppressive treatment. However, the group from 
Stanford is currently conducting a clinical trial in the effort to 
determine the optimal graft composition for haploidentical 
donors (11).

The group from Boston transplants unseparated iliac crest 
marrow on the day of kidney transplantation, based on their 
experience from non-human primate studies (63). The acquisi-
tion of mobilized blood stem cells provides more comfort for the 
donors but mobilized blood stem cells have distinct biological 
characteristics that might affect their ability to induce tolerance. 
In a murine model, peripheral blood stem cells had a lower 
capacity to induce mixed chimerism and tolerance than conven-
tional bone marrow due to the higher number of donor T cells 
(64), which can trigger rejection in an IL-6-dependent manner 
(65). From a clinical point of view, peripheral blood stem cell 
transplants are associated with a higher risk of acute and chronic 
GvHD but reduce the risk of graft failure owing to higher engraft-
ment rates (66, 67). On the other hand, G-SCF mobilized stem 
cells upregulate CD47 to evade macrophage killing providing a 
possible explanation for their superior engraftment rates (68). 
Transplanting bone marrow and kidney at the same time requires 
the recipient conditioning to begin 6 days earlier which restricts 
this application to living donor transplant recipients. To extend 
their protocol to deceased donors the Boston group is currently 
endeavored to develop a “delayed tolerance” protocol. In this 
case, the recipients would first undergo kidney transplantation 
with conventional immunosuppression and subsequently receive 
cryopreserved bone marrow from the same donor. In non-human 
primates, kidney transplantation prior to bone marrow transplan-
tation enhances the pool of alloreactive memory T cell responses, 
thus necessitating substantial CD8 T depletion to achieve mixed 
chimerism and tolerance (69, 70).

Chimerism Type
The type of chimerism (full vs. mixed, durable vs. transient) is a 
determining factor for the risk of GvHD. Murine studies indicated 
that there is a considerably greater chance of developing GvHD 
in stable full chimeras than in stable mixed chimeras (71). Apart 
from that, animal studies predict that stable mixed chimerism 
would also offer other advantages over full chimerism. The induc-
tion of mixed chimerism requires less toxic pre-conditioning and 
full chimeras display impaired immune responses resulting from 
the discrepancy between positive selection of T  cells by host 
thymic epithelial cells and antigen presentation by peripheral 
donor antigen-presenting cells (72). However, the establishment 
of stable mixed chimerism in the clinic remains a formidable 
challenge. Therefore, it seems noteworthy to discuss the different 
forms of chimerism achieved by the individual groups.

The Northwestern group aims to achieve full chimerism 
which provides a stable state of tolerance although at the expense 
of a risk for GvHD. If stable chimerism is achieved, the patient is 
likely to maintain robust tolerance. On the downside, two cases 
of GvHD have been reported, one of which was fatal. Moreover, 
all patients had severe neutropenia (absolute neutrophil count 
<500 cells/mm3) and 11 developed severe bacterial or fungal 
infections (10, 73).
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The group from Stanford University aims to achieve stable 
mixed chimerism which is generally associated with a reduced 
risk of GvHD. However, thus far persistent mixed chimer-
ism has solely been achieved in HLA-matched recipients who 
compromise only a minor patient cohort. Mixed chimerism is 
still difficult to achieve when HLA barriers are crossed. Anyhow, 
their conditioning showed a low incidence of adverse events as 
compared with other tolerance inducing strategies using cyclo-
phosphamide and/or TBI (11).

The investigators from Boston consider GvHD as an inaccept-
able complication (44) for non-malignant patients and, there-
fore, intend to achieve tolerance through transient chimerism. 
Transient chimerism basically eliminates the risk of developing 
GvHD but exhibits a reduced stability of allograft tolerance. In 
non-human primate studies, 20–30% of the transiently chimeric 
recipients eventually developed antibody-mediated rejection 
during long-term follow-up (74). Similar complications occurred 
in the clinical trials wherefore the group had to adjust the proto-
col. Furthermore, all patients developed transient pancytopenia 
(75) and nine patients developed an engraftment syndrome with 
acute renal endothelial injury manifested by a creatinine rise 
during marrow recovery (76).

CURReNT STATe OF AFFAiRS

Boston Group
In their first trial, the group from Boston enrolled patients with 
end-stage renal disease resulting from multiple myeloma. These 
patients received a combined kidney and marrow transplantation 
from a HLA identical sibling donor. Ten recipients have been 
reported with follow-up times of up to 17 years. The condition-
ing consisted of cyclophosphamide (60 mg/kg; days −6 and −5), 
α-thymocyte globulin (ATG) (15–20 mg/kg; days −1, 1, 3, and 5) 
and thymic irradiation (700 cGy; day −1). Maintenance therapy 
in the form of cyclosporine was administered and discontinued 
as early as 73  days post-transplant in the absence of GvHD. 
Five patients have been completely off immunosuppression for 
5–17 years providing the first proof of concept that tolerance in 
humans can deliberately be achieved through bone marrow trans-
plantation. Recently, the inclusion criteria have been extended to 
other hematological disorders and cyclophosphamide has been 
replaced by 400 cGy TBI after severe cardiac toxicity occurred in 
one patient (77, 78).

The group from Boston modified the protocol in order 
to make it accessible also for patients with haploidenti-
cal donors. Cyclophosphamide was administered before 
transplantation at lower doses (14.5  mg/kg; days −6 
and −5) and at higher doses (50  mg/kg; days 4 and 5)  
after transplantation. Thymic irradiation was substituted by 
200 cGy TBI and cyclosporine by tacrolimus and mycophenolate 
mofetil. After the first patient experienced graft rejection, ATG 
was replaced by fludarabine (24  mg/m2; days −6 to −2). The 
second patient tolerated the protocol fine, while the third patient 
deceased due to fludarabine-related neurotoxicity. Therefore, 
the dose of fludarabine was reduced from 5 to 3 days (24 mg/
m2/days −4 to −2) and the duration of individual dialysis 

sessions was extended. So far the transplant course of the forth 
patient was uncomplicated and he is off drugs 6  months post 
transplantation (77–79).

With the experience of the HLA-matched myeloma patients, 
the Boston group pursued their approach in patients without 
concomitant malignancies. The patients received a kidney and 
iliac crest marrow transplantation from haploidentical donors 
after thymic irradiation (700  cGy, day −1) and a short course 
of cyclophosphamide (60mg/kg/days −5 and −4). In contrast to 
myeloma patients, ATG was replaced by the monoclonal antibody 
Sipilizumab (α-CD2) to achieve more profound T cell depletion. 
The B cell depleting agent Rituximab (α-CD20) and prednisone 
were added after two patients developed donor-specific antibod-
ies. Cyclosporine or Tacrolimus was slowly tapered over several 
months and completely discontinued at 8  months after con-
firming freedom from rejection by a 6-month protocol biopsy. 
All (10/10) patients developed transient chimerism and seven 
patients achieved tolerance from which four remain completely 
off immunosuppression (5–13 years) (9, 78, 80). To reduce the 
toxicity of the regimen and to ameliorate the engraftment syn-
drome cyclophosphamide has recently been substituted by TBI 
(2 × 150 cGy). So far two patients have been treated with this 
modified protocol, from which one remains off immunosuppres-
sion for more than 3 years. Future trials are expected to include 
the use of belatacept, based on murine (81, 82) and non-human 
primate studies (79, 80, 83).

Stanford Group
The approach from Stanford University is based on the observa-
tion that TLI was sufficient to prolong MHC-mismatched skin 
graft survival in mice and even to achieve long-term acceptance 
(>120 days) in combination with bone marrow cells (84). After 
successful establishment of this approach in larger animals 
(85, 86), the group went on to the clinical setting resulting in 
the first well-documented report of actively acquired immune 
tolerance in humans. Two recipients received 20 fractionated 
doses of TLI (100 cGy) and six doses of ATG (2 mg/kg; days 
0, 2, 4, 6, 8, and 10), however, without hematopoietic stem cell 
transplantation (87).

Due to limited success rates and their experience from 
pre-clinical models, the group decided to add hematopoietic 
stem cell transplantation in 6 HLA-mismatched patients. After 
kidney transplantation (day 0), the patients received 10 doses of  
TLI (80–100  cGy; days 1–10) and 6 doses of ATG (1.5  mg/kg; 
days 0, 1, 3, 5, 9, and 14). CD34+ stem cells (3.1–11.1 × 106) were 
column enriched from G-CSF mobilized blood stem cells, cryo-
preserved and administered 11 days after kidney transplantation. 
The cell product contained relatively low numbers of CD3+ T cells 
(<0.1 × 106) to reduce the risk of GvHD. Mainte nance therapy con-
sisted of prednisone and cyclosporine. Two patients were weaned 
off immunosuppression after developing trans ient chimerism 
without signs of clinical rejection and exhibiting hyporesponsive-
ness to donor cells in  vitro. Both patients developed rejection 
3.5 and 5.5  months after withdrawal of immuno suppression. 
Increasing the dose of TLI did not improve chimerism (11, 88).

Thereupon the Stanford group focused on HLA-matched 
donor/recipient pairs deploying the same strategy with slight 
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modifications. Patients received 10 doses of 120  cGy TLI and 
5 daily doses of ATG (1.5  mg/kg; days 0–4). All patients were 
infused with column enriched CD34+ cells (4.3–17.5 × 106/kg) 
supplemented with 1 × 106/kg CD3+ T cells. Patients featuring 
stable chimerism for at least 6 months without signs of GVHD 
or clinical rejection were weaned off immunosuppression. 17 
out of 22 patients were successfully tapered off immunosup-
pression. Seven patients exhibited stable mixed chimerism while 
the remaining 10 patients lost donor chimerism during or after 
withdrawal of cyclosporine. One patient with lupus had to return 
to maintenance immunosuppressive therapy after a systemic 
lupus flare.

Based on this success, the group recently reattempted their 
approach with haploidentical donor/recipient pairs. Currently, 
a dose escalation study is under way in order to determine 
the optimal dose of CD34+ cells and CD3+ T  cells that would 
promote persistent mixed chimerism. Ten patients have been 
enrolled so far revealing that high levels of chimerism (at least 
65% at 60 days) can be achieved with 50 × 106/kg CD3+ cells and 
10 × 106/kg CD34+ cells. The ability of these patients to undergo 
successful drug withdrawal will be subject of a subsequent report 
with larger numbers of patients (11, 89).

Northwestern Group
The group from Northwestern University adopted a regimen 
for patients with non-malignant hematologic diseases and hap-
loidentical donors (90). Kidney recipients received fludarabine 
(30 mg/m2, days −4 to −2) together with dialysis, cyclophospha-
mide (50 mg/kg, days −3 and 3), and TBI (200 cGy, day −1). One 
day post kidney transplantation (day 0), a specially designed 
cell product (FCRx) engineered from G-CSF mobilized blood 
mononuclear cells is infused. Maintenance therapy in the form 
of Tacrolimus and mycophenolate mofetil is provided until a 
control biopsy is performed at 6 months. If the biopsy is clear, 
renal function is stable and more than 50% donor chimerism 
is present, immunosuppressive therapy is slowly tapered off. 
30 of 31 patients exhibited donor chimerism at 1  month and 
19 fulfilled the criteria for discontinuing maintenance therapy. 
The majority of the tolerant patients exhibited full chimerism 
(>98%) and three subjects mixed chimerism (10, 62, 73).

The investigators recently initiated a trial in which transplant 
recipients received multiple infusions of cryopreserved iliac 
crest and/or CD34+ mobilized cells from HLA identical donors 
without myelosuppressive recipient conditioning, an approach 
reminiscent of previous bone marrow augmentation trials (91). 
Iliac crest bone marrow (0.3–1.0 × 106) was infused 5 days post 
transplantation and GCSF-mobilized CD34+ cells were infused 
3, 6, and 9 months post transplantation. The recipients received 
two doses of Alemtuzumab (0.3  mg/kg; days 0 and 4) and 
maintenance therapy consisted of Tacrolimus and mycopheno-
late mofetil. No myelosuppressive conditioning was given and, 
consequently, no macrochimerism was induced, but rather only 
microchimerism was observed. After 3 months, Tacrolimus was 
replaced by Sirolimus (Rapamycin) and mycophenolate mofetil 
was discontinued between 12 and 18  months and Sirolimus 
after 24  months. Recipients were considered tolerant if they 
had normal biopsies and renal function after an additional 

12  months without immunosuppression. Five of ten patients 
were successfully withdrawn from immunosuppression and 
showed normal protocol biopsies at 36 months. Tolerant patients 
exhibited transient chimerism for the first year and both tolerant 
and non-tolerant recipients exhibited increased proportions of 
CD4+CD25highCD127−FOXP3+ regulatory T cells and CD19+IgD/
M+CD27− B cells (73, 92) (Figures 1 and 2; Table 1).

UNDeRSTANDiNG THe MeCHANiSMS OF 
TOLeRANCe

These first pilot trials provide the conceptual framework for 
the further development of chimerism-based approaches as 
clinically viable treatment option. In order to refine tolerance 
inducing strategies, it will be important to understand the 
underlying mechanisms establishing and maintaining tolerance 
in greater detail. While the circumstances seem fairly evident 
in the event of full chimerism, the tolerization of pre-existing 
recipient T  cells in mixed and transient chimeras with an 
intact T cell repertoire still remains incompletely understood. 
The group from Stanford conducted mechanistic studies in the 
murine setting. They found that repeated doses of TLI cause 
severe DNA damage which drives large numbers of lympho-
cytes into apoptosis. CD8+ dendritic cells are less sensitive to 
irradiation and possess specialized receptors (Tim-4, DEC205) 
that recognize products of dying cells. Activated CD8+dendritic 
cells activate the immunomodulatory enzyme indoleamine 
2,3-dioxygenase and trigger host NKT  cells to produce IL-4. 
Under these conditions, the interaction of IL-4-producing 
NKT  cells with myeloid-derived suppressor cells and Tregs 
contributes to the induction of tolerance. Myeloid-derived 
suppressor cells thwart alloreactive T  cell responses through 
the release of Arginase-1 which deprives local T cells from the 
essential amino acid l-Arginine and increases the production 
of superoxide (93). Furthermore, myeloid-derived suppressor 
cells exhibit an increased surface expression of PDL1 and 
prompt the residual T cell pool including Tregs to express PD1 
(94, 95). The interaction of PDL1 with PD1 attenuates effector 
T cell functions while promoting the induction, maintenance, 
and function of Tregs (96). Expression of PD1 on Tregs was 
also linked to enhanced secretion of IL-10 which preserved the 
allograft and chimerism (97).

The group from Boston started to investigate the mechanisms 
sustaining tolerance in patients that had lost chimerism. They 
found that both circulating and intragraft Foxp3+ Tregs were 
increased in tolerant patients while alloreactive T  cells were 
decreased (98). The increase of peripheral Tregs in the blood 
resulted from proliferation, thymic emigration, and in one patient 
from conversion of conventional T cells (99). In order to track 
alloreactive T cells, they defined a genetic fingerprint of T cells 
responding to donor cells in  vitro before transplantation using 
high-throughput sequencing. Those clones were specifically 
reduced in tolerant patients but remained unchanged in stable 
kidney recipients on immunosuppressive therapy (100). Since 
these patients exhibit transient chimerism, it is likely that donor-
reactive T cells were deleted by peripheral mechanisms.
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Recently, the group exploited a cohort of tolerant non-
human primates that had accumulated over the years to inves-
tigate the underlying tolerance mechanisms emerging through 
transient chimerism in more detail. Tolerant recipients lost 
anti-donor CD8 T cell response while a considerable number 
of CD4 T cells proliferated against donor cells in vitro. A sub-
stantial fraction of these responding CD4 T cells constituted 
Foxp3 Tregs which were induced from conventional T  cells 
in a TGF-β-dependent manner. The suppressive function of 
these induced Tregs was contact dependent and inhibiting 
their induction through TGF-β blockade restored CD8 T cell 
proliferation in vitro (101).

FUTURe PROSPeCTS

As different as the individual approaches may be, they all agree 
on the pivotal role of Tregs, suggesting that steering the differ-
entiation of naïve CD4 T cells toward regulation is a critical step 
for the induction of tolerance. The differentiation of naïve CD4 
T cells into various T helper subsets is guided by the surrounding 
cytokine milieu during T cell receptor stimulation. If CD4 T cells 
commit to a distinct helper lineage, they start to express certain 
transcription factors that determine their subsequent mode of 
action such as immunity, tolerance, autoimmunity, or allergy. 
Therefore, the specific blockade of immunogenic cytokines could 
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TABLe 1 | Key parameters of pilot trials combining hematopoietic stem cell transplantation and kidney transplantation for the purpose of mixed chimerism and 
tolerance.

Human leukocyte antigen-matching Boston Northwestern Stanford

Haploidentical Haploidentical Mismatched Matched Mismatched Haploidentical Matched

Number of mismatches 2–3 2–3 0–6 0 3–6 1–3 0
Patients included n = 10 n = 2 n = 31 n = 10 n = 6 n = 6 n = 22
Induction of chimerism 10/10 2 30/31 8/10 2/6 5/10 21/22
Transient mixed chimerism 10 Ongoing 5 8/10 2 3 9
Stable mixed chimerism 0 Ongoing 3 0 0 2 7
Full donor chimerism 0 Ongoing 16 0 0 0 0
Initially off immunosuppression 8/10 1a/2 19/31 8/10 2/6 2/6 17/22
Rejectionb 3 0 0 3 2 0 0
Graft Loss 3 0 2 0 0 0 0
Remaining off IS 4/10 1a/2 19/31 5/10 0 0a 16a/22
Graft-vs.-host disease 0 0 2 0 0 0 0
Death 0 0 1 0 0 0 0

aOngoing trial.
bOnly patients where IS was withrawn are included.

FiGURe 2 | Outcome overview of clinical pilot trials of chimerism-based tolerance in kidney transplantation—graphic illustrations summarizing the key outcomes of 
the first pilot trials combining hematopoietic stem cell transplantation and kidney transplantation for the purpose of mixed chimerism and tolerance.
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be envisioned as suitable approach to drive naïve CD4 T cells into 
the corner of regulation. This strategy has already been proven 
successful for the treatment of several inflammatory diseases 
(102) and it will be interesting to see whether this success will 
continue in the field of transplantation.

IL-6 is probably the most crucial factor guiding the differentia-
tion of naïve CD4 T cells either toward regulation or inflammation. 
Inhibition of IL-6 signaling with Tocilizumab is already an estab-
lished treatment option for autoimmune diseases and currently 
gains traction in the field of transplantation. Coadministration of 
Tocilizumab to standard GvHD prophylaxis revealed promising 
potential in a phase I/II trial (32) and is also tested in several 
transplant trials (103). In the experimental setting, blocking IL-6 
displayed a beneficial effect on the induction of chimerism and 
tolerance in non-human primates and mice (104, 105).

Alternatively, Treg induction could be promoted by estab-
lishing the appropriate cytokine environment. The most vital 
cytokine for the induction and maintenance of Tregs is IL-2. 
Nonetheless, current maintenance therapies targeting calcineu-
rin inhibit IL-2 secretion and may, therefore, not be suitable for 
tolerance-inducing strategies (106). The addition of IL-2 has 

recently been shown to restore the survival and function of Tregs 
under calcineurin inhibition and to improve allograft survival 
(107). Harnessing IL-2 to tip the balance between immunity and 
regulation is, however, a delicate issue as it is essential for both. 
The compilation and tissue distribution of the IL-2 receptor prob-
ably accounts for its pleiotropic effects. IL-2 preferentially binds 
to its high-affinity receptor which is constitutively expressed 
on Tregs and rapidly upregulated on conventional T  cells and 
NK  cells upon activation, while resting NK  cells and memory 
CD8 T cells constitutively carry the low-affinity receptor (108). 
Low doses of recombinant IL-2 have been shown to promote tol-
erance to islet (109) and skin allografts (110) while high doses of 
IL-2 abrogated kidney allograft tolerance in non-human primates 
(111). IL-2/α-IL2 complexes accelerated bone marrow rejection 
in mice independent of their dose implying that the effect of IL-2 
also varies with the transplanted tissue (112).

ReMAiNiNG HURDLeS

The first clinical pilot trials underpinned the difficulties to 
achieve durable mixed chimerism over MHC barriers. This 
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issue has often been disregarded in the murine setting where the 
number of memory T cells is rather low (5–10% of all T cells). 
Murine models can be improved by enriching recipients with 
alloantigen primed memory T cells (113) or by using old mice 
with an increased pool of memory T cells (114). In the human 
setting, the amount of memory T cells can compromise up to 50% 
of all circulating T cells (115) from which 1–10% can recognize 
intact allogeneic MHC molecules through direct allorecognition 
(116), even in “non-sensitized” recipients through the mecha-
nism of heterologous immunity. Memory T  cells are a robust 
hurdle for tolerance induction due to their lower activation 
threshold, vigorous effector functions, and their resistance to 
common immunosuppressive drugs. The presence of memory 
T cells pre-transplantation has been associated with an increased 
risk for acute rejection of kidney transplants (117). Pre-exisitng 
alloreactive memory T  cells are most likely generated through 
recognition of commensal bacteria or environmental antigens 
(heterologous immunity). Apart from this, memory T cells can 
occur during homeostatic proliferation following cell depletion 
or in lymphopenic hosts. Homeostatic proliferation and heter-
ologous immunity have both been shown to impede tolerance 
induction in mice (118, 119).

Cell-depleting agents enrich memory T  cells as they pref-
erentially affect naïve and regulatory T cells (120). T cells with 
effector/memory phenotype are detectable after Alemtuzumab or 
ATG induction therapy (120, 121). Moreover, it should be kept in 
mind that innate immunity which is responsible for the clearance 
of antibody-coated cells becomes activated (122). Therefore, it 
would be preferable to block alloreactive cells rather than deplet-
ing them. So far CTLA4-Ig (belatacept) is the only costimula-
tion blocker available for clinical use. Besides its availability, 
CTLA4-Ig also caught attention through its ability to promote 
chimerism and tolerance in mice (82) and non-human primates 
(83). Unfortunately, also modern blocking agents have difficulties 
to keep tab on memory T cells. Terminally effector memory CD4 
and CD8 T cells lose CD28 expression and, thus, become resistant 
to costimulation blockade through CTLA4-Ig (123). Terminal 
effector T cells are resistant to costimulation blockade even before 
they lose CD28 expression and their pretransplant frequency has 
recently been shown to predict episodes of allograft rejection 
in belatacept-treated patients (124, 125). Increased numbers of 
CD28− CD4 and CD8 memory T cells have been associated with 
a poor outcome in renal transplant recipients (126). IL-15 could 
restore the proliferation of alloreactive CD28− memory CD8 
T  cells in  vitro (127). Accordingly, strategies are warranted to 
block IL-15 signaling under costimulation blockade. Blocking the 
β-chain (CD122) of the IL-15 receptor has recently been shown 
to synergize with CTLA4-Ig to prolong allograft survival (128).

Alternative strategies include the use of Alefacept which 
is a fusion protein consisting of extracellular LFA3 domain 
and human IgG1. It interacts with CD2 which is upregulated 
on CD45RO+ effector/memory T cells. In this way, Alefacept 
preferentially targets memory T  cells but spares the remain-
ing T  cell pool (129). Pre-transplant Alefacept synergized 
with CTLA4-Ig by targeting CD8+ CD28− effector/memory 
T  cells (130). Moreover, blocking the integrins LFA-1 and 
VLA-4 prolonged skin allograft survival in a mouse model 

of costimulation blockade-resistant rejection mediated by 
memory CD8 T cells (113, 131).

TOLeRANCe OR NO TOLeRANCe THAT iS 
THe QUeSTiON

One of the fundamental challenges of tolerance-inducing 
protocols is to identify those patients in which the protocol was 
successful and which can, thus, safely be weaned off immuno-
suppression. Stable multi-lineage chimerism has long been 
regarded as the most robust predictor for tolerance and donor 
T  cell engraftment in particular as a critical parameter (132). 
However, the prediction of tolerance becomes more sophisticated 
in the absence of durable chimerism. Accordingly, there is a high 
demand for other markers that reliably identify tolerant patients.

The optimal biomarker should allow repeated and non-
traumatic measurements that faithfully reflect intragraft pro-
cesses in real-time with a high precision at affordable prices. 
The demands are certainly high but advancing biotechnological 
methods offer unknown opportunities. In the effort to find a 
reliable biomarker for tolerance, conventional transplant recipi-
ents retaining normal kidney function over an extended period 
of time after withdrawal of all immunosuppressive medication 
(operationally tolerant) have been compared to healthy subjects 
or immunosuppressed kidney recipients. Tolerant patients 
exhibited a specific increase in blood CD4+ CD45RA− Foxp3high 
memory Tregs in comparison to stable kidney recipients and 
healthy controls. These Tregs exhibited an increased surface 
expression of GITR and CD39 together with a decreased dem-
ethylation of the Treg-specific demethylated region (133). Since 
only a minor fraction of the whole Treg pool circulates within 
the blood, the accumulation of Tregs within the graft drew 
more interest. Indeed, operationally tolerant patients exhibited 
an increased proportion of Foxp3 Tregs inside their allografts 
(134). Besides, dissecting the non-regulatory T  cell compart-
ment emerged as useful tool to assess alloreactivity. Analyzing 
the recipients T  cell receptor repertoire by high-throughput 
sequencing becomes increasing popular on that account. Once 
a genetic fingerprint of donor-reactive T  cell clones has been 
defined, they can easily be tracked over time. The group from 
Boston could confirm that a reduction of the alloreactive T cell 
receptor repertoire correlates with tolerance while an increase is 
associated with rejection (135).

Whole genome microarray-based transcriptional profiling 
studies additionally revealed B  cells as important markers of 
kidney tolerance (136, 137). These studies led to the disclosure 
of a distinct B  cell signature in operationally tolerant patients 
and in patients rendered tolerant through hematopoietic stem 
cell transplantation (138). This specific B cell profile has recently 
been deployed to identify a cohort of immunosuppressed patients 
with improved renal allograft function (139). The circumstance 
that the B cell signature of tolerant patients was conspicuously 
similar to those of healthy controls raised the question whether 
these profiles would merely reflect the absence of immunosup-
pression. Re-evaluation of the data set revealed that common 
immunosuppressants bias the expression of the investigated 
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genes. Nonetheless, a new gene expression profile could be cre-
ated that was independent of drug-effects (140). In an alternative 
approach, tolerant patients could be differentiated from stable 
patients on the basis of elevated miR-142-3p levels in peripheral 
blood mononuclear cells. Besides, miR-142-3p expression was 
stable over time and not affected by immunosuppression (141). 
The fact that miR-142-3p mainly originated from B cells further 
substantiated their contribution for tolerance.

In line with this B cell profile, tolerant patients also displayed 
an increased proportion of naïve (CD20+ CD24low CD38low) and 
transitional B  cells (CD20+ CD24high CD38high) in comparison 
to immunosuppressed kidney recipients (138). In this respect 
again, it could not be excluded that the redistribution of B cell 
subsets might result from the absence of immunosuppression. 
Patients on azathioprine or prednisone namely feature lower 
numbers of transitional B  cells in comparison to patients off 
drugs (140). On the other hand, the lack of transitional B cells 
was associated with kidney allograft rejection (142).

No biomarker has emerged yet that has been sufficiently 
validated to be used for clinical decision making in the routine 
setting, but progress achieved so far is encouraging and will likely 
yield success in the future.

CONCLUSiON

After an extended period of hibernation, the dream of toler-
ance is gaining increasing attention again. The Holy Grail seems 
to be in one’s reach but “he who finds the Grail must face the 
final challenges—three devices of such lethal cunning” (143). 
In the event of transplantation tolerance, these final challenges 
would be to reduce host toxicity, to avoid GvHD, and to improve 
clinical efficacy. Improving tolerance-inducing strategies is a 
cumbersome and tedious process but the increasing number of 
patients undergoing such protocols shows that we are heading 

into the right direction. Besides, novel approaches such as 
costimulation blockade, Treg therapy, pro-apoptotic molecules, 
or immunomodulatory antibodies hold out encouraging pros-
pects for the future. Further important steps toward clinical 
applicability will be to find appropriate biomarkers that reliably 
predict tolerance.

On the shady side, the burning desire for eternal organ life 
sometimes makes us forget the involved risks as can be seen 
by the two recent cases of GvHD. As Goetz von Berlichingen 
already said in Goethe’s drama: “Where there is bright light, there 
is also deep shadow.” Throughout the course of history progress 
has often claimed victims but it remains questionable whether 
this can be justified for the field of (living donation kidney) 
transplantation. Be that as it may, the rapidly advancing field of 
immunology will hopefully allow us to achieve tolerance by safer 
means. In this regard, the field of tumor immunology emerged as 
major ally. The mechanisms of how tumors evade host immunity 
provide vital insights for the design of innovative strategies and 
could guide future directions (144).

Developing tolerance-inducing strategies has always been 
and continues to be a highly elaborate process. Therefore, it still 
remains difficult to assess when tolerance-inducing protocols will 
reach clinical maturity but there is hope that they will not remain 
a laboratory solution forever.
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