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Determining whether an asymptomatic individual with Prostate-Specific Antigen (PSA) 
levels below 20 ng ml−1 has prostate cancer in the absence of definitive, biopsy-based 
evidence continues to present a significant challenge to clinicians who must decide 
whether such individuals with low PSA values have prostate cancer. Herein, we present 
an advanced computational data extraction approach which can identify the presence of 
prostate cancer in men with PSA levels <20 ng ml−1 on the basis of peripheral blood immune 
cell profiles that have been generated using multi-parameter flow cytometry. Statistical 
analysis of immune phenotyping datasets relating to the presence and prevalence of key 
leukocyte populations in the peripheral blood, as generated from individuals undergoing 
routine tests for prostate cancer (including tissue biopsy) using multi-parametric flow 
cytometric analysis, was unable to identify significant relationships between leukocyte 
population profiles and the presence of benign disease (no prostate cancer) or prostate 
cancer. By contrast, a Genetic Algorithm computational approach identified a subset of 
five flow cytometry features (CD8+CD45RA−CD27−CD28− (CD8+ Effector Memory cells); 
CD4+CD45RA−CD27−CD28− (CD4+ Terminally Differentiated Effector Memory Cells 
re-expressing CD45RA); CD3−CD19+ (B cells); CD3+CD56+CD8+CD4+ (NKT cells)) from 
a set of twenty features, which could potentially discriminate between benign disease 
and prostate cancer. These features were used to construct a prostate cancer prediction 
model using the k-Nearest-Neighbor classification algorithm. The proposed model, which 
takes as input the set of flow cytometry features, outperformed the predictive model 
which takes PSA values as input. Specifically, the flow cytometry-based model achieved 
Accuracy  =  83.33%, AUC  =  83.40%, and optimal ROC points of FPR  =  16.13%, 
TPR  =  82.93%, whereas the PSA-based model achieved Accuracy  =  77.78%, 
AUC = 76.95%, and optimal ROC points of FPR = 29.03%, TPR = 82.93%. Combining 
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PSA and flow cytometry predictors achieved Accuracy = 79.17%, AUC = 78.17% and 
optimal ROC points of FPR = 29.03%, TPR = 85.37%. The results demonstrate the 
value of computational intelligence-based approaches for interrogating immunopheno-
typing datasets and that combining peripheral blood phenotypic profiling with PSA levels 
improves diagnostic accuracy compared to using PSA test alone. These studies also 
demonstrate that the presence of cancer is reflected in changes in the peripheral blood 
immune phenotype profile which can be identified using computational analysis and 
interpretation of complex flow cytometry datasets.

Keywords: prostate cancer, predictive modeling, immunophenotyping data, flow cytometry, Psa level, 
computational analysis, genetic algorithm, machine learning

1. inTrODUcTiOn

The introduction of the serum Prostate-Specific Antigen (PSA) 
level as a biomarker for the presence of prostate cancer in 1986 
prompted a progressive global increase in the diagnosis, and 
earlier diagnosis of the disease. The fact that most men are now 
diagnosed with organ-confined disease enables intervention 
with curative intent. However, although the initial diagnosis of 
prostate cancer in most men is based on a PSA test and digital 
rectal examination (DRE) (1), the PSA test has been criticized 
for its poor diagnostic specificity (30%) (2). Further investiga-
tions are, therefore, indicated in the event of an elevated PSA 
or abnormal DRE. These include a transrectal ultrasound 
(TRUS)-guided prostate biopsy and subsequent examination 
and reporting by a pathologist. However, TRUS-guided pros-
tate biopsies have a documented sensitivity of only 39–52% (3), 
and cancer detection rates of around 25% on initial biopsies 
(4), and 18–32% on repeated biopsies (5, 6). This approach is 
also costly and rarely detects prostate cancers that an elevated 
PSA and/or DRE cannot predict. Although TRUS is commonly 
used to guide a biopsy, it is not, therefore, recommended for 
routine screening. An alternative approach to the TRUS is 
the Transperineal Template Prostate Biopsy (TPTPB), and 
we have previously shown that TPTPB can identify clinically 
significant prostate cancer in 71/122 (58%) of men with raised 
PSA, despite two previous sets of negative TRUS biopsies (7). 
An important element of these findings was that 61% of the 
patients in whom prostate cancer was diagnosed had a Gleason 
grade score ≥7 (most which were in the anterior zone), thereby 
automatically placing them into the “intermediate” or “high-
risk” categories when applying established risk stratification 
criteria (7). The capacity of the TPTPB to identify more clini-
cally significant tumors at an earlier stage, therefore, suggests 
that it is a better diagnostic test for localized prostate cancer 
than the TRUS biopsy. Given the ability of the TPTPB to detect 
prostate cancer at significantly higher rates than TRUS biopsies 
(8–12), we questioned whether we should move away from 
TRUS biopsies to TPTPB and whether PSA is actually a more 
specific biomarker for prostate cancer detection than had been 
previously thought. To this end, we performed a prospective 
study which directly compared the diagnostic potential of the 
TRUS and TPTPB approaches in the same cohort of biopsy 
naïve men with an elevated PSA <20  ng  ml−1 and a benign 

feeling prostate on a DRE. These patients, therefore, served 
as their own controls (13). The study demonstrated that the 
TRUS biopsy detected cancer in 32 versus 60% with TPTP, and 
that TPTPB is associated with a significantly higher prostate 
cancer detection rate than TRUS biopsies in biopsy naïve men 
with PSA <20 ng ml−1 and a benign feeling DRE (13). However, 
given that TRUS guided prostate biopsies are associated with a 
5% risk of urosepsis (which can be life-threatening), and that 
TPTPB is performed under general anesthetic and associated 
with a 5% risk of urinary retention, both procedures are associ-
ated with a significant cost and potential for complications. It 
is also essential that men with low-risk prostate cancer are not 
diagnosed as having cancer, as they do not require any active 
treatment and such individuals are “labeled” as having cancer. 
This can have profound adverse psychological and financial 
consequences, and assign them to life-long surveillance. The 
fundamental aim of this study is, therefore, to develop an 
approach which delivers a high level of diagnostic accuracy for 
asymptomatic men with an elevated PSA <20 ng l−1. The devel-
opment of such approaches will spare men with benign disease 
or low-risk cancer from unnecessary invasive diagnostic proce-
dures such as TRUS-guided prostate biopsies or TPTPB. Given 
the reciprocal interactions between tumors and the immune 
system, we hypothesized that the presence of disease, disease 
recurrence, and therapeutic resistance may be influenced, 
reflected in, or predicted by tumor-related immunoregulatory 
events that can be identified by changes in immune phenotypes 
in the periphery. We, therefore, proposed that the analysis 
of immune phenotyping datasets using multi-parametric 
flow cytometric analysis can identify features that reflect the 
presence of disease and/or predict disease progression (14). 
Although flow cytometry provides a vital tool for exploring, 
explaining, and understanding complex cellular dynamics and 
processes in a variety of experimental and clinical settings (15), 
key challenges with multi-parametric flow cytometry include 
the analysis and interpretation of the complex and increasingly 
multidimensional data and its conversion into biologically and 
clinically useful information. This study attempts to address 
and resolve some of these challenges using computational 
intelligence methods. Computational intelligence methods 
comprise evolutionary algorithms (also known as metaheuris-
tic optimization, or nature-inspired optimization algorithms) 
coupled with machine learning methods, and hybrids of these. 
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TaBle 1 | Monoclonal antibody panel.

antibody Fluorochrome clone no. supplier

CD8 FITC SK1 Biolegend
CD19 PE HIB19 Biolegend
CD28 PE-Texas Red (ECD) CD28.2 Beckman Coulter
CD56 PE-Cy5 NCAM Biolegend
CD3 PE-Cy7 HIT3a Biolegend
CD45RA Allophycocyanine (APC) HI100 eBioscience
CD14 Alexa Fluor 700 HCD14 Biolegend
CD27 APC eFluor 780 O323 eBioscience
CD45 Pacific Blue J33 Beckman Coulter
CD4 Krome Orange 13B8.2 Beckman Coulter
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A type of machine learning method, supervised learning, is 
used to derive prediction models which can be very effective 
in dealing with uncertainty, noise, and dimensionality in data. 
Supervised learning methods can learn from existing data to 
make informed predictions using new patient data, and have 
been widely adopted for prostate cancer prediction tasks 
when using clinical and biomedical data (16). It is now time to 
embrace computational intelligence methods for the analysis of 
flow cytometry data, since statistical methods alone may not be 
sufficient for the task of analyzing and modeling such complex 
data (16). Herein, we assess whether advanced computational 
analysis of peripheral blood flow cytometry immunopheno-
typing data from a selected cohort of individuals can generate 
prediction models with potential clinical value and identify the 
presence of prostate cancer in asymptomatic individuals with 
a PSA level <20 ng ml−1. The computational models and algo-
rithms are trained to make predictions on new and previously 
unseen data using existing data. Significantly, this approach has 
identified a novel prostate cancer immunophenotyping “finger-
print” which could potentially be used to identify the presence 
of prostate cancer in asymptomatic men having PSA levels 
<20 ng ml−1; and which outperforms the predictive value of the 
PSA test alone. We have also shown that combining flow cytom-
etry predictors with PSA levels improves diagnostic accuracy. 
Taken together, these studies demonstrate that the presence of 
cancer is reflected in changes in the peripheral blood immune 
phenotype profile which can be identified using computational 
analysis and interpretation of complex flow cytometry datasets, 
and the value of computational intelligence-based approaches 
for interrogating immunophenotyping datasets.

2. MaTerials

2.1. Data collection
Patients with suspected prostate cancer attending the Urology 
Clinic at Leicester General Hospital (University Hospitals of 
Leicester NHS Trust, Leicester, UK) were examined by Professor 
Masood Khan (Consultant Urologist) and Mr. Shady Nafie 
(Registrar in Urology). Samples were obtained from a selected 
cohort of patients which met the following criteria—being biopsy 
naïve, with a PSA level of <20 ng ml−1 and agreeing to undergo 
simultaneous TRUS biopsy (12 cores) and a transperineal 
template prostate biopsy (TPTPB) (36 cores) procedures under 
general anesthetic. Samples from the TPTPB cohort were col-
lected from 24 October 2012 to 15 August 2014. Further details 
on how patients were recruited and treated are described in Nafie 
et al. (7). The cohort comprised samples from 72 males who had 
a TRUS-guided biopsy and then a TPTPB. The mean age for this 
cohort was 66 years old (age range of 50–84 years old). Given the 
more definitive diagnostic power of the TPTPB (7, 13), samples 
that were considered as being from individuals with benign 
disease were obtained from this cohort. A total of 41 (56.94%) 
patients were diagnosed with prostate cancer. The remaining 31 
(43.06%) patients were classed as having benign disease following 
pathological examination and the application of established crite-
ria. Of those patients diagnosed with benign disease, 10 patients 
were diagnosed with High Prostatic Intraepithelial Neoplasia 

(High-Grade); 10 patients were diagnosed with Atypical Small 
Acinar Proliferation and 2 patients with Atypia. The remaining 9 
patients were diagnosed as having benign disease. Patients with 
multi-focal high-grade PIN or ASAP commonly have a prostatic 
core biopsy showing a focus which is suspicious for, but not 
diagnostic of, cancer (17).

2.2. ethics statement
Research Protocols were registered and approved by the National 
Research Ethics Service (NRES) Committee East Midlands and 
by the Research and Development Department in the University 
Hospitals of Leicester NHS Trust. All participants were given 
information sheets explaining the nature of the study and all pro-
vided informed consent. All samples were collected by suitably 
qualified individuals using standard procedures. Ethical approval 
for the collection and use of samples from the TPTPB cohort 
(Project Title: Defining the role of Transperineal Template-guided 
prostate biopsy) was given by NRES Committee East Midlands-
Derby 1 (NREC Reference number: 11/EM/3012; UHL11068). 
Ethical approval for the collection of peripheral blood from 
healthy volunteers was obtained from the Nottingham Trent 
University College of Science and Technology Human Ethics 
Committee (Application numbers 165 and 412).

2.3. Flow cytometric analysis
Peripheral blood (60  ml) was collected from all patients using 
standard clinical procedures. Aliquots (30 ml) were transferred 
into two sterile 50  ml polypropylene (Falcon) tubes contain-
ing 300  µl of sterilized Heparin (1000  U  ml−1, Sigma). Anti-
coagulated samples were immediately transferred to the John van 
Geest Cancer Research Centre at Nottingham Trent University 
(Nottingham, UK) and were processed immediately upon receipt 
(as described in this section), and within 3 h of collection. 200 µl 
of whole blood was used to profile the key immune cell subsets 
in the periphery (Overview of the Immune System: “OVIS”—see 
Table 1).

Absolute cell counts in whole blood samples were determined 
by the inclusion of BD Trucount™ beads (BD Biosciences; 
Mountain View, CA, USA), as per the manufacturer’s protocol. 
For the flow cytometric analysis, 100  µl of blood was mixed 
directly in the BD Trucount™ bead tube and T cell, B cell, and 
NK cell populations identified using the conjugated monoclonal 
antibodies (mAbs) detailed in Table  1. For the staining, cells 
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FigUre 1 | Representative gating strategies for the flow cytometric analysis of single cells. The Overview of the Immune System (OVIS) staining panel confirmed 
CD45 expression then determined cell populations as CD14+ monocytes, CD3−CD56+ NK cells (with CD56bright and CD56dim subsets), CD3+CD56+ NKT cell 
subpopulations, CD19+ B cells, CD3+CD4+ and CD3+CD8+ Naïve, Central Memory, Effector Memory, Terminally Differentiated Effector Memory Cells Expressing 
CD45RA T cells populations. The definition of monocytes based on CD45+CD4+ generated the same data as defining them based on CD3−CD14+ (data not shown).
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were incubated for 15 min at room temperature, protected from 
the light, after which erythrocytes were lysed by incubating 
samples for 15 min at room temperature in BD Pharm Lyse™ 
(BD Biosciences). Once staining was complete, cells were 
washed in phosphate buffered saline (PBS), resuspended in 
Coulter Isoton™ diluent. Data were acquired within 1 h using 
a 10-color/3-laser Beckman Coulter Gallios™ flow cytometer 
and analyzed using Kaluza™ v1.3 data acquisition and analysis 
software (Beckman Coulter). Controls used a “Fluorescence 
minus One,” “FMO” approach. A typical gating strategy for the 
analyses is presented in Figure 1.

2.4. Data normalization and statistical 
analysis
For this study, we considered a feature to be the grouped set of 
flow cytometry phenotypic variables shown in Table 2. The mean 
and Standard Deviation (SD) values of each flow cytometry fea-
ture shown in Table 2 indicate clear variation, as a consequence 
of which data were normalized to put them on the same scale and 
enable the comparison of two or more variables (i.e., flow cytom-
etry features). Let Xmxn = [xij] be a m x n matrix with m rows and 
n columns. Z-score normalization was applied to each column n 
of matrix X. Applying normalization returned the z-score value 
for each matrix element xij, and each column j of matrix X was 
centered to have a mean value of 0 and scaled to have a SD value 
of 1. The standardized data set retains the shape properties of 

the original data set (same skewness and kurtosis). The z-score 
normalization function is shown in Function (1):

 
z

x xij=
−( )
σ  

(1)

where xij is a data point; x is the mean value of column j; σ is the 
SD; and z is the transformed value of data point xij.

Figure  2 illustrates the distribution of the flow cytometry 
features in the form of box plots, and allows for quick visualiza-
tion of variability. Outliers were included in the analyses as it is 
important to consider those “out of range values” when creating 
a prediction model. Figure 3 illustrates the flow cytometry values 
derived from individuals with benign disease and patients with 
prostate cancer before and after data normalization.

Table 3 provides descriptive statistics of the normalized dataset, 
and these are also illustrated in Figure 2. The Interquartile range 
(IQR) is an informative measure of variability and determined 
by computing the distance between the Upper Quartile (i.e., top)  
and Lower Quartile (i.e., bottom) of the box. The features with 
the smallest degree of variability are those with the smallest  
IQR values, and hence: CD4+CD45RA+CD27−CD28− (ID 10, first  
smallest); CD3+CD56+CD8+CD4+ (ID 17, second smallest); 
CD3+CD56+CD8−CD4+ (ID 19, third smallest); CD4+CD45RA− 
CD27−CD28− (ID 9, fourth smallest), CD8+CD45RA−CD27−CD28− 
(ID 4, fifth smallest). These variables, therefore, appear to the best 
candidate predictors when considered independently.
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TaBle 2 | Flow Cytometry features.

Feature iD Flow cytometry feature Mean sD

1 CD3+CD8+ 450.39 402.03
2 CD8+CD45RA+CD27+CD28+ 96.92 75.99
3 CD8+CD45RA−CD27+CD28− 68.45 58.73
4 CD8+CD45RA−CD27−CD28− 45.37 104.69
5 CD8+CD45RA+CD27−CD28− 120.05 197.85
6 CD3+CD4+ 877.88 468.35
7 CD4+CD45RA+CD27+CD28+ 393.72 214.27
8 CD4+CD45RA−CD27+CD28+ 311.24 211.16
9 CD4+CD45RA−CD27−CD28− 17.78 39.78

10 CD4+CD45RA+CD27−CD28− 14.19 35.48
11 CD45+CD14+ 116.16 87.19
12 CD3−CD19+ 257.70 251.40
13 CD3+CD56+ NKT 76.54 85.74
14 CD3−CD56+ NK 260.34 202.84
15 CD3−CD56low 253.20 192.27
16 CD3−CD56high 16.06 14.66
17 CD3+CD56+CD8+CD4+ 5.67 16.16
18 CD3+CD56+CD8+CD4− 53.32 59.76
19 CD3+CD56+CD8-CD4+ 10.96 20.41
20 CD3+CD56+CD8−CD4− 6.59 6.58

Mean and Standard Deviation (SD) values of raw data.
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The Kruskal–Wallis test (“one-way ANOVA on ranks”) tested for 
statistically significant differences between the mean ranks of the 
normalized flow cytometry variables observed in individuals with 
benign disease and patients with prostate cancer due to the presence 
of unequal variances, and demonstrated there to be no statistically 
significant differences at the alpha level of α = 0.05 in the mean 
ranks of the flow cytometry features between these two groups 
(Table 4). A more sophisticated approach that has the potential 
to determine which features would better indicate the presence of 
disease was, therefore, adopted. For this, a Genetic Algorithm was 
used to explore the different combinations of features and return 
the optimal combination of features which indicate the presence of 
prostate cancer. As a final stage of the analysis, and prior to applying 
a Genetic Algorithm for feature selection, it is useful to determine 
whether any correlations among the flow cytometry features exist. 
For this, the non-parametric Spearman rank correlation assessed 
the degree of association between flow cytometry features. The rho 
values arising from this analysis were plotted in a heatmap graph 
(shown in Figure 4) in order to visualize those feature pairs having 
strong positive and strong negative correlations. Figure 4 shows 
that many pairs have positive correlation values (color red). The 
p values were computed to determine which of these correlations 
were significant at α = 0.05. The rho correlation values range from 
−1.0 to +1.0. A value of 0 suggests no correlation, a value of +1.0 
suggests a strong positive correlation and a value of −1.0 suggests 
a strong negative correlation. A total of 141 unique pairs of features 
returned significant correlations with p < 0.05.

The large number of pairs having significant correlations pre-
sents significant challenges for identifying features which better 
identify the presence of disease. This is because if two features 
have a strong correlation, then only one of those features should 
be selected as a candidate predictor. A Genetic Algorithm evalu-
ates these combinations and identifies those features that, as a 
combination, deliver the best subset of predictors.

3. resUlTs

3.1. experiment Methodology
The aim of the experiments is to identify a suitable set of features 
which would, as a combination, deliver an immunophenotypic 
“fingerprint” for determining whether an individual with 
Prostate-Specific Antigen (PSA) levels below 20 ng ml−1 has pros-
tate cancer in the absence of definitive biopsy-based evidence. 
This fingerprint, or set of features, would then be utilized to 
construct a prediction model. Given that the optimum number 
of features was unknown, a Genetic Algorithm (18) was applied 
λ times, with λ = 2, 3, …, n where n is the total number of flow 
cytometry features. Therefore, each time the Genetic Algorithm 
was run a combination containing λ number of features was 
returned. A total of 19 subsets of features were returned by the 
Genetic Algorithm, with the first subset s1 containing the best 
2 selected features; subset s2 the best 3 selected features, subset 
s3 the best 4 selected features, and so forth. Each subset, si of 
selected features, was input into a kNN classifier. Experiments 
were conducted with kNN using various distance measures, as 
this would allow for it to be tuned for the specific problem at 
hand. The number of kNN neighbors was set to k = 2 and was 
chosen experimentally to be the best setting. The state-of-the-
art Leave-One-Out Cross Validation (LOOCV) approach was 
adopted for evaluating the performance of the kNN classifier 
using various parameter settings. During LOOCV, the training 
and testing process is repeated m times and in every iteration, 
a different patient record is left out for testing until all records 
are left out (19). To perform the evaluations, the actual outputs 
returned by the classification model during the validation stage 
were compared against the targets (i.e., known outputs). The 
Receiver Operating Characteristic (ROC) curves were created 
and the optimal cut-off points (optimal ROC point (ORP): False 
Positive Rate (FPR), True Positive Rate (TPR)) were computed 
with the alpha value set to α = 0.05 (95% Confidence Interval). 
An efficient classification system (i.e., prediction model) would 
return the largest Area Under the Curve (AUC); a high number of 
True Positives; and a low number of False Positives. The methods 
of Hanley and McNeil (20, 21) were used for the calculation of the 
Standard Error of an Area Under the Curve (AUC (SE)), and the 
Binomial Exact Confidence Interval for an Area Under the Curve 
(AUC (BEC)) was also calculated.

3.2. Prostate cancer Prediction Using 
immunophenotyping Data
This section discusses the results of the experiments when 
tuning the kNN with various distance measures and when 
using each subset, si, of flow cytometry features which were 
returned by the Genetic Algorithm. Table  5 shows the best 
results that were achieved after applying the kNN classifier 
using each subset of features and different distance measures. 
As shown in Table 5, the best performance was achieved using 
the FC-PM(Correlation(5)) which reached an AUC  =  83.40% 
and Optimal ROC point of FPR = 16.13%, TPR = 82.93%. The 
FC-PM(Correlation(5)) utilized 5 flow cytometry features with 
IDs: 4, 9, 10, 12, 17 which correspond to flow cytometry features: 
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FigUre 3 | Raw and z-score transformed values of the flow cytometry 
variables derived from individuals with benign disease and patients with 
prostate cancer.

FigUre 2 | Box-plots of normalized flow cytometry features.
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CD8+CD45RA−CD27-CD28− (CD8+ Effector Memory cells); 
CD4+CD45RA−CD27−CD28− (CD4+ Effector Memory Cells); 
CD4+CD45RA+CD27−CD28− (CD4+ Terminally Differentiated 
Effector Memory Cells re-expressing CD45RA); CD3−CD19+ 
(B cells); CD3+CD56+CD8+CD4+ (NKT cells).

Given that this set contains the best combination of flow 
cytometry predictors, it can be used as a signature for distin-
guishing between the presence of benign disease and cancer. 
FC-PM(Cosine(6)) achieved the same value for Accuracy as 
FC-PM(Correlation(5)) using 6 features. Feature CD45+ CD14+ 
(ID 11) was included in the feature set used by FC-PM(Cosine(6)). 
Figure 5 shows the AUCs and optimal ROC Points of the two flow 
cytometry-based prediction models, FC-PM(Correlation(5)) and 
FC-PM(Cosine(6)). FC-PM (Cosine(6)) achieved a 12.9% higher 
False Positive Rate than FC-PM (Correlation(5)) (Table 5), and 
lower Confidence Interval(CI) values shown in Table  6, which 
suggests that it has weaker ability than FC-PM(Correlation(5)) 
to discriminate between benign and cancer patients. In addition, 
Table 6 shows the percentage of patients correctly classified in each 
group. FC-PM(Cosine(6)) achieved a lower predictive accuracy 
for benign patients compared to FC-PM(Correlation(5)), but cor-
rectly classified more cancer patients. The comparison suggests that 
FC-PM(Cosine(6)) is relatively more likely to misclassify benign 
patients as cancer patients, which is not a desirable outcome, and 
thus the model’s confidence in identifying benign disease is lower.
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TaBle 3 | Descriptive statistics of the normalized dataset.

Flow cytometry feature range Minimum Maximum iQr skewness

1 CD3+CD8+ 5.73 −0.92 4.81 0.84 2.92
2 CD8+CD45RA+CD27+CD28+ 4.93 −1.12 3.82 1.13 1.65
3 CD8+CD45RA−CD27+CD28+ 4.82 −1.15 3.67 1.02 1.74
4 CD8+CD45RA−CD27−CD28− 5.75 −0.43 5.31 0.34 4.41
5 CD8+CD45RA+CD27−CD28− 6.00 −0.60 5.40 0.58 4.44
6 CD3+CD4+ 4.43 −1.12 3.32 0.98 1.71
7 CD4+CD45RA+CD27+CD28+ 5.53 −1.56 3.97 1.23 1.27
8 CD4+CD45RA−CD27+CD28+ 5.66 −1.45 4.21 0.85 2.17
9 CD4+CD45RA−CD27−CD28− 6.81 −0.45 6.36 0.34 4.41

10 CD4+CD45RA+CD27−CD28− 5.38 −0.40 4.98 0.17 3.46
11 CD45+CD14+ 5.65 −1.16 4.49 0.68 2.65
12 CD3−CD19+ 8.00 −1.00 7.00 0.75 5.02
13 CD3+CD56+ NKT 5.90 −0.85 5.05 0.80 2.46
14 CD3−CD56+ NK 5.55 −1.02 4.53 0.69 2.62
15 CD3−CD56low 6.12 −1.06 5.06 0.81 2.67
16 CD3−CD56high 6.70 −0.97 5.72 0.63 3.18
17 CD3+CD56+CD8+CD4+ 8.35 −0.35 8.00 0.29 7.28
18 CD3+CD56+CD8+CD4− 4.34 −0.87 3.48 0.97 1.80
19 CD3+CD56+CD8−CD4+ 5.73 −0.52 5.21 0.32 3.64
20 CD3+CD56+CD8−CD4− 4.25 −0.97 3.28 1.14 1.48

TaBle 4 | Results of the Kruskal–Wallis test for testing for significant differences, 
at α < 0.05, between the mean ranks of the normalized flow cytometry variables 
observed between patients with benign disease and patients with prostate 
cancer.

Flow cytometry feature chi-sq. χ2 asy. sig. p value

1 CD3+CD8+ 1.73 0.19
2 CD8+CD45RA+CD27+CD28+ 0.82 0.37
3 CD8+CD45RA−CD27+CD28+ 0.04 0.83
4 CD8+CD45RA−CD27−CD28− 0.06 0.81
5 CD8+CD45RA+CD27−CD28− 0.44 0.51
6 CD3+CD4+ 3.72 0.05
7 CD4+CD45RA+CD27+CD28+ 1.33 0.25
8 CD4+CD45RA−CD27+CD28+ 1.79 0.18
9 CD4+CD45RA−CD27−CD28− 3.44 0.06

10 CD4+CD45RA+CD27−CD28− 0.88 0.35
11 CD45+CD14+ 0.80 0.37
12 CD3−CD19+ 0.74 0.39
13 CD3+CD56+ NKT 0.59 0.44
14 CD3−CD56+ NK 0.74 0.39
15 CD3−CD56low 0.96 0.33
16 CD3−CD56high 0.52 0.47
17 CD3+CD56+CD8+CD4+ 0.61 0.44
18 CD3+CD56+CD8+CD4− 0.68 0.41
19 CD3+CD56+CD8−CD4+ 2.85 0.09
20 CD3+CD56+CD8−CD4− 0.03 0.86
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Revisiting the results which are presented in Table  3, 
features CD8+CD45RA−CD27−CD28− (ID 4); CD4+CD45RA− 
CD27−CD28− (ID 9); CD4+CD45RA+CD27−CD28− (ID 10); 
CD3+CD56+CD8+CD4+ (ID 17) were among those flow cytometry 
features with the smallest IQR values (and, therefore, least vari-
ability in data) and which would potentially be good candidates 
for indicating the presence cancer. Furthermore, the Genetic 
Algorithm identified an additional flow cytometry feature as part 
of the selected features (CD3−CD19+ (ID 12)) which was not an 
obvious candidate during the initial statistical analysis. When fea-
ture ID12 is placed into a group with other features, it contributes 
to improving prediction performance. This reinforces the point 

as to why it is important to examine combinations of features 
rather than individual features when choosing those which would 
make a cancer predictors (i.e., fingerprint). Importantly, not all 
flow cytometry features with a low IQR are needed to reach high 
predictive accuracy, and a subset containing the optimal combi-
nation of features was created using the Genetic Algorithm.

The heatmap in Figure  4 shows that the correlation values 
between the five selected features range from +0.10 to +0.66, 
with six out of the ten pairs having a weak correlation value 
rho < 0.50 (ID 4, ID 10) = 0.43, (ID 4, ID 12) = 0.28, (ID 9, ID 
12) = 0.18, (ID 10,ID 12) = 0.10, (ID 10, ID 17) = 0.47, (ID 12,  
ID 17)  =  0.23 and the remaining four pairs having moderate 
correlation values (ID 4, ID 9) = 0.66, (ID 4, ID 17) = 0.57, (ID 9,  
ID 10) = 0.58, and (ID 9, ID 17) = 0.63, thereby suggesting that 
these five features are most suitable, since none of these pairs 
are highly correlated. Hence, we can conclude that the flow 
cytometry features: CD8+CD45RA−CD27−CD28− (CD8+ Effector 
Memory cells); CD4+CD45RA−CD27−CD28− (CD4+ Effector 
Memory Cells); CD4+CD45RA+CD27−CD28− (CD4+ Terminally 
Differentiated Effector Memory Cells re-expressing CD45RA); 
CD3−CD19+ (B cells); CD3+CD56+CD8+CD4+ (NKT cells) can be 
considered as an immunophenotyping profile which predicts the 
presence of prostate cancer in men with Prostate-Specific Antigen 
(PSA) levels below 20 ng ml−1.

3.3. Prostate cancer Prediction: 
immunophenotyping versus Prostate-
specific antigen (Psa) Data
The Prostate-Specific Antigen (PSA) test measures circulating 
levels of PSA and is currently considered to be the best method 
for identifying an increased risk of localized prostate cancer. 
However, elevated PSA levels do not necessarily indicate the pres-
ence of prostate cancer, and a normal PSA test does not neces-
sarily exclude the presence of prostate cancer. PSA values tend to 
rise with age, and the total PSA levels (ng ml−1) recommended by 
the Prostate Cancer Risk Management Programme are as follows 
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TaBle 5 | FC-based prediction models using kNN classification and the selected flow cytometry features.

Prediction model name Feature iDs accuracy (%) aUc (%) Optimal rOc Point (%)

FPr TPr

FC-PM(Correlation(5)) 4, 9, 10, 12, 17 83.33 83.40 16.13 82.93
FC-PM(Cosine(6)) 4, 9, 10, 11, 12, 17 83.33 81.83 29.03 92.68
FC-PM(Chebychev(6)) 4, 9, 10, 11, 12, 17 81.94 81.39 22.58 85.37
FC-PM(Minkowski(6)) 4, 9, 10, 11, 12, 17 80.56 79.78 25.81 85.37
FC-PM(Euclidean(6)) 4, 9, 10, 11, 12, 17 80.56 79.78 25.81 85.37
FC-PM(Seuclidean(6)) 4, 9, 10, 11, 12, 17 80.56 79.78 25.81 85.37
FC-PM(Mahalanobis(6)) 4, 9, 10, 11, 12, 17 77.78 76.55 32.26 85.37
FC-PM(Cityblock(7)) 4, 9, 10, 11, 12, 16, 17 77.78 76.55 32.26 85.37
FC-PM(Spearman(8)) 2, 4, 9, 10, 11, 12, 17, 19 83.33 70.89 38.71 80.49

The feature IDs map those presented in Table 2. The naming of the models includes the distance measure and number of features which were selected by the GA.

FigUre 4 | Heatmap of flow cytometry features: Each cell of the heatmap provides a Spearman rho correlation value between two flow cytometry features.
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values between the individuals with benign disease and patients 
with cancer, χ2 (1, N = 72) = 0.03, p = 0.955.

PSA values were input into the kNN model and performance 
was evaluated using the LOOCV approach. Although experiments 
were performed with various distance measures, the Cityblock, 
Mahalanobis, Minkowski, Seuclidean, Euclidean and Chebychev 
returned exactly the same results, as shown in Table 7.

Figure  7 illustrates the AUCs and optimal ROC Points of 
PSA-PM and FC-PM (Correlation(5)). Table 8 shows a compari-
son of AUC statistics using PSA-PM and FC-PM. The CI values 
shown in Table 8 are higher for FC-PM(Correlation(5)) thereby 
meaning that the model is more capable of achieving higher pre-
diction accuracies. Comparing the classification performances of 
FC-PM(Correlation(5)) (Accuracy = 83.33%) and the PSA-PM 

(22): 50–59 years, PSA ≥ 3.0; 60–69 years, PSA ≥ 4.0; and 70 and 
over, PSA > 5.0. According to a study by the European Study of 
Screening for Prostate Cancer, screening can significantly reduce 
death from prostate cancer by 29% (23–25). Herein, we compare 
the capacity of the proposed flow cytometry-based prostate 
cancer predictive model (FC-PM) and a predictive model based 
on PSA blood test results (PSA-PM) to discriminate between 
benign disease and prostate cancer. Since PSA values were 
already between 1 and 20, it was not necessary to apply z-score 
transformation. Figure 6 shows the PSA values for individuals 
with benign disease and patients with cancer. A Kruskal–Wallis 
test sought significant differences between the mean rank PSA 
values of the benign disease and cancer groups. The test indicated 
that there were no significant differences in the mean rank PSA 
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FigUre 5 | AUC for FC-PM(Cosine(6)) and FC-PM(Correlation(5)). The ORP 
of each model is also shown on the graph. FC-PM (Cosine(6)) has ORP  
(TPR = 92.68, FPR = 29.03) and FC-PM (Correlation (5)) has ORP  
(TPR = 82.93, FPR = 16.13).

TaBle 6 | A comparison using FC-PM(Correlation(5)) and FC-PM(Cosine(6)).

Fc-PM(correlation(5)) Fc-PM(cosine(6))

AUC% 83.40 81.83
AUC (SE)a 0.0514 0.0550
AUC 95% CIb 0.728–0.911 0.710–0.899
Benign (% of correctly 
classified)

83.87 70.97

Cancer (% of correctly 
classified)

82.93 92.68

Misclassified (%) 16.67 16.67

aHanley and McNeil (20).
bBinomial exact.
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(Accuracy = 77.78%), there is a 5.55% increase in accuracy when 
using the FC-PM. Furthermore, there is a 12.9% increase in False 
Positive Rate (FPR) when using PSA-PM, as opposed to when 
using the FC-PM(Correlation(5)). In conclusion, the FC-PM 
(Correlation (5)) which is based on immunophenotyping features 
provides a more accurate identification of prostate cancer than 
PSA-PM and is better able to discriminate between the presence 
of benign disease and cancer.

3.4. Does adding the Psa Test Values  
to the Flow cytometry Phenotyping 
strengthen the Diagnostic accuracy  
and Potential?
Given that current clinical practice uses the PSA test as an initial 
indicator of prostate cancer, we determined whether combin-
ing PSA test values with the selected flow cytometry predictors 
can strengthen diagnostic accuracy of the PSA test (the PSAFC 

prediction model, PSAFC-PM). The PSA-PM was tuned using 
the Euclidean distance measure, whereas the PSAFC-PM was 
tuned with the Correlation distance measure. Although the 
PSA-PM performed exactly the same when tuned with distance 
measures other than Euclidean as shown in Table 7, the Euclidean 
distance measure was selected because it is the simplest to 
compute. Experiments with various distance measures revealed 
that PSAFC-PM achieved its highest predictive accuracy using 
the correlation distance measure. Results of the performance 
evaluation using the best models are presented in Table 8 and 
illustrated in Figure  7. Comparing the predictive performance 
of the PSA-PM to the PSAFC-PM(Correlation(5)), an important 
observation is that the latter achieved 2.44% higher TPR than the 
PSA-PM, without increasing the FPR. Furthermore, the PSAFC-
PM(Correlation(5)) returned an overall predictive accuracy of 
79.17%, whereas the PSA-PM(Correlation(5)) returned 77.78% 
overall predictive accuracy, and thus an improvement of 1.39% 
when flow cytometry features were combined with PSA. It is 
useful to observe the impact of the predictors on the classifica-
tion accuracy for each group of individuals, i.e., benign disease 
and cancer. Table 8 holds these values and it also contains the 
values of FC-PM for comparison purposes. Table 8 shows that the 
PSAFC-PM(Correlation(5)) performed better than the PSA-PM 
with regard to identifying benign disease (0.18% improvement), 
and it was also 2.44% more accurate at identifying cancer than  
the PSA-PM. In particular, the PSAFC-PM(Correlation(5)) 
achieved a 85.37% accuracy in detecting cancer, whereas the 
PSA-PM delivered 82.93% accuracy (a 2.44% difference).

The PSA-based prediction models, PSA-PM and PSAFC-PM, 
clearly suffer from higher FPRs than the FC-PM model, primarily 
because combining the PSA with the FC predictors inherits the 
disadvantage of PSA returning a high number of false positive 
cases. Table 8 shows that combining PSA with flow cytometry 
predictors increases the confidence interval and reduces the 
Standard Error of the AUC (SE) of the prediction compared to 
using PSA predictors alone, meaning that fewer patients will be 
misdiagnosed when using the PSAFC-PM, as opposed to the 
PSA-PM model.

Herein, we propose a predictive model, PSAFC-PM, which 
improves the diagnostic capacity of the PSA test by combining 
PSA with flow cytometry features. A very important finding from 
the experiments is that if current clinical practice favors the con-
tinuation of the PSA test as an initial indicator of prostate cancer, 
then combining PSA predictor with a subset of flow cytometry 
predictors can increase the accuracy of the initial PSA test.

4. DiscUssiOn

The results of this study demonstrate that the presence of prostate 
cancer in asymptomatic men with PSA levels <20 ng ml−1 can 
be better identified using immune cell profiles that have been 
generated using multiparametric flow cytometricanalysis of the 
peripheral blood. Prediction models were implemented using an 
advanced computational data extraction approach and a com-
prehensive statistical analysis. The computational approach com-
prised a metaheuristic optimization method, namely the Genetic 
Algorithm, which identified significant relationships between 
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TaBle 7 | Prediction using PSA data as input into the kNN classification model.

Prediction model accuracy (%) aUc (%) Optimal rOc 
Point (%)

FPr TPr

PSA-PM(Cityblock) 77.78 76.95 29.03 82.93
PSA-PM(Mahalanobis) 77.78 76.95 29.03 82.93
PSA-PM(Minkowski) 77.78 76.95 29.03 82.93
PSA-PM(Seuclidean) 77.78 76.95 29.03 82.93
PSA-PM(Euclidean) 77.78 76.95 29.03 82.93
PSA-PM(Chebychev) 77.78 76.95 29.03 82.93
PSA-PM(Correlation) 56.94 50.00 100.00 100.00
PSA-PM(Cosine) 43.06 50.00 100.00 100.00
PSA-PM(Spearman) 56.94 50.00 100.00 100.00

FigUre 6 | Distribution of the PSA values for individuals with benign disease and patients with prostate cancer.
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leukocyte population profiles and the presence of benign disease 
(no prostate cancer) or prostate cancer. A subset of five flow 
cytometry features was selected (CD8+CD45RA−CD27−CD28−; 
CD4+CD45RA−CD27−CD28−; CD4+CD45RA+CD27−CD28−; 
CD3−CD19+; CD3+CD56+CD8+CD4+) from a set of 20 features, 
which could potentially discriminate between the presence of 
benign disease and prostate cancer. A prostate cancer predic-
tion model was constructed using the selected features and 
the k-Nearest Neighbor classification algorithm. The proposed  
model, which takes as input the abovementioned five flow cytom-
etry features, outperformed the predictive model which takes  

PSA values as input. In particular, the flow cytometry-based 
model achieved Accuracy = 83.33%, AUC = 83.40%, and optimal 
ROC points of FPR = 16.13%, TPR = 82.93%, whereas the PSA-
based model achieved Accuracy = 77.78%, AUC = 76.95%, and 
optimal ROC points of FPR = 29.03%, TPR = 82.93%. Combining 
PSA and flow cytometry-based parameters as predictors achieved 
Accuracy = 79.17%, AUC = 78.17%, and optimal ROC points of 
FPR = 29.03% TPR = 85.37%.

Since current clinical practice favors the use of the PSA test as 
an initial indicator of prostate cancer, complementing the PSA 
prediction model with a subset of flow cytometry predictions 
can increase the accuracy of the initial prostate cancer test and 
reduce the misclassified patient cases. The proposed prediction 
model has the potential to improve outcomes of prostate cancer 
patients. Future studies will undertake further evaluations using 
the identified set of cancer predictors, and explore the use of deep 
learning algorithms for the analysis and interpretation of high 
dimensional flow cytometry data.

5. MeThODs

The prediction model was developed using a selected subset of 
flow cytometry features and the k-Nearest Neighbor (kNN) clas-
sification algorithm. The Genetic Algorithm proposed by Ludwig 
and Nunes (18) was utilized for the feature selection stage, and 
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TaBle 8 | A comparison using PSA-PM, FC-PM, and PSAFC-PM.

Psa-PM Fc-PM(correlation(5)) PsaFc-PM

AUC% 76.95 83.40 78.17
AUC (SEa) 0.0590 0.0514 0.0581
AUC 95% CIb 0.655–0.861 0.728–0.911 0.669 to 0.870
ORP TPR (%) 82.93 82.93 85.37
ORP FPR (%) 29.03 16.13 29.03
Accuracy (%) 77.78 83.33 79.17
Benign Accuracy (%) 70.79 83.87 70.97
Cancer Accuracy (%) 82.93 82.93 85.37
Misclassified (%) 22.22 16.67 20.83

aHanley and McNeil (20).
bBinomial exact.

FigUre 7 | AUCs and optimal ROC points of PSA-PM, FC-
PM(Correlation(5)) and PSAFC-PM (Correlation(5)). This figure illustrates the 
differences among the models in predictive performance. FC-PM 
(Correlation(5)) was the best model in reducing the false positives. PSA-PM 
has ORP (TPR = 82.93, FPR = 29.03), FC-PM (Correlation (5)) has ORP  
(TPR = 82.93, FPR = 16.13), and PSAFC-PM (Correlation (5)) has ORP  
(TPR = 85.37, FPR = 29.03).

11

Cosma et al. Identifying Prostate Cancer Using Cytometry

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1771

this algorithm returned the best combination of flow cytometry 
features (i.e., predictors) for discriminating between patients with 
benign disease and patients with cancer. These predictors were 
then input into the kNN classification algorithm. The kNN clas-
sifier is used to predict the disease status of an individual using 
new and previously unseen patient records. Feature selection is 
important because it enables only the best subset of features (i.e., 
predictors) to be selected for the prediction task and, thus, removes 
the “noisy” features that are not useful in identifying cancer.

The Genetic Algorithm is a powerful metaheuristic optimiza-
tion method which aims to find optimal solutions to NP-hard 
optimization problems (26)—these are problems which require 
searching a space for the best solution (27). Let X be a m x n 
matrix with m rows and n columns, where m is the total number 
of patient records and n is the total number of flow cytometry 

features. Each patient record, xi, is represented by an n-dimen-
sional feature vector, and it is given a corresponding known class 
label yi, which has a value of either benign disease or cancer. The 
known labels were derived because of the highly accurate TPTP 
biopsy. The Genetic Algorithm is designed to take as input the 
m x n matrix X, and a m x 1 vector Y, where each element yi 
contains the target output of each patient record. The Genetic 
Algorithm returns a set of indices of size λ containing the selected 
features. Importantly, the λ number of features returned are the 
best combination of features for discriminating the two groups 
of individuals (i.e., benign disease or cancer). It was important to 
use a Genetic Algorithm for the flow cytometry feature selection 
task for three main reasons:

•	 There were no significant differences between the mean flow 
cytometry values of the benign disease and cancer groups 
(Table  4), as a consequence of which a more sophisticated 
approach for identifying the best predictor features was 
needed.

•	 Searching for the best number of features is a combinatorial 
optimization problem, such that

 n
n
!
− !2( )λ

, (2)

where n is the total number of flow cytometry features and λ is 
the desired number of features. Given that the value of λ is not 
known beforehand, experiments are needed with the number of 
features starting from λ = 2, …, 20. The total possible number of 
combinations is 104,855,5 making this a computational expensive 
task, which is also impossible to be completed by basic statistical 
approaches. The Genetic Algorithm proposed by Ludwig and 
Nunes (18) was adapted and applied to extract the best set of flow 
cytometry features.

•	 When choosing the best subset of features for a predictive 
modeling task, it is important to take into consideration the 
interaction between features and the efficiency of these, as 
a group, for predicting an outcome (i.e., whether a patient 
belongs to the benign disease or cancer class), as opposed to 
choosing the best subset of features based on an analysis of 
each feature alone.

5.1. The k-nearest neighbor (knn) 
classification algorithm
The subset of features returned by the Genetic Algorithm 
was input into the kNN classifier, and this was then used to 
construct a prediction model based on the particular subset 
of features. Nearest-neighbor classifiers are based on learning 
analogy, meaning that by comparing a given test case with 
training cases that are similar to the test cases. All training 
cases are represented as points in an n-dimensional space. The 
kNN classifier is a popular classification method, primarily due 
to its simplicity. It is a non-parametric approach and, hence, 
does not make any assumptions about the distribution of the 
data. When given an unknown case to classify, a kNN classifier 
searches the pattern space for the k training cases, i.e., “near-
est neighbors” that are closest to the unknown case (i.e., the 
case that needs to be classified). Many distance measures exist, 
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including the Euclidean distance, the Minkowski distance, the 
Hamming distance, Pearson’s correlation coefficient, and cosine 
similarity. The performance of the kNN classifier depends on 
the choice of k-nearest neighbors, and the distance measure d 
selected. The values selected for k and d depend on the dataset 
and the specification of the problem, and for this reason they are 
selected experimentally. Given a patient record (represented as 
a data point) x holding the flow cytometry values; a k number 
of neighbors; and a distance metric d, the kNN classifier first 
locates the k data points (i.e., k patient records) that are the 
closest to the data point x (i.e., patient record x) as the k-nearest 
neighbors to determine the target class of the data point. The 
proposed kNN approach uses the exhaustive search method, 
also known as the brute force method. The exhaustive search 
method finds the distance from each query point (i.e., a record 
to be classified), x, to every point in X, ranks them in ascending 
order, and returns the k points with the smallest distances. For 
the experiments reported in this paper, the kNN classifier can 
be tuned by selecting a distance measure d, and a k number of 
neighbors.

5.2. Performance evaluation Measures
With regard to measuring performance, the aim was to adopt 
a variety of relevant evaluation metrics in order to get a more 
representative view of each classifier’s performance. Let |TP| 
be the total number of patients with cancer correctly classified 
as having cancer; |TN| be total the number of benign patients 
correctly classified as benign; |FP| be the total number of benign 
patients incorrectly classified as cancer patients; |FN| be the total 
number of cancer patients incorrectly classified as benign; |P| be 
the total number of cancer patients that exist in the dataset, where 
|P| = |TP| + |FN|; and |N| be the total number of benign that exist 
in the dataset, where |N | = |FP| + |TN|. The following commonly 
used evaluation measures can be defined:

 
Accuracy TP TN

TP FP FN TN
=

| | + | |
| | + | | + | | + | |

,∈ ,[ ],0 1
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FPR FP
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(7)

The closer the values of Accuracy, True Positive Rate (i.e., TPR, 
Sensitivity) and True Negative Rate (i.e., TNR, Specificity) are to 
1.0, then the better the classification performance of a system. The 
Receiver Operating Characteristic (ROC) is another important 
metric which can be used to evaluate the quality of a classifier’s 
performance. The optimal operating point of the ROC curve is 
made up of the False Positive Rate (FPR) and True Positive Rate 

(TPR) values. The optimal operating point for the ROC curve is 
computed by finding the slope, S, using function (8) and then 
identifying the optimal operating point by moving the straight 
line with slope S from the upper left corner of the ROC plot 
(FPR = 0, TPR = 1) down and to the right, until it intersects the 
ROC curve.

 
S Cost P N Cost N N

Cost N P Cost P P
N
P

=
| − |
| − |

× ,
( ) ( )
( ) ( )  

(8)

where Cost(N|P) is the cost of misclassifying a positive class 
as a negative class; Cost(P|N) is the cost of misclassifying a 
negative class, as a positive class; P and N are the total instance 
counts in the positive and negative class, respectively. The Area 
Under the ROC Curve (AUC) can be computed and reflects 
a system’s performance at discriminating between the data 
obtained from individuals with benign disease and patients 
with cancer. The larger the AUC, the better the overall capacity 
of the classification system to correctly identify benign disease 
and cancer.

6. POTenTial iMPacT

It is essential that men with low-risk prostate abnormalities 
are not diagnosed as having prostate cancer, as even those 
with low-grade disease do not require active treatment, yet 
they become “labeled” as having cancer. This can have adverse 
psychological and financial consequences and assign these 
men to life-long surveillance. The strategies described herein 
have the potential to deliver new approaches for diagnosing 
asymptomatic men with an elevated PSA <20 ng l−1. Inserting 
the data derived from the analysis of the peripheral blood from 
an individual into the algorithm will return a prediction about 
that individual. The algorithm could be retrained when more 
patient data are collected in order to learn patterns from a 
larger population, and it is possible that this will increase the 
accuracy of the approach. For example, re-training can occur 
every 50 new records. Such approaches will spare men with 
benign disease or low-risk cancer from unnecessary invasive 
diagnostic procedures such as TRUS guided prostate biopsies 
or TPTPB.
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