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One of the major life-threatening infections for which severely immunocompromised 
patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, 
the increasing antifungal resistance and poor outcome highlight the need for novel 
therapeutic strategies to improve outcome of patients with IA. In the current study, we 
investigated whether and how the intracellular pattern recognition receptor NOD1 is 
involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 
in an experimental mouse model, we found that Nod1−/− mice were protected against IA 
and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages 
derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive 
oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells 
were highly potent in killing A. fumigatus compared with wild-type cells. In line, human 
macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing 
and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity 
of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 
expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we 
were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in 
the lung and bone marrow, and silencing of NOD1 gene expression in human macro-
phages increases dectin-1 expression. The enhanced dectin-1 expression may be the 
mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 
was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. 
Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the 
host defense against Aspergillus. This provides a rationale to develop novel immuno-
therapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to 
enhance the efficiency of host immune cells to clear the infection by increasing fungal 
killing and cytokine responses.
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inTrODUcTiOn

Invasive aspergillosis (IA) is an opportunistic fungal infection 
that globally affects hundreds of thousands severely immuno-
compromised patients on an annual basis (1). IA is associated 
with an unacceptable high mortality (2), yet modern antifungal  
drugs, patient isolation care, and prophylactic treatment 
strategies have not been able to reduce mortality over the past 
years. An increased knowledge of the antifungal host response 
is crucial for understanding the pathogenesis of the disease 
on one hand and on the other hand in the development of 
new immunomodulatory therapies, which are considered to 
be one of the few possibilities to decrease mortality associated 
with IA (3).

A fine-tuned interplay between recognition and signaling 
leads to the clearance of the fungus by the immune system, 
while defects in parts of these components or their absence have 
been associated with severe infections with the fungus. Although 
most types of PRRs, including toll-like receptors and C-type 
lectin receptors, have well-characterized roles in antifungal host 
defense (4, 5). Some PRRs have, however, not yet been evaluated 
for their role in antifungal host defense. Insights in these not yet 
explored PRRs might yield new insights in the pathogenesis of 
IA and provide potential candidate targets for novel treatment 
strategies.

The nucleotide-oligomerization domain (NOD) receptors 
play a crucial role in host defense against bacteria; however, 
only limited evidence is available regarding the role of these 
receptors in host defense against aspergillosis. One of the NOD 
receptors, NOD1, has been described to be able to activate NFκB 
in corneal epithelial cells in response to Aspergillus fumigatus 
(6). However, it is not yet investigated whether NOD1 plays a 
role in host defense against pulmonary aspergillosis. Overall, 
it is evident that NOD1 plays an important role in pulmonary 
host defense. NOD1 is highly expressed in the lung (7) and 
in lung epithelial cells (8). Human alveolar macrophages 
utilize NOD1 to induce proinflammatory cytokine responses 
and induce autophagy for an efficient host defense against 
Mycobacterium tuberculosis (9). Moreover, in host defense 
against Legionella pneumophila, NOD1 regulates neutrophil 
recruitment to the alveoli (10, 11). These studies of pulmo-
nary host defense against bacteria reveal various mechanisms, 
induced by NOD1, that are known to play significant roles in 
host defense against A. fumigatus; e.g., autophagy machinery 
(12–15), neutrophil recruitment (16–18), and proinflamma-
tory cytokines (19–21).

Therefore, the current study investigates the role of NOD1 
in host defense against aspergillosis. Specifically, in a murine 
model representing immunocompromised hosts, we assess how 
NOD1 deficiency influences the host defense during aspergil-
losis. Using murine Nod1-deficient cells as well as silencing of 
NOD1 gene expression in primary human cells, we systemati-
cally evaluated the importance of this receptor in the antifungal 
response. Novel insight into the exact biology of this receptor 
during aspergillosis can increase our understanding of the 
infection, which subsequently may lead to the development of 
immunotherapeutic strategies.

MaTerials anD MeThODs

Aspergillus fumigatus
A clinical isolate of A. fumigatus V05-27, which has been  
characterized previously (22), was used for all ex vivo and in vitro 
stimulations. Conidia and hyphae were prepared and heat-
inactivated (HI) as previously described (23). A concentration 
of 1  ×  107/mL was used in the experiments unless otherwise 
indicated. For in  vivo experiments, the luciferase-expressing 
A. fumigatus 2/7/1 strain was used, which has been described 
previously (24); this strain has been reported to have a similar 
antifungal susceptibility and demonstrates no growth defects 
under various in  vitro cultivation conditions such as different 
temperatures and carbon sources (24). In corticosteroid immu-
nosuppressed mouse models of aspergillosis (25), the 2/7/1 strain 
demonstrated a similar virulence as observed for its parental 
strain CBS144.85 (26, 27).

In Vivo experiments
Mice for in  vivo experiments were supplied by the breeding 
center R. Janvier (Le Genest Saint-Isle, France). For the survival 
experiment in an immunosuppressed background C57/BL6 wild 
type (WT), and Nod1−/− mice (28 to 31 g, 10 weeks old) were 
used. Mice were immunosuppressed at day 4 and day 1 before 
infection by intraperitoneal injection of 200-µL cyclophos-
phamide (Sigma Aldrich) at 4 mg/mL. At the day of infection, 
mice were anesthetized by intramuscular injection (150 µL) of 
ketamine (10 mg/mL) and xylasine (10 mg/mL) hair was shaved 
from the ventral lung area and subsequently mice were inocu-
lated intranasally with 5 × 104 luciferase-expressing A. fumigatus 
2/7/1 conidia (24) in 25-µL PBS.

In all experiments, survival and weight was monitored during 
the course of infection. Bioluminescence imaging was acquired at 
day 1 post-infection (pi) and was continued on days 2, 3, 6, and 
8 pi. Images were acquired using an IVIS 100 system (PerkinElmer, 
Waltham, MA, USA) as previously described (25).

For immunological and histological assessment female C57/
BL6 and Nod1−/− mice (19–22 g, 8 weeks old) were used. They 
received similar immunosuppression regimen and were similarly 
infected as the mice for survival. Weight and bioluminescence 
were monitored daily during the course of infection. At day 3, the 
mice were euthanized. Serum and BAL were collected and lung 
homogenates were obtained following disruption in saline using 
the Retsch Mixer Mill 301 homogenizer. Cytokine concentrations 
in BAL and plasma were determined by ELISA as specified by the 
manufacturer (DuoSet; R&D Systems).

The fungal burden was determined by amplification of 
Aspergillus ITS2 regions. Briefly, homogenized tissue samples 
were used for DNA isolation by using the automated MagNA Pure 
system and the MagNA Pure LC Total Nucleic Acid Isolation Kit 
according to manufacturer’s protocol (Roche Applied Science). 
PhHV was added to all samples as an internal isolation control C.

The concentration of total isolated DNA was measured by 
using the Quantus Fluorometer (Promega). Aspergillus loads 
were determined by real-time PCR using the LC480 instru-
ment and the probes master kit (Roche applied Science). 
Thermocycling conditions were as follows: 37°C for 10  min, 
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95°C for 10 min, and 50 cycles: 95°C for 15 s, and 60°C for 45 s. 
The rDNA ITS2 region of A. fumigatus was detected by using 
primers 5′-GCGTCATTGCTGCCCTCAAGC-3′, 5′-ATATGC 
TTAAGTTCAGCGGGT-3′ and probe Cy5-TCCTCGAGCGTA 
TGGGGCTT-BBQ. The PhHV isolation control was detected by 
using primers 5′-GGGCGAATCACAGATTGAATC-3′, 5′-GCG 
GTTCCAAACGTACCAA-3′ and probe LC610-TTTTTATGT 
GTCCGCCACCATCTGGATC- BBQ. For the ITS2 detection, a 
twofold dilution series of the cloned PCR product was included 
to calculate the number of copies per reaction.

PBMc isolation and stimulation
Venous blood samples from healthy controls and patients were 
obtained after written informed consent. PBMCs were isolated as 
previously described (23). Briefly, blood was diluted in PBS (1:1) 
and fractions were separated by Ficoll (Ficoll-Paque Plus, GE 
Healthcare) density gradient centrifugation. Cells were washed 
twice with PBS and resuspended in RPMI-1640+ (RPMI1640 
Dutch modification supplemented with 10-µg/mL gentamycin, 
2mM glutamax and 1mM pyruvate; Thermofisher).

PBMCs were plated in 96-well round-bottom plates (Corning) 
at a final concentration of 2.5 × 106 cells/mL and in a total volume 
of 200  µL and stimulated with medium (negative control) or 
live Aspergillus at a final concentration of 1 × 107/mL for 24 h. 
PBMCs in costimulation experiments were exposed to 10-µg/mL 
TriDAP (Invivogen) and subsequently stimulated with medium 
or live resting conidia (1 ×  107/mL). After stimulation, culture 
supernatants were collected and stored at −20°C until cytokine 
measurement. Cells were either analyzed for surface receptor 
expression by flow cytometry or assessed for the fungal killing 
capacity.

Flow cytometry
Surface pattern recognition receptor expression on human 
monocytes was assessed following stimulation of PBMCs with 
TriDAP as described above. Monocytes were stained with 
anti-human CD14 conjugated with FITC (BD) and anti-human 
CD45 conjugated with PE-Cy7 in combination with, anti-human 
CD282 (TLR2) Alexa647 (BD) and anti-human CD284 (TLR4) 
PE (Biolegend), or anti-human CD206 (Mannose Receptor) 
PE (Biolegend) and anti-human dectin-1 APC (R&D). CD14+ 
monocytes were gated within the population of CD45+ cells and 
subsequently, the mean fluorescence intensity (MFI) of TLR2, 
TLR4, Mannose receptor, and dectin-1 were assessed on the 
CD14+/CD45+ cells. For dectin-1 also a negative population was 
observed and the percentage of dectin-1+ cells was assessed in 
addition to the MFI. The cells were measured on an FC500 flow 
cytometer (Beckman Coulter) and the data were analyzed using 
CXP analysis software v2.2 (Beckman Coulter).

Ex Vivo stimulation of WT and Nod1−/− 
Murine splenocytes and Bone Marrow-
Derived Macrophages (BMDMs)
Wild-type and Nod1−/− C57Bl/6 mice were bred and maintained 
in the St. Jude Children’s Research Hospital, Memphis, TN, USA. 
Spleens were homogenized in 0.4-µM cell strainer (BD) and the 
cell number was adjusted to 1  ×  107/mL. The cell suspensions 

(500 µL/well) were placed in 24-well plates (corning) and incu-
bated with culture medium or Aspergillus conidia for 1 or 5 days 
at 37°C and 5% CO2.

Bone marrow from mice (age between 8 and 20 weeks old) 
was flushed out after dissecting mouse legs. Differentiation into 
macrophages (BMDMs) occurred in 5  days at 37°C (5% CO2) 
in Dulbecco’s modified eagles medium (DMEM) supplemented 
with 30% of L929 supernatant containing 10% fetal bovine serum 
(HI, Invitrogen), 100-U/mL penicillin and 100-mg/mL strepto-
mycin. The BMDMs (1 × 105 /well) were placed in 96-well plates 
(corning) and incubated with culture medium or live Aspergillus 
conidia for 1 day at 37°C and 5% CO2. After stimulation, culture 
supernatants were collected and stored at −20°C until cytokine 
measurement.

silencing nOD1
Freshly isolated PBMCs were differentiated to macrophages using 
6-day differentiation in 10% human serum (serum differentiated 
macrophages) or 10% human serum supplemented with 5-ng/mL  
GM-CSF (R&D Systems). After differentiation (1  ×  105)  
macrophages were seeded in 96-well plates and left for 2  h at 
37°C to subsequently transfect them with 25-nM NOD1 siRNA 
(on target) or scrambled (non-targeted siRNA) control siRNA 
(smartpool, Thermo Scientific) for 48  h at 37°C (Dharmafect, 
Thermo Scientific). Subsequently, the culture medium was 
refreshed and cells were used for killing, ROS assays, and PCR 
analysis.

Killing of Aspergillus by BMDMs, human 
Macrophages, or PBMcs
Following differentiation, the mouse BMDMs (1 × 105), human 
MDMs (1  ×  105), or freshly isolated PBMCs (5  ×  105) were 
exposed to Aspergillus conidia (2 × 106) in 96-well plates a final 
volume of 200 µL. In several experiments dectin-1 was blocked 
using laminarin (100  µg/mL; Sigma Aldrich) or with a mouse 
dectin-1 blocking antibody (GE2; Thermo Fisher) or its isotype 
control. After 24  hat 37°C and 5% CO2, the cells were washed 
in water and plated in serial dilution on Sabouraud agar plates. 
CFUs were counted after 24 h incubation at 37°C.

Quantitative reverse Transcriptase Pcr
RNA was isolated according to the protocol supplied with 
the TRIzol reagent. Isolated mRNA (1  µg) was reverse 
transcribed into cDNA using the iScript cDNA synthesis 
kit (BIORAD). Quantitative real-time PCR (qPCR) was 
performed using power SYBR Green PCR master mix 
(Applied Biosystems) and following primers for human 
samples hNOD1 Fwd 5′-AGAGGCTCTGCGGAACCA-3′ 
and Rev 5′-TGTGGAGATGCCGTTGGA-3′, hGAPDH  Fwd 
5′-AGGGGAGATTCAGTGTGGTG-3′ and Rev 5′-CGACC 
ACTTTGTCAAGCTCA-3′ hCLEC7A Fwd 5′-ACAATGCTG 
GCAACTGGGCT-3′ and Rev 5′-GCCGAGAAAGGCCTATC 
CAAAA-3′ hTLR2 Fwd 5′-GAATCCTCCAATCAGGCTTC 
TCT-3′ and Rev 5′-GCCCTGAGGGAATGGAGTTTA-3′ and 
the following primer sets form mouse samples mClec7a Fwd 
5′-AGGTTTTTCTCAGCCTTGCCTTC-3′ and Rev 5′-GGG 
AGCAGTGTCTCTTACTTCC-3′, mGapdh Fwd 5′-AGGTC 
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GGTGTGAACGGATTTG-3′ and Rev 5′-TGTAGACCATGT 
AGTTGAGGTCA-3′. PCR was performed using an Applied 
Biosystems 7300 real-time PCR system using PCR conditions 
2 min 50°C, 10 min 95°C followed by 40 cycles at 95°C for 15 s 
and 60°C for 1 min. The RNA genes of interest were corrected 
for differences in loading concentration using the signal of the 
housekeeping protein GAPDH.

iκBa Phosphorylation
For analysis of NFκB signaling pathways, the BMDMs were sub-
cultured in 12-well cell culture plates for 16  h, and stimulated 
with live Aspergillus spores at 25 MOI of infection for indicated 
times. Protein lysates were prepared using the lysis buffer (10-mM 
Tris–HCl, 150-mM NaCl, 1% Nonidet P-40, supplemented with 
protease and phosphatase inhibitor cocktails; Roche). Protein 
samples were denatured by boiling in sample loading buffer-
containing SDS and 100-mM DTT for 5 min and separated in 
denaturing SDS-PAGE. Separated proteins were transferred to 
PVDF membranes and immunoblotted with rabbit antibodies 
against total IκBa, Phospho-IκBa. All antibodies were purchased 
from Cell Signaling followed by secondary anti-rabbit HRP 
antibodies (JacksonImmunoResearch Laboratories).

cytokine Measurements
The cytokine levels were measured using commercially available 
ELISA assays according to the protocol supplied by the manufac-
turer. IL-1β, TNFα, IL-17, and IL-22 assays were from R&D Systems 
and IFNγ was from Sanquin. Mouse IL-1β, TNFα, IL-6, KC, IL-17, 
IL-22, and IFNγ in splenocyte stimulations were measured using 
the Luminex multiplex platform (Millipore). In the in vivo experi-
ments mouse IL-1β, TNFα, IL-6, KC, and G-CSF were measured 
using commercially available ELISA assays from R&D Systems 
according to the protocol supplied by the manufacturer.

nOD1 immunofluorescence staining
CD14+ cells were isolated from PBMCs using magnetic bead 
isolation (MACS Miltenyi) according to the protocol supplied 
by the manufacturer. CD14+ cells (1  ×  105) were allowed to 
adhere for 1  h to 12-mm Ø glass coverslips. After adherence, 
the CD14+ monocytes were exposed for 30 min to FITC labeled 
Aspergillus conidia in a ratio of (5:1/conidia/CD14 cells), after 
which the cells were fixed in Methanol. NOD1 was stained using 
rabbit anti-NOD1 and secondary stained with Goat anti-rabbit 
IgG H/L Alexa594 (Invitrogen). The coverslips were mounted 
in Vectashield with DAPI (Vector Laboratories) and immuno-
fluorescence was observed at 1,000× magnification using a Zeiss 
LSM510 confocal microscope (Carl Zeiss).

statistical analysis
Data are presented as the mean ± SEM, or as scatterplots repre-
senting individual data points and a line indicating the median 
value of all the data obtained in experiments. Experiments were 
conducted at least twice and the number of biological replicates 
(mice/human donors) is indicated in the figure legends for 
each graph. Unless otherwise indicated the Mann–Whitney 
U test was used to determine statistical significant differences 
between experimental groups with p < 0.05 = *, p < 0.01 = **, 

p < 0.001 = ***, and p < 0.0001 = ****. All data were analyzed 
using Graphpad Prism v6.0.

resUlTs

nOD1 localizes to Aspergillus-containing 
Phagosomes
Since NOD1 is an intracellular pattern recognition receptor 
for bacterial ligands, we wanted to investigate at which cellular 
level NOD1 interacts with Aspergillus. To assess the location of 
NOD1 during the interaction of monocytes with Aspergillus, 
the monocytes of healthy human volunteers were allowed to 
engulf Aspergillus, both resting and swollen conidia, for 1  h. 
Subsequently, NOD1 was stained by immunofluorescence 
staining. We observed that engulfed A. fumigatus resting or 
swollen conidia demonstrate a halo of NOD1 surrounding the 
conidia, suggestion colocalization to the phagosomes contain-
ing Aspergillus (Figure 1). In addition to the halo surrounding 
the conidia, a diffuse cytoplasmic staining of NOD1 could be 
observed.

nOD1-Deficient Mice Do not Develop ia
To investigate whether NOD1 plays a role in the susceptibility 
to aspergillosis, we subjected WT C57Bl6 and Nod1−/− mice to 
lethal Aspergillus infection. Survival experiments were performed 
in mice immunosuppressed with cyclophosphamide and subse-
quently infected with the bioluminescent Aspergillus strain 2/7/1 
(24). In contrast to WT mice, Nod1−/− mice showed a significant 
improvement in 14-day survival (Figure  2A). Nine out of 12 
Nod1−/− mice survived, whereas 12 out of 13 WT mice did not 
survive the infection. Bioluminescence imaging of the luciferase-
expressing Aspergillus within the mice suggests that Nod1−/− mice 
more efficiently clear the fungi from the lung, whereas WT mice 
developed a progressing infection as indicated by the increasing 
luminescence signal (Figure 2B). When comparing the weight 
loss of mice post-infection we observed that Nod1−/− mice and a 
single-surviving WT mouse started to recover their weight from 
day 4 post-infection (pi), whereas all other WT mice sharply 
declined in weight and succumbed to the infection and the three 
non-surviving Nod1−/− mice demonstrated a similar weight loss 
as WT mice (Figure 2C).

reduced inflammation and improved 
Fungal clearance in nod1-Deficient Mice
To investigate differences in fungal burden, histological damage 
and inflammation in a standardized fashion, an experiment was 
performed where cyclophosphamide immunosuppressed mice 
were infected with the bioluminescent Aspergillus strain 2/7/1, 
but were sacrificed at day 3 pi. The luminescence signal from 
the lung reveals that Nod1−/− mice have a significantly reduced 
fungal burden compared with WT mice (Figure  3A). This 
observation could be confirmed by a quantitative Aspergillus 
PCR, which revealed the absence of Aspergillus DNA in the lung 
homogenates of Nod1−/− mice. However, in the lung homogen-
ates of WT mice Aspergillus could be detected (Figure  3B). 
To assess how fungal burden correlates with pathological 
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FigUre 2 | Immunocompromised Nod1−/− mice protected against invasive aspergillosis. Assessment of survival, fungal burden and weight in cyclophosphamide 
immunosuppressed wild-type (WT) (n = 13) and Nod1−/− (n = 12) mice infected intranasally with 5 × 104 conidia in three separate experiments (WT:Nod1−/− 5:6; 3:3; 
5:3). (a) Kaplan–Meier survival curve of WT (n = 13) and Nod1−/− (n = 12) mice. P-values of the Kaplan–Meier curve were determined using the log-rank test. Data 
represent the cumulative data of three separate experiments. (B) Bioluminescence imaging representing the fungal burden in the lungs of the mice during the course 
of the infection. (c) Representative graph of percentage weight loss of surviving mice in one of the experiments where survival of WT (n = 5; 4 died; n = 1 shown) 
and Nod1−/− (n = 6; 1 died; n = 5 shown) mice was compared.

FigUre 1 | NOD1 localizing to Aspergillus-containing phagosomes. Representative confocal immunofluorescence images at 100× magnification demonstrating 
co-localization of NOD1 (stained with rabbit-anti-humanNOD1, conjugated with Goat-anti-RabbitIgG-Alexa594) with engulfed FITC-labeled dormant or swollen 
Aspergillus fumigatus spores in human monocytes (nuclear stain: DAPI).
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FigUre 3 | Continued
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FigUre 3 | Nod1−/− mice reducing fungal burden, histological damage, and inflammation. Assessment of fungal burden, histopathological damage, and 
inflammation in A. fumigatus-infected wild-type (WT; n = 8) and Nod1−/− (n = 7) mice in two separate experiments (WT:Nod1−/− = 4:4 and 4:3). (a) Luminescence 
signal at day 1 to 3 post-infection revealing the fungal burden represented by the luminescence signal from live Aspergillus within infected WT and Nod1−/− mice. (B) 
Fungal burden as determined by amplification of Aspergillus ITS2 regions from lung homogenates. (c–e) Histology of lung sections of WT and Nod1−/− mice at day 
3 pi, and morphometric analysis of the lesions in the whole lung sections using Image J software to quantify the lesions in (c) number and (D) size. Slides were 
stained by HE staining at [(e); I] 2× and [(e); II] 10x magnification, [(e); III] Grocott’s Methenamine Silver staining at 10× magnification or [(e); IV] 
immunohistochemistry with anti-F4/80 antibody counterstained with HE staining. (F–h) IL-1β, IL-6, KC, G-CSF, and TNFα levels in (F) serum, (g) broncheoalveolar 
lavage (BAL), and (h) lung homogenates measured at day 3 pi. Data are represented as mean ± SEM and means were compared using the Mann–Whitney U test. 
P-values of statistical tests are shown within the graphs.
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damage to the lungs, a histopathological analysis was performed. 
Morphometric analysis of the histology revealed significantly 
fewer lesions in the lung sections of Nod1−/− mice compared 
with WT mice (Figure 3C). Moreover, the size of the lesions 
affected a significantly smaller part of the lungs (Figure 3D). 
The morphometric analysis of pulmonary lesions corresponds 
with the finding that practically no fungi could be detected 
with Grocott methamine silver staining (Figure 3E, III). Based 
on immunohistochemistry for F4/80+ no differences in the 
presence of macrophages could be determined between WT 
and Nod1−/− mice (Figure  3E, IV). Systemic inflammation in 
the WT and Nod1−/− mice was assessed by measuring serum 
cytokine levels, and pulmonary inflammation was assessed 
by measuring cytokines in the BAL and in lung homogen-
ates. Although Nod1−/− mice have a slight reduction in the 
levels of circulating proinflammatory cytokines, this was not 
significant compared with the WT mice (Figure  3F). In the 
BAL and lung homogenates, only a significant reduction in KC 
(CXCL1) levels were found when comparing Nod1−/− to the 
control group (Figures 3G,H, respectively). However, it must 
be noted that levels of other cytokines also tend to be lower in 
Nod1−/−, but due to a large variation in the control group the  
differences are not significant.

improved cytokine responses, Oxidative 
Burst, and Fungal Killing in nod1  
Deficient cells
Ex vivo cytokine responses to Aspergillus were investigated in 
Nod1-deficient cells to identify the underlying mechanisms of 
the phenotypes observed in Nod1−/− mice. Cytokine responses 
by WT and Nod1−/− BMDMs were investigated. Nod1−/− BMDMs 
demonstrated significantly higher cytokine responses, compared 
with WT BMDMs (Figure 4A). Moreover, splenocytes were iso-
lated from naive Nod1−/− and WT C57Bl/6 mice and stimulated 
with Aspergillus. Although the cytokine responses produced 
by splenocytes in response to Aspergillus were generally low, 
Nod1−/− splenocytes produced significantly more TNFα and KC 
in response to Aspergillus (Figure 4B). The Aspergillus-induced, 
T-helper cell cytokines IL-17, and IFNγ were undetectable (ud) 
and IL-22 was very poorly induced by WT splenocytes, while 
these cytokines were significantly elevated in culture superna-
tants of Nod1−/− splenocytes (Figure 4C). In addition to cytokine 
release, zymosan- and Aspergillus-induced ROS by BMDMs was 
significantly higher in Nod1−/− BMDMs (Figure  4D). The area 
under the curve was calculated to illustrate the quantitative 
difference in ROS release, with zymosan or Aspergillus. We also 

investigated whether this increased responsiveness of Nod1−/− 
BMDMs correlated with an altered capacity to kill A. fumigatus 
conidia. Nod1−/− BMDMs were significantly more efficient 
in killing Aspergillus conidia than WT BMDMs (Figure  4E). 
Subsequently, we investigated whether the differential cytokine 
induction and activation of Nod1−/− cells was due to differences 
in the capacity of these cells to activate NFκB signaling. BMDMs 
were exposed to live Aspergillus spores and subsequently lysed 
to assess IκBa phosphorylation as a marker for NFκB activa-
tion by Western Blot. WT macrophages show a steady increase 
in IκBa phosphorylation after stimulation, whereas the level of 
IκBa phosphorylation varies over time in Nod1−/− BMDMs with 
a significant increase after 1 and 2 h (Figure 4F).

nOD1 silencing augments Oxidative Burst 
and Fungal Killing
Since Nod1 deficiency impacts the killing capacity and ROS 
production in murine BMDMs, we validated these findings 
within a human background by silencing NOD1 gene expression 
in human monocyte-derived macrophages (MDMs). NOD1 
silencing by siRNA targeting NOD1 (siNOD1) was confirmed 
by qPCR and a significant reduction of NOD1 mRNA expression 
could be detected in both serum- and GM-CSF-differentiated 
MDMs (Figure  5A). Treatment with siNOD1 increased the 
killing capacity of MDMs when compared with cells that were 
transfected with scrambled siRNA (Figure 5B). ROS release was 
undetectable in the serum-differentiated MDMs; however, in 
GM-CSF-differentiated MDMs treated with siNOD1 the capacity 
to induce an oxidative burst was also slightly, yet significantly 
increased (Figures 5C,D).

nOD1 signaling suppresses Fungal  
Killing capacity
Since we observed that NOD1 deficiency or silencing resulted 
in an increased capacity to eliminate A. fumigatus conidia, we 
investigated whether activation of NOD1 could thus have an 
inhibitory effect on the host response to Aspergillus. To assess 
the effect of NOD stimulation on oxidative burst, PBMCs were 
stimulated with TriDAP and subsequently exposed to zymosan. 
Oxidative burst induced by zymosan was also reduced by pre-
stimulation with the NOD1 ligand (Figure  6A). NOD ligands 
could potentially induce an oxidative burst thereby exhausting 
the cells; however, we found no detectable oxidative burst induced 
by NOD ligands (Figure  6B). Monocytes were differentiated 
with GM-CSF into MDMs and exposed to the NOD1 ligand 
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FigUre 5 | Silencing of NOD1 gene expression in human monocyte-derived macrophages improves fungal killing and oxidative burst. (a) Silencing efficiency of 
siRNA targeting NOD1(siNOD1) compared with scrambled siRNA in human macrophages (1 × 105) differentiated in 10% serum (n = 6) or 10% serum with 5 ng/mL 
GM-CSF (n = 7). (B) CFU remaining of A. fumigatus plotted as percentage of input (2 × 106) following exposure for 24 h to human macrophages (1 × 105) 
differentiated in 10% serum or 10% serum with 5 ng/mL GM-CSF that were treated with scrambled siRNA or siNOD1. (c,D) ROS release by GM-CSF differentiated 
macrophages treated with scrambled siRNA or siNOD1following exposure to zymosan (n = 5). Time points were compared for significance by two-way ANOVA. 
Data in scatter plots are represented as individual data points and median. Means were compared using the Wilcoxon signed rank test. ud = undetectable.

FigUre 4 | Nod1-deficient cells showing an augmented antifungal host response. (a) IL-6, TNFα, KC, in culture supernatants of bone marrow-derived 
macrophages (BMDMs) (1 × 105) from wild-type (WT) and Nod1−/− mice (n = 6) that were stimulated for 24 h with heat inactivated Aspergillus conidia (2 × 106).  
(B) IL-6, TNFα, KC, and (c) IL-17, IL-22, and IFNγ levels in culture supernatants of splenocytes (1 × 106) from WT and Nod1−/− mice (n = 5 mice per group) that 
were stimulated for 5 days with heat inactivated Aspergillus conidia (2 × 107). (D) ROS release by WT and Nod1−/− BMDMs following exposure to zymosan (n = 6). 
Time points were compared for significance by two-way ANOVA. Area under the curve of the ROS luminescence data of Aspergillus spores (n = 6) and swollen 
conidia (n = 6) (1 × 107/mL) opsonized in 10% human serum and zymosan stimulated BMDMs. (e) CFU remaining of A. fumigatus plotted as percentage of input 
(2 × 106) following exposure for 24 h to WT (n = 30) and Nod1−/− (n = 24) BMDMs (1 × 105). (F) Representative Western Blot for phosphorylated and total IκBa in 
WT and Nod1−/− BMDMs following 0.5, 1, 2, 4, and 8 h of exposure to live A. fumigatus spores. IκBa phosphorylation measured as mean band intensity and 
corrected for total IκBa (n = 3). Data in bar plots are represented as mean ± SEM, data in scatter plots are represented as individual data points and median,  
and means were compared using the Mann–Whitney U test. ud = undetectable.
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FigUre 6 | NOD1 activation dampening protective antifungal effector functions in human cells. (a,B) ROS release by human PBMCs following exposure to  
(a) Zymosan, when cells were pre-stimulated for 24 h in presence or absence of (10 µg/mL) TriDAP (n = 5), or (B) culture medium or (10 µg/mL) TriDAP alone (n = 3). 
(c) Fungal killing capacity of human GM-CSF differentiated monocytes-derived macrophages assessed as CFU remaining of A. fumigatus plotted as percentage of 
input (2 × 106) following exposure for 24 h to (1 × 105), after 24-h pre-stimulation in the presence or absence of (10 µg/mL) TriDAP (n = 9). All plots represent 
mean ± SEM. Means were compared using the Wilcoxon signed rank test, except for ROS curves, which were compared for significance using two-way ANOVA.
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TriDAP. MDMs that were exposed to TriDAP demonstrated a 
significantly reduced killing capacity compared with control cells 
(Figure 6C).

nOD1 activation or Deficiency Modulates 
expression of Dectin-1
Nucleotide-oligomerization domain receptors are known to 
interplay with TLRs via their downstream kinase RICK, and in 
particular with TLR2 (28–31). NOD1 deficiency or stimulation of 
NOD1 could very well impact killing, cytokine release, and ROS 
via modulation of PRRs. Therefore, surface expression of several 
PRRs, known to be involved in host defense against Aspergillus, 
were assessed by flow cytometry on PBMCs. Stimulation with 
TriDAP did not significantly affect TLR4 and MR expression on 
monocytes. dectin-1, however, was differentially regulated by 
NOD1 stimulation with a decrease of its expression (Figure 7A). 
This observation was also reflected by the number of dectin-1 
positive monocytes (Figure 7B). To validate whether the reduced 
dectin-1 surface expression was regulated on a transcriptional 
level, RNA expression of CLEC7A (the gene encoding dectin-1) 
was assessed. Similarly, a decreased dectin-1 (CLEC7A) expres-
sion was observed (Figure 7C). In addition, siRNA treatment with 
siNOD1 of MDMs resulted in an increased dectin-1 (CLEC7A) 
expression (Figure 7D). To assess whether Nod1-deficient mice 
have altered dectin-1 expression, RNA was isolated from the 
lung, spleen, and bone marrow and dectin-1 (Clec7A) expression 
was measured. Compared with wild-type mice, Nod1-deficient 
mice had significantly elevated Clec7A expression in the lung 
and bone marrow, while only a trend toward increased Clec7A 
expression was observed in the spleen (Figure 7E). To determine 
whether the augmented killing capacity of human MDMs in 
which NOD1 is silenced is due to a functional enhancement of 
dectin-1 we systematically blocked dectin-1 using laminarin and 
dectin-1-blocking antibodies. The augmented killing capacity of 
human macrophages treated with NOD1 targeting siRNA was 
abolished by dectin-1 blockade using laminarin or anti-human 
dectin-1 (Figure  7F). Similarly, laminarin mediated blockade 
of dectin-1 reversed the augmented fungal killing of Nod1−/− 
BMDMs (Figure 7G).

DiscUssiOn

PRRs regulate the induction of an effective host defense against A. 
fumigatus through recognition of molecules present on the fungal 
cell wall and induction of potent antifungal effector mechanisms 
(4, 32). However, little is known about receptors that have a direct 
inhibitory effects on the induction of antifungal effector mecha-
nisms. Here we demonstrate that the intracellular pattern recog-
nition receptor NOD1 plays an inhibitory role in host response 
against A. fumigatus. We observed that NOD1 activation reduces 
fungal killing and the induction of oxidative burst. Conversely, 
murine Nod1-deficient cells or human cells in which NOD1 gene 
expression was silenced show augmented fungal killing, oxida-
tive burst, and cytokine responses. Most striking, despite being 
immunocompromised, Nod1−/− mice were observed to be less 
susceptible to Aspergillus infection, with reduced fungal burden, 
and pathological damage to the lungs. Finally, we demonstrate 
that the activity of NOD1 is inversely correlated with dectin-1 
expression, where NOD1 stimulation reduces the expression 
of dectin-1, while NOD1 silencing in human macrophages or 
murine Nod1 deficiency was associated with increased CLEC7A 
(dectin-1) mRNA expression.

It is rarely observed that deficiency of a receptor is associated 
with decreased antifungal effector mechanisms. Tlr9−/− mice 
were found to be less susceptible to Aspergillus infection with 
reduced fungal burden (33). However, why TLR9 deficiency 
is protective is difficult to understand since TLR9 stimulation 
by CpG enhances the capacity of DCs to induce protective Th1 
responses (34). Modulation of TLR5 in THP-1 cells is shown 
to negatively impact killing of Aspergillus conidia, with silenc-
ing of TLR5 gene expression associated with increased fungal 
killing and activation of TLR5 with reduced fungal killing (35), 
reduced fungal killing was also observed in neutrophils (36). 
This modulation of fungal killing is similar to our data with 
NOD1 activation or siNOD1 in MDMs. However, a mutation 
in TLR5 leading to a stop codon was identified as a risk factor 
for aspergillosis (37). Other than these PRRs, we are not aware 
of other receptors that negatively impact host defense against 
Aspergillus.
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FigUre 7 | NOD1 suppresses dectin-1 expression and NOD1 deficiency augmenting fungal killing through dectin-1. (a) Surface expression of TLR2 (n = 6),  
TLR4 (n = 6), MR (n = 9) and dectin-1 (n = 9) on human CD14+ monocytes measured by flowcytometry following 24-h stimulation in the presence or absence of 
(10 µg/mL) TriDAP. (B) Percentage of dectin-1+ CD14+ monocytes following 24-h stimulation in the presence or absence of (10 µg/mL) TriDAP (n = 9). (c) mRNA 
expression of TLR2 (n = 8) and CLEC7A (dectin-1) (n = 6) in human PBMCs following 24-h stimulation in the presence or absence of (10 µg/mL) TriDAP. (D) NOD1 
and CLEC7A (dectin-1) mRNA expression following siRNA treatment with scrambled siRNA or siRNA targeting NOD1(siNOD1) (n = 6). (e) Clec7A (dectin-1) 
expression in the lung, bone marrow and spleen of wild type (WT) (n = 8) and Nod1−/− (n = 6) at day 3 following Aspergillus-infection. Means were compared using 
the Mann–Whitney U test. (F,g) Fungal killing capacity assessed as CFU remaining of A. fumigatus plotted as percentage of input (2 × 106). (F) Fungi killed by 
human GM-CSF differentiated monocytes-derived macrophages treated with scrambled siRNA or NOD1 targeting siRNA, the latter in the presence or absence of 
Laminarin (100 µg/mL) or a dectin-1 blocking antibody. Means were compared using the Wilcoxon signed rank test. (g) Fungi were killed by murine BMDMs of WT 
and Nod1−/− mice, the latter in the presence or absence of laminarin. Means were compared using the Mann–Whitney U test. All plots represent mean ± SEM.
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Following an otherwise lethal Aspergillus infection, Nod1-
deficient mice demonstrated rapid fungal clearance, which was 
associated with an almost complete absence of pathological 
damage and fungal outgrowth in the lungs. In contrast, WT 

mice succumbed to the infection with severe fungal outgrowth 
in the lungs and significant pathological damage detected by 
histopathology. In contrast to our aspergillosis model, the NOD1  
receptor is non-redundant in numerous bacterial infection 
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models, such as Mycobacterium tuberculosis (9), Pseudomonas 
aeruginosa (38), Shigella flexineri (39), and Helicobacter pylori 
(40). In these models, NOD1 was required for an efficient 
cytokine response (38, 39) and killing of the pathogen (9, 38, 40). 
In contrast to these latter studies with bacteria, our data suggest 
that NOD1 has an inhibitory role on the antifungal host defense 
against Aspergillus. Nod1 deficiency results in an increased 
capacity of BMDMs to kill live Aspergillus and an enhanced 
oxidative burst upon stimulation with zymosan. Strikingly, we 
also observe increased cytokine responses and enhanced NFκB 
translocation in murine Nod1-deficient cells. This is in contrast 
to a previous study that shows NOD1 to be required for NFκB 
translocation in the response of corneal epithelial cells to A. 
fumigatus (6). The fact that we observe similar results when 
we silence NOD1 gene expression in human MDMs validates 
that the observed effects are due to the absence of NOD1. In 
contrast, we observed that NOD1 activation has the opposite 
effect of NOD1 deficiency and silencing. Taken together, these 
data suggest that NOD1 inhibits crucial pathways in recognition 
of Aspergillus that limits the induction of protective antifungal 
effector mechanisms.

Mechanistically, we were able to demonstrate that activation 
of the NOD1 receptor by its ligand TriDAP reduces surface 
expression of the C-type lectin receptor dectin-1 on human 
monocytes, one of the most crucial receptors in host defense 
against Aspergillus (41–51). We found that the reduced surface 
expression was the result of a downregulation of CLEC7A 
mRNA expression when human monocytes were stimulated 
with the NOD1 ligand. Contrariwise, NOD1 silencing increased 
CLEC7A mRNA expression. Therefore, the activity of NOD1 
seems to show a reverse correlation with CLEC7A transcription. 
Extending this to the in vivo model we observed increased Clec7A 
mRNA levels in the lungs and bone marrow of Nod1−/− mice, 
compared with WT controls. Dectin-1 is crucial for the induction 
of ROS by Aspergillus, which is in line with our data showing 
increased ROS by Nod1-deficient murine BMDMs or in human 
MDM where NOD1 gene expression was silenced, which express 
more dectin-1 (52). We were able to pinpoint that the increased 
dectin-1 expression, in the absence of NOD1, was responsible for 
augmented fungal killing by Nod1−/− BMDMs and human MDM 
in which NOD1 was silenced, as blockade of dectin-1 reversed 
the augmented killing.

ROS is essential for the host defense against Aspergillus 
and its importance is illustrated by patients with chronic 
granulomatous disease who are highly susceptible to infections 
with Aspergillus due to a defect in NADPH-dependent ROS 
production (53, 54). Aspergillus and Zymosan, which are used 
in our study to study the oxidative burst by murine and human 
macrophages, are both recognized by dectin-1 (55). We suggest 
that the modulation of dectin-1 expression by NOD1 could be 
the responsible mechanism for alterations in the capacity to 
induce an oxidative burst. Similarly we found that Nod1−/− 
BMDMs and human MDMs wherein NOD1 gene expression 
was silenced have an increased capacity to kill conidia and 
a decreased conidial killing was observed in human MDMs 
when NOD1 was stimulated. These changes in conidial 
killing can also be explained by the differences in dectin-1 

expression, as dectin-1 expression is required for efficient 
phagocytosis (45, 50, 51) and killing of A. fumigatus (48, 49)  
[reviewed in Ref. (42)].

In our in  vitro studies, we observed that the absence of 
NOD1 improved fungal killing through enhancement of 
dectin-1 expression in BMDMs or human MDMs. Although 
it is evident that in host defense against A. fumigatus these 
cells employ dectin-1 to induce their antifungal effector func-
tions, it is becoming increasingly evident that other cells also 
use dectin-1 to recognize Aspergillus. For example, the role of 
the pulmonary epithelium is an important tissue that must be 
taken into account, since these cells can also play an important 
role in anti-Aspergillus host defense. Dectin-1 on bronchial 
epithelial cells plays a role in the induction of innate immune 
responses to Aspergillus including the release of antimicrobial 
peptides such as defensins (51). Moreover, it has been dem-
onstrated that enhancing dectin-1 on only the pulmonary 
epithelium promotes the resistance to IA (52). The role of 
dectin-1 in non-myeloid derived tissues is also highlighted by 
the observation that dectin-1 polymorphisms in the genotype 
of the recipients of hematopoietic stem cell transplants, which 
represent the non-myeloid tissues in the patient, predisposes to 
the development of aspergillosis (56). It cannot be concluded 
that the protection against aspergillosis that we observe in 
Nod1−/− mice is solely due to the increased dectin-1 expression 
on macrophages. We observed that dectin-1 expression in these 
mice is increased in both the bone marrow as well as the lung. 
Although resident macrophages in the lung could account for 
the changed dectin-1 expression, from our data it cannot be 
excluded that enhanced dectin-1 expression on the pulmonary 
epithelium does not play an additional role in the protection 
against Aspergillus infection.

Most interestingly, we were able to demonstrate that, in addi-
tion to its cytoplasmic expression, the NOD1 receptor localizes 
to Aspergillus-containing phagosome. Due to this localization to 
the phagosome, we suggest that NOD1 may also recognize fungal 
PAMPs that are exposed in the phagosome. Nevertheless, further 
studies are warranted to explore whether cytoplasmic sensing of 
fungal PAMPs or sensing of fungal PAMPs in the phagosome 
triggers the effects mediated by NOD1. Although NOD1 is cru-
cial for recognition of bacterial cell wall products (57, 58) and 
activation of downstream protective immune mechanisms, we 
suggest that upon engagement of NOD1 with fungi, deleterious 
mechanisms are induced. Therefore, the potent protective effect 
of Nod1 deficiency and beneficial effects of NOD1 silencing 
makes it tempting to suggest the blockade of NOD1 as a novel 
treatment strategy for IA. Currently, no pharmacological inhibi-
tors are available to block NOD1 in  vivo, but small molecule 
inhibitors that could potentially be used for therapy have been 
identified (59).

Collectively, we conclude that NOD1 induces a detrimental 
effect on protective antifungal mechanisms in host defense 
against A. fumigatus. The absence of NOD1 enhances the protec-
tive effector mechanisms such as cytokine production, oxidative 
burst, fungal killing, and dectin-1 expression. This observation 
paves the way for the development of new treatment strategies 
for IA that target NOD1.
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