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Phage-display selection of immunoglobulin (IG) or antibody single chain Fragment 
variable (scFv) from combinatorial libraries is widely used for identifying new antibod-
ies for novel targets. Next-generation sequencing (NGS) has recently emerged as a 
new method for the high throughput characterization of IG and T cell receptor (TR) 
immune repertoires both in vivo and in vitro. However, challenges remain for the NGS 
sequencing of scFv from combinatorial libraries owing to the scFv length (>800 bp) 
and the presence of two variable domains [variable heavy (VH) and variable light (VL) 
for IG] associated by a peptide linker in a single chain. Here, we show that sin-
gle-molecule real-time (SMRT) sequencing with the Pacific Biosciences RS II platform 
allows for the generation of full-length scFv reads obtained from an in vivo selection 
of scFv-phages in an animal model of atherosclerosis. We first amplified the DNA 
of the phagemid inserts from scFv-phages eluted from an aortic section at the third 
round of the in vivo selection. From this amplified DNA, 450,558 reads were obtained 
from 15 SMRT  cells. Highly accurate circular consensus sequences from these 
reads were generated, filtered by quality and then analyzed by IMGT/HighV-QUEST 
with the functionality for scFv. Full-length scFv were identified and characterized in 
348,659 reads. Full-length scFv sequencing is an absolute requirement for analyzing 
the associated VH and VL domains enriched during the in vivo panning rounds. In 
order to further validate the ability of SMRT sequencing to provide high quality, full-
length scFv sequences, we tracked the reads of an scFv-phage clone P3 previously 
identified by biological assays and Sanger sequencing. Sixty P3 reads showed 100% 
identity with the full-length scFv of 767 bp, 53 of them covering the whole insert of 
977 bp, which encompassed the primer sequences. The remaining seven reads were 
identical over a shortened length of 939 bp that excludes the vicinity of primers at 
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occur during the synthesis of the VH and VL domains, which 
include the molecular rearrangements at the DNA level of the 
variable (V), diversity (D) (only for VH), and joining (J) genes 
with nucleotide deletions and insertions (N-diversity) at the 
V-(D)-J junctions in the bone marrow pre-B and immature B cells  
(17, 18). In spleen and lymph nodes, somatic hypermutations 
accumulate in the mature B  cell VH and VL, creating a huge 
diversity of the B cell membrane IG for the recognition of foreign 
antigens. Following a specific antibody-antigen interaction the 
B cell proliferates and generates clones engaged in in vivo selec-
tion and affinity maturation. The specificity of the V domains is 
conferred by the complementarity determining regions (CDR) 
and more particularly the CDR3 (19–21). The same features are 
observed in in  vitro combinatorial libraries, which mimic the 
natural in vivo diversity, selection and affinity maturation (1–3).

In order to manage, analyze and compare the extraordinary 
diversity of the immune repertoires, IMGT®, the international 
ImMunoGeneTics information system®1 (22), was created in 1989 
in Montpellier by Marie-Paule Lefranc (Montpellier University, 
CNRS), which marked the birth of immunoinformatics (18), a new 
science at the interface between immunogenetics and bioinformat-
ics. IMGT® has developed online tools that provide a detailed and 
accurate analysis of the V domains and which, in the case of nucleo-
tide sequences, include IMGT/V-QUEST (23–25) for the analysis of 
the rearranged V-(D)-J sequences of the IG or antibodies and T cell 
receptors (TR), and IMGT/JunctionAnalysis (26, 27) for the analysis 
of the V-(D)-J junctions and of the included CDR3. The algorithms 
and IMGT reference directories of these tools have been implemented 
in IMGT/HighV-QUEST (28–31), the first and only web portal for 
NGS sequence analysis of IG and TR, begun in 2010. IMGT/HighV-
QUEST analyses up to 500,000 NGS reads per batch and includes a 
statistical module for IMGT clonotype identification and compari-
son (analyses are performed on the results of up to one million reads, 
from one or several batches) (30). IMGT/StatClonotype (32, 33), a 
stand-alone tool and R package, allows for the comparison of IMGT 
clonotype diversity and expression between two NGS data sets, 
using the IMGT/HighV-QUEST statistical results output. In order 
to overcome the analysis challenge of the NGS scFv, the IMGT/V-
QUEST functionality “Analysis of single chain Fragment variable 
(scFv)” which includes the search and characterization of two V 
domains in a single sequence [IMGT/V-QUEST Documentation2 
(34)] has recently been integrated in IMGT/HighV-QUEST (IMGT/
HighV-QUEST Documentation3).

1 http://www.imgt.org.
2 http://www.imgt.org/IMGT_vquest/share/textes/imgtvquest.html.
3 http://www.imgt.org/HighV-QUEST/doc.action.

Abbreviations: CCS, circular consensus sequencing; IG, immunoglobulin; 
IMGT, IMGT®, the International ImMunoGeneTics Information System®; NGS, 
next-generation sequencing; scFv, single chain Fragment variable; SMRT, single-
molecule real-time; TR, T cell receptor.

INtRodUCtIoN

Immunoglobulin (IG) or antibody fragments displayed as single 
chain Fragment variable (scFv) on filamentous phages (scFv-
phages) are classically selected from scFv-phage combinatorial 
libraries to obtain human antibodies specific for a given target 
(1–3). This selection from scFv-phage display libraries is widely 
used for the discovery of novel specificities for therapeutic 
antibodies in cancer, cardiovascular, autoimmune, infectious or 
neurodegenerative pathologies, with many of them at various 
stages of clinical or research development (4–10). Classical in vitro 
phage display approaches involve multiple rounds of selection  
(or panning) for the enrichment of scFv-phages that demon-
strate the desired specificity against a target followed, at the last 
selection round, by functional screening and characterization 
of selected candidates using appropriate assays. At this very last 
step, analysis of the selected scFv via Sanger sequencing is com-
monly used to identify sequences of interest, taking advantage of 
the genotype–phenotype linkage inherent to the display system.  
A critical limitation of using biological assays followed by Sanger 
sequencing is that only a minute fraction of the selected library 
is actually sampled, a few hundred at best, whereas the selected 
library may usually contain up to 105 to 106 variants. This limita-
tion is further enhanced when scFv-phage selection is performed 
in  vivo (biopanning) in different pathological models in which 
scFv-phages can encounter a very large panel of unknown bio-
markers (11–13). Currently available next-generation sequencing 
(NGS) platforms allow the simultaneous sequencing of millions of 
reads. However, a main challenge for the NGS sequencing of scFv 
from combinatorial libraries remains the scFv length >800  bp, 
which is too long for most NGS platforms. Up to now, NGS 
methods have only provided reads encompassing one variable (V) 
domain (400 bp), therefore losing a critical piece of information 
found in scFv sequences, that of the association of two specific 
V domains [variable heavy (VH) and variable light (VL) for the 
IG] by the peptide linker. Although a few approaches have been 
proposed, retrieving information regarding V domain association 
has still not been solved (14–16).

The analysis of antibody scFv sequences is a difficult exercise 
because not only are scFv composed of two V domains, but 
these two V domains are different from each other and each can 
potentially be extremely diverse. Indeed, the huge diversity of 
IG or antibodies results from complex in vivo mechanisms that 

both ends. Interestingly these reads were obtained from each of the 15 SMRT cells. 
Thus, the SMRT sequencing method and the IMGT/HighV-QUEST functionality for 
scFv provides a straightforward protocol for characterization of full-length scFv from 
combinatorial phage libraries.

Keywords: human antibody, IMGt/highV-QUest, immunoinformatics, immunoglobulin, Pacific Biosciences 
sequencing, phage combinatorial library, single chain fragment variable, next-generation sequencing
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FIGURe 1 | Human single chain fragment variable-phagemid combinatorial library construction (A) and in vivo phage display selection (B).
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The main challenge addressed in this study was to obtain high 
quality NGS reads of the scFv long enough to encompass the two 
VH and VL domains and to analyze and characterize the associa-
tion of the two V domains in the NGS scFv reads using the scFv 
functionality in IMGT/HighV-QUEST. Full-length scFv reads are 
expected to have a length of around 800 bp with a whole insert of 
around 1,000 bp (including the 5′ and 3′ sequences of the vector and 
primer sequences at both ends). We used the Pacific Biosciences 
(PacBio) third-generation NGS technology, which provides long 
sequencing reads and the highest consensus accuracy available 
today (35–38). For this project, the high accuracy is a result of 
the generation of circular consensus sequencing (CCS) reads, by 
which the long sequencing reads allow for multiple passes of the 
same insert and thus removal of random sequencing errors upon 
consensus construction. Practically, one single molecule, real-
time (SMRT) cell has 150,000 zero-mode waveguides (ZMWs), 
of which 50,000–75,000 are loaded with single molecules during 
sequencing, resulting in the production of ~50,000–75,000 unique 
consensus reads per run and per SMRT cell. PacBio NGS sequenc-
ing was performed from amplified DNA of scFv-phages isolated 
from the third round of an in vivo biopanning in an animal model 
of atherosclerosis (12, 13). The PacBio scFv CCS (version 2) reads 
were first analyzed using IMGT/HighV-QUEST with the scFv 
functionality. In a second step, the sequence quality was evaluated 
by tracking the NGS reads of a scFv-phage clone P3, identified by 
biological assays and Sanger sequencing.

MAteRIALs ANd Methods

In Vivo selection of scFv-Phages specific 
to Atheroma Plaque
A fully human-recombinant scFv antibody library (scFv cloned 
in the pMG72 phagemid vector, containing the ampicillin-
resistant gene for the selection and maintenance of the phagemid) 
with a diversity of 3.4  ×  109 clones (full description in patent 
WO2007137616) was expressed by phage display and selected 
in  vivo, as previously described (13). The scFv-phages were 
obtained from the scFv-phagemid combinatorial library by 
expression of the scFv on the phage surface, following the addition 
of a helper filamentous phage to recombinant phagemid infected 
bacteria in the exponential phase (39). Three rounds of biopanning 
were performed in atheromatous injured rabbits (12). All animal 
experiments were performed in conformity with the Guide for the 
Care and Use of Laboratory Animals (NIH Publication No. 85–23, 
revised 1996) and were accredited by the local ethical committee 
(Animal Care and Use Committee of Bordeaux, France under 
the No. 50120192). Briefly, the procedure was the following 
(Figure 1): 2.4 × 1012 colony-forming units (cfu) of scFv-phages 
were injected into an atheromatous rabbit. After 1 h in circulation, 
the animal was sacrificed, the aorta was retrieved and scFv-phages 
binding to the aorta were eluted in different fractions. The eluted 
scFv-phages were reamplified in XL1-Blue bacteria and following 
scFv expression at the phage surface as above (39), the amplified 

http://www.frontiersin.org/Immunology/
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FIGURe 2 | Obtaining recombinant single chain fragment variable-phagemid bacteria from the AAR3 fraction, storage for next-generation sequencing, 
quantification, and picking of individual clones.
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scFv-phages were reinjected in another atheromatous animal. 
Rounds 2 and 3 were conducted following the same procedure. 
The number of reinjected colony-forming units were 4.8 × 1011 
in round 2 and 3.9 × 1011 in round 3. The total number of eluted 
scFv-phages from the third round was 1.5 × 107 cfu (total for seven 
fractions corresponding to different areas of the aorta).

In this study, the analyzed fraction is the one recovered 
after the third round of selection from the endothelial cells of 
the damaged abdominal aorta vessel wall (named AAR3 for 
abdominal aorta round 3) (Figure  2). The scFv-phages were 
amplified in XL1-Blue bacteria and plated on 145  mm Petri 
dishes for storage of the whole AAR3 fraction before sequenc-
ing, and on 80 mm Petri dishes for limiting dilution (quantifica-
tion of recombinant bacteria and picking of individual clones) 
(Figure 2). The recombinant bacteria plated on 145 mm Petri 
dishes were scratched and stored at −80°C in 50% v/v glycerol. 
Around 3.5 × 105 clones issuing from the whole AAR3 fraction 
were counted by limiting dilution of recombinant bacteria on 
80  mm Petri dishes. Ninety-six recombinant bacteria clones 
were individually picked and grown in selective medium on a 
96-well MASTERBLOCK® polypropylene storage plate (Greiner 
Bio-One, France) and stored for in  vitro bioreactivity assays 
(in  vitro screening of scFv-phages on atheromatous proteins) 
and for Sanger sequencing.

Each of the 96 individual recombinant bacteria clones 
from the MASTERBLOCK® was repicked on an agarose 
96-Well plate (Beckman Coulter, France). After incubation at 
37°C overnight, plasmid DNA extraction, PCR amplification 

and sequencing were then performed by Beckman Coulter 
(France). One of these sequenced clones, P3 (767 bp), was used 
in this study for tracking the PacBio reads that were identical 
or related to it.

PacBio Rs II sequencing of the Whole 
AAR3 Fraction
Generating High Quality PCR Products
Single-molecule real-time sequencing requires high-quality, 
doubled-stranded DNA as input. To ensure this, plagemid 
DNA of recombinant bacteria from the whole AAR3 fraction 
was extracted directly from the frozen extract just before 
PCR amplification, using the QIAprep spin miniprep kit 
(Qiagen, France) according to manufacturer’s instructions. 
To generate clean, undamaged and non-chimeric amplicons, 
the highest fidelity polymerase was used. All PCR reac-
tions were performed in volumes of 50  µL using 25  µL of 
the KAPA HiFi™ HotStart ready Mix (Kapa Biosystems, 
France) and 20 ng of DNA template. Each primer was used 
at a final concentration of 0.3  µM. PCR reactions were 
performed with the forward primer (Primer 1, 23-mer 
FWD) 5′-TGCAAATTCTATTTCAAGGAGAC-3′ and the 
reverse primer (Primer 2, 20-mer REV) 5′-TCACGTG 
CAAAAGCAGCGGC-3′. These primers were designed 
based on the phagemid vector; for primer 1 from position 
−96 to −74 upstream of the BamHI site and for primer 2 from 
positions 95 to 114 downstream of the NotI site (Figure 3A).

http://www.frontiersin.org/Immunology/
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FIGURe 3 | Primer design (A) and quality control presequencing (B) and postsequencing (C). (A) Primers designed on the phagemid vector and used for single 
chain fragment variable (scFv) PCR amplification. The scFv (VH-LINKER-VL) length range is between ~720 and ~800 bp [variable heavy (VH) between ~350 and 
~400 bp and variable light (VL) between ~320 and ~350 bp]. The linker is 53 bp including the EcoRI and XbaI sites. The PCR products are expected to be 
~1,000 bp on average, including the 5′ and 3′ region and the primers. (B) Agarose gel electrophoresis of PCR products. The DNA was amplified from the AAR3 
fraction and PCR products were analyzed on 1.2% (w/v) agarose gel. The band at ~1,000 bp corresponds to the expected size for scFv amplicons. S1, S2, S3, and 
S4 correspond to the samples 1, 2, 3, and 4, respectively. The Bioanalyzer trace of the four samples shows the purity of amplicons with a high-quality single peak. 
(C) Pacific Biosciences RS II CCS2 read length distribution using P6-C4 chemistry for 1 SMRT cell (similar results were obtained for the 15 SMRT cells). Data are 
based on a 1-kb size-selected scFv library using a 6 h movie.
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The PCR cycling protocol was chosen according to the manu-
facturer’s instructions and consisted of 95°C for 3 min; 15 cycles 
of 98°C 20 s, 65°C 15 s, 72°C 30 s; one 72°C 1 min followed by one 
cycle at 4°C. The reduction of the number of PCR cycles minimizes 
the PCR bias, however when further decreases in the number of 
PCR cycles were attempted, it led to several contaminating, off-
target bands on an agarose gel.

The required quantity in PacBio guidelines for insert sizes 
superior to 750 bp is 500 ng of DNA. Four PCR reactions were per-
formed on the same AAR3 fraction for reproducibility purposes. 
Agarose gel electrophoresis was used to confirm amplifi cation, 
correct fragment size, and to check for non-specific product con-
tamination. A sizing marker was included to confirm size specific-
ity (GeneRuler 1 kb Plus DNA Ladder, Thermo Fisher Scientific, 
France). Amplicons were cleaned using 1× ratio of AMPure 
PB Beads (Pacific Biosciences). DNA purity and quantification 
(sample volume, yields and size distributions) were evaluated 
and measured using the Agilent 2100 Bioanalyzer DNA12000 kit 
(Agilent technologies).

SMRTbell Template Preparation
SMRTbell templates (PacBio, CA, USA) were constructed fol-
lowing the standard Amplicon Sequencing Protocol.4 The full 
procedure is explained in Figure S1 in Supplementary Material.

Briefly, PCR products were treated to repair DNA damage and 
then hairpin adapters were added via blunt end ligation to pro-
duce SMRTbell templates using the SMRTbell template prep kit 
1.0. Exonucleases III and VII were used to remove failed ligation 
products and SMRTbell templates were purified with AMPure 
PB Beads. The ratio of sequencing primer and polymerase was 
determined by a PacBio calculator to correlate with SMRTbell 
concentrations and the 1,100-bp insert size. The sequencing 
primer was annealed to the single-stranded loop region of the 
SMRTbell template, and primer-annealed templates were then 
bound to DNA polymerase P6 using the DNA/polymerase bind-
ing kit P6v2. The DNA–polymerase complexes were loaded on 

4 http://www.pacb.com/wp-content/uploads/Procedure-Checklist-Amplicon-
Template-Preparation-and-Sequencing.pdf.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://www.pacb.com/wp-content/uploads/Procedure-Checklist-Amplicon-Template-Preparation-and-Sequencing.pdf
http://www.pacb.com/wp-content/uploads/Procedure-Checklist-Amplicon-Template-Preparation-and-Sequencing.pdf


6

Hemadou et al. PacBio scFv Sequencing and IMGT/HighV-QUEST Analysis

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1796

15 SMRT cells using MagBeads onto the PacBio RS II system and 
sequenced using the C4 chemistry and 6-h movies.

Initial loading titrations were performed to identify the opti-
mal loading concentration, identifying 0.03–0.035 nM as the best 
loading conditions for scFv PCR products. Each SMRT cell gen-
erates ~50,000 reads on average (considering that 50,000–75,000 
ZMW can be optimally loaded with a single molecule of DNA). 
A total of 15 SMRT cells were loaded for the four different PCR 
products of the same AAR3 fraction (three SMRT for sample 1 
and four SMRT for samples 2, 3, and 4) to cover, per PCR sample, 
the diversity of the AAR3 fraction (Figure S2 in Supplementary 
Material). The use of 15 SMRT  cells was chosen to provide a 
thorough and sound proof-of-concept and read comparison from 
four different PCR amplicons generated from the same fraction 
(AAR3).

PacBio CCS Read Generation
The PacBio RSII instrument produces sequencing reads with an 
average read length of ~15  kb, which would theoretically pass 
over a 1,100 bp molecule more than 10 times, producing CCS2 
sequences with an accuracy ~99.9%. Longer read lengths can be 
achieved by increasing the instrument run time, so these data 
were collected using 15 SMRT cells and 6 h movies, to maximize 
read length and, thus, number of passes. Following sequencing, 
the raw data were processed using the CCS2 pipeline (CCS code 
used available at https://github.com/PacificBiosciences/unanim-
ity). All CCS2 reads that were 99.9% accurate or greater were 
exported for further analysis. The raw NGS data of the 85-related 
P3 sequences can be found in the NCBI Sequence Read Archive 
with the accession number SRP124616.

IMGt/highV-QUest Analysis of the 
PacBio CCs2 Reads
Characterizing IMGT/HighV-QUEST scFv Reads  
from AAR3
The FASTQ files of the PacBio CCS2 reads were imported and 
converted to FASTA sequences for submission to IMGT/HighV-
QUEST5 (29, 30), which implements IMGT/V-QUEST program 
version 3.4.2 (August 4, 2016) and IMGT/V-QUEST reference 
directory release 201631-4. The analysis was performed with 
the advanced functionality “Analysis of single chain Fragment 
variable (scFv)” (IMGT/HighV-QUEST Documentation, see text 
footnote 3).

Data filtering was applied with the following criteria to be 
fulfilled for each of the two V domains: (i) >85% of identity of 
the V-REGION of the V domain with the V-REGION of the 
closest germline IMGT gene and allele and (ii) in-frame V-(D)-J 
junction. Filtered sequences were then analyzed to identify the 
closest V, D (for VH) and J IMGT genes and alleles, to characterize 
the amino acid (AA) junction, to evaluate the mutations and to 
give a complete description of the scFv with IMGT labels (IMGT 
Index > scFv6).

5 http://www.imgt.org/HighV-QUEST/login.action.
6 http://www.imgt.org/IMGTindex/scFv.php.

Tracking and Analysis of Identical and Related 
PacBio Reads of the AAR3 scFv-Phage Clone P3
In order to evaluate the PacBio scFv read sequencing quality, 
reads identical or closely related to the sequence of a scFv-phage 
clone P3 (previously isolated from the same fraction AAR3 and 
Sanger sequenced) were tracked among the total reads generated 
in the 15 SMRT cells by two approaches. First, reads potentially 
related to P3 were searched for based on the expected VH-VL 
characteristics determined by IMGT/HighV-QUEST (same V 
and J genes and alleles, and same AA junctions). Second, a Blast 
search was performed to check whether P3-related reads could 
have been missed by the IMGT/HighV-QUEST filtering. The fasta 
headers of the sequences were modified to include the sequence 
set identifier and a blast database was built (formatdb 2.2.26) from 
the accumulated reads from the 15 SMRT  cells. The database 
search was performed using the blastn program (2.2.26), with the 
combined following criteria: longest alignments on the P3 Sanger 
(767  bp) sequence, highest identity percentage, and maximum 
number of 20 mismatches or indels. Among the extracted reads 
only those fulfilling the P3 characteristics (in terms of V and J 
genes, allele names and AA junctions) were retained.

ResULts

Generation and Analysis of PCR Products 
from the Whole AAR3 Fraction
The unbiased characterization of scFv from phage-display combi-
natorial libraries, in conjunction with sequencing on the PacBio 
RS II system, requires high-quality PCR products with undam-
aged, clean and non-chimeric amplicons. Creating PCR protocols 
to generate products that are truly representative of the starting 
cell population is a major challenge.

To achieve this aim: (1) the complete frozen AAR3 fraction was 
directly used, without amplification, as the source of recombinant 
bacteria; (2) efforts were made to limit the number of amplifi-
cation cycles (the four samples subject to 15 cycles) in order to 
reduce quantitative distortions as well as error rates due to PCR 
artifact (data not shown); and (3) different high-fidelity Taq 
polymerases were tested so as to fit with our amplification system. 
The required quantity (500 ng) and the correct size of amplicons 
(~1,000 bp) were obtained with the KAPA HiFi™ HotStart poly-
merase (Figure 3A). The quality and quantity of amplicons was 
confirmed using an Agilent 2100 Bioanalyzer. After confirmation 
of the purity (Figure 3B), PCR samples were sequenced on the 
PacBio platform.

PacBio sequencing and CCs2 Analysis
Sequencing was done on the PacBio RS II system using P6-C4 
sequencing chemistry and SMRTbell libraries generated from 
DNA amplified from the AAR3 fraction (corresponding to 
3.5  ×  105 scFv-phagemids). For each of the four PCR samples, 
3 or 4 SMRT cells were run to ensure adequate sampling of the 
scFv as described in Section “Materials and Methods” (Figure S2 
in Supplementary Material). A total of 15 SMRT cells were used.

Circular consensus sequencing (CCS2) analysis of the 15 
SMRT  cells produced 450,558 reads. These reads were filtered 
to remove any double-loaded wells or other artifactual/lower 
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accuracy reads. The data obtained from filtered, post-CCS2 analy-
sis represent the reads achieving 99.9% accuracy or above, derived 
only from wells loaded with a single molecule. Any reads that 
did not reach consensus coverage of QV30 (99.9% accurate) or 
above were filtered out. Those settings and filters are built into the 
CCS2 pipeline that is available via the PacBio web-based analysis 
software (SMRT Link). Thus, these 450,558 reads passed initial 
filtering with an average pass number of 24 and a quality score 
of minimum 99.94% accuracy (Figure 3C). Another contributing 
factor to data quality and throughput was the use of the longest 
movie lengths possible at the time (6 h) to ensure the longest read 
lengths for analysis.

IMGt/highV-QUest Analysis of the scFv 
PacBio Reads
The 450,558 FASTQ PacBio CCS2 reads were converted in 
FASTA sequences and analyzed using IMGT/HighV-QUEST, 
as described in Section “Materials and Methods.” After analysis, 
a total of 391,655 scFv “candidates” (i.e., sequences with two V 
regions, IMGT label V-REGION) (86.93% of the submitted 
PacBio reads) were identified (Table  1). The scFv sequences 
were then filtered according to the criteria described in Section 
“Materials and Methods” [>85% of identity of the V-REGION of 
the V domains with the V-REGION of the closest germline IMGT 
genes and alleles and in-frame V-(D)-J junction, determined for 
both V domains]. The threshold of 85% of identity is the standard 
filter for classical IG repertoire analysis in IMGT/HighV-QUEST 
(29). Following this filtering, 348,659 full-length scFv representing 
89.02% of the filtered sequences were identified (Table 1). These 
scFv reads include 346,934 VH-VL or VL-VH expected scFv 
sequences (Table S1 in Supplementary Material). The other 1,725 
scFv reads comprise 171 VH-VH (5–22 found per SMRT cell) and 
1,554 VL-VL (68–158 found per SMRT cell). These combinations 
most probably occurred during the construction of the original 
scFv-phage combinatorial library. Thus these results provide a 
useful and detailed overview of the content of the scFv combinato-
rial library.

The IMGT/HighV-QUEST analysis of the scFv reads included 
identification of the closest V, D (if VH), and J IMGT genes and 
alleles, characterization of the junction, evaluation of the muta-
tions, and complete description of both V domains with IMGT 
labels (see text footnotes 2 and 5). These results demonstrate that 
both domains of the scFv reads sequenced by PacBio could be 
fully characterized with the functionality for scFv.

tracking and Analysis of PacBio Reads 
Identical or Related to the P3 Clone across 
15 sMRt Cells
Single chain fragment variable-phages issuing from the in vivo 
AAR3 selected fraction have been screened by a high-throughput 
flow cytometry method against atherosclerotic rabbit proteins. 
Some of the selected clones were then processed into scFv-Fc for-
mat in HEK293 cells and validated by immunohistochemistry on 
atheromatous aorta sections of two animal models of atheroscle-
rosis (ApoE−/− mouse and New Zealand White rabbit submitted 
to hypercholesterolemic diet) and on human endarteriectomy  

http://www.frontiersin.org/Immunology/
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tABLe 3 | Mutations observed at the 5′ and 3′ end of the seven Pacific Biosciences (PacBio) reads with 100% identity on 939 bp (positions 3–941).

PacBio read no. 
(assigned in the 
list 1–85)

PCR sample 
no.

sMRt cell no. Mutation descriptiona Mutation localization GenBank/eNA/
ddBJ accession 

number

13 s1 2 One 1 nt-deletion (g2 > del) 5′ end of the 5′ primer MG272209

11 s1 2 Two 1 nt-deletion (t975 > del, a977 > del) 3′ end of the 3′ primer MG272210

15 s1 3 One 1 nt-substitution (c956 > t) Vicinity of the 3′ primer MG272211

12 s1 2 One 1 nt-deletion (a942 > del)b Vicinity of the 3′ primerb MG272212
35 s2 5
71 s4 12

64 s3 10 Two 1 nt-deletion (a942 > del),b (t975 > del) Vicinity of the 3′ primer,b 3′ end of the 3′ 
primer

MG272213

Positions of the primers are 1–23 and 958–977.
aMutations are described according to the IMGT Scientific chart rules (http://www.imgt.org/IMGTScientificChart/Nomenclature/IMGTmutation.html) (40).
bThe 1 nt-deletion (a942 > del) found in reads from the four samples most probably originates from the library.

tABLe 2 | Pacific Biosciences (PacBio) reads 100% identical to the aligned P3 Sanger sequence and 100% identical between them on 977 bp (53 reads) or 939 bp (7 
reads).

PCR sample 
no.

Number of P3 PacBio 
reads per PCR sample

sMRt cell no. Number of P3 PacBio 
reads per sMRt cell

100% on 977 bp  
(53 reads)

100% on 
939 bp  

(7 reads)

GenBank/eNA/
ddBJ accession 

number

s1 15 1 6 1, 2, 3, 4, 6, 8 MG272208
2 5 10, 30 11, 12, 13
3 4 16, 17, 19 15

s2 14 4 2 32, 33
5 2 36 35
6 3 37, 38, 39
7 7 20, 41, 44, 45, 46, 47, 48

s3 15 8 6 49, 50, 51, 52, 53, 54
9 4 56, 57, 59, 60

10 4 63, 65, 66 64
11 1 68

s4 16 12 4 70, 72, 73 71
13 2 75, 76
14 3 21, 80, 83
15 7 23, 24, 25, 26, 27, 28, 29

Total 60 60 53 7
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biopsies. A scFv-phage clone, named P3, selected for its high 
accuracy in biological assays in the two animal models and human 
biopsies was Sanger sequenced and patented (EP 17306337.1). The 
whole scFv P3 sequence (Figure S3 in Supplementary Material) 
was then tracked among the 346,934 VH-VL and VL-VH reads 
(Table S1 in Supplementary Material) from the 15 SMRT cells, 
by the two approaches described in Section “Materials and 
Methods,” in order to evaluate the PacBio scFv read sequencing 
quality.

Analysis of PacBio Reads Identical to the P3 Clone
Sixty PacBio reads with 100% identity to the region aligned 
with the P3 Sanger sequence (767  bp) were obtained by both 
approaches. Interestingly, the P3 scFv was identified in the top 
100 of the most abundant VH-VL associations in all the 15 data 
sets. These PacBio reads have a length of 977 bp, including the 5′ 
and 3′ regions and the primers. Fifty-three of the 60 reads have 
a 100% identity on their full length of 977 bp. As these PacBio 
reads were obtained from the 15 SMRT cells (Table 2), we can 

confidently say that no sequencing error was observed in the 
51,781 bp of these 53 reads.

Seven reads showed 100% identity on a 939  bp length 
(Table  2). Interestingly their mutations are all localized at the 
ends of the primers and/or in the immediate vicinity of the 3′ 
primer (Table 3). A most probable explanation is that they occur 
during the sequencing polymerization (the priming step could 
be excluded as different mutations were observed in different 
SMRT cells and no degenerate bases were used in the primers). 
Ignoring the mutations in or next to the primers, no sequencing 
error was observed in 6,573 nucleotides of the 7 reads (100% 
identity on 939 bp). Combining these results with those of the 53 
reads (100% identity on the full length of 977 bp), no sequencing 
error was detected on 58,354 nucleotides for the 60 scFv reads.

Analysis of PacBio CCS Reads Related to the  
P3 Clone
In addition to the 60 PacBio reads with a 100% identity (53 reads 
on 977 bp and seven reads on 939 bp) (Table 2), 25 “related” P3 

http://www.imgt.org/IMGTScientificChart/Nomenclature/IMGTmutation.html
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reads were identified (Figure S4 in Supplementary Material). 
These 25 P3-related reads showed 15 different mutation types in 
the insert and, for each type, a limited number of reads (1–6) 
(Table  4). Altogether, the 15 mutation types are described by 
28 different individual mutations. This heterogeneity is in sharp 
contrast with the 60 reads with a 100% identical insert.

The observation of related reads was expected as the scFv are 
from a phagemid combinatorial library in which point mutations 
were initially introduced to mimic the IG somatic hypermuta-
tions. The analysis of the 25 reads was therefore performed in an 
attempt to distinguish among them related clones with potential 
biological interest (as reflecting the diversity of the original 
library) from reads with artifactual differences.

For 15 of these PacBio CCS reads, the origin of the mutations 
(mostly substitutions) was clearly from the scFv phagemid com-
binatorial library (and therefore of potential interest given their 
relatedness to P3). This was supported by the fact that identical 
mutated reads were obtained from different PCR and from differ-
ent SMRT cells (category A in Table 4). These included 7 reads 
(highlighted in pink) with four identical individual mutations, 2 
reads (highlighted in green) with three identical individual muta-
tions different from those described above and one shared by both 
groups [c838 > g (VL)], 6 reads (highlighted in blue) with two 
identical individual mutations (and still different from those of 
the previous mutation types). All the substitution mutations are 
localized in the VL, in agreement with mutations of the VL and 
VH domains being targeted differently before the assembly into 
the scFv and confirming that the differences observed are intrinsic 
to the VL domain, and not due to PCR or sequencing errors. The 
IMGT/V-QUEST alignment of the 15 PacBio NGS sequences with 
the initial P3 Sanger sequence is provided as an additional PDF 
file in supplementary data (Figure S5 in Supplementary Material).

For the other 10 PacBio reads, present in one copy (category B 
in Table 4), the origin of the differences could not be determined 
with certainty: and any of the possible explanations: putative 
sequencing errors, PCR amplification errors or diversity of the 
combinatorial library could not be formally excluded at this 
stage. The 1 nt-deletion observed in VH and VL for reads 85 and 
40, respectively, the large nt deletion at the 3′ end in read 78, the 
nt deletion at both 5′ and 3′ ends for read 81 and the one or two 
nt insertions in VH or VL for reads 84 and 9 could be considered 
as sequencing errors. The six reads with different single substitu-
tion and the one with 3 mutations could be attributed to PCR 
amplification errors or diversity of the combinatorial library. 
Moreover, and even if these differences are due to diversity of 
the combinatorial library, their single copy number suggests 
that they are from unselected (or poorly selected) scFv-phages 
from the library background and could be ignored in the library 
screening.

dIsCUssIoN

Antibody libraries are important resources to derive antibodies 
to be used for a wide range of diagnostic and therapeutic applica-
tions. In vivo or ex vivo phage-display selections have emerged as 
interesting ways to identify accurate antibodies in the context of 
the pathologic microenvironment (11). Although advancements 

in automation of biological assays have greatly improved screening 
strategies, high-throughput campaigns are still severely limited in 
the number of antibody fragments that can be interrogated, pro-
viding only a tiny fraction of the enriched phage library. Access to 
the genetic information encoded in antibody repertoires by NGS 
should allow more in depth analysis of the diversity of the selected 
library. However, the currently available NGS platforms that were 
capable of providing several million reads per run, generated only 
short reads of up to 300–700 bp (41). Therefore, only synthetic 
combinatorial scFv libraries, in which diversity was confined to 
CDR3 regions of the heavy and light chains, have benefited from 
NGS potential in the extensive in silico analysis of complex col-
lections of selected antibodies (16).

While Mi-Seq, 454, or Ion-Torrent technologies will com-
pletely sequence heavy and light variable domains, they are 
currently insufficient to cover the full-length scFv, which are 
comprised of both VH and VL domains, connected by a peptide 
linker. These technologies often necessitate consensus building 
of multiple reads originating from the scFv fragment to obtain 
whole sequence information (42–44). Therefore, NGS sequenc-
ing of scFv fragments longer than 800  bp is still hampered by 
technical limitations in the length of reads. These limitations 
could be circumvented by the third generation PacBio sequenc-
ing platform. Capitalizing on PacBio SMRT DNA sequencing 
for high-resolution and high-throughput HLA typing (36, 37), 
we develop here a PacBio SMRT/CCS2 approach, combined 
with IMGT/HighV-QUEST analysis of full-length scFv reads 
to provide a straightforward protocol for characterization of the 
complete VH and VL domains of scFv from fully human combi-
natorial libraries.

Pacific Biosciences SMRT sequencing generated 450,558 reads 
of about 1,000 bp across 15 SMRT cells, following DNA amplifica-
tion of the scFv insert from 3.5 × 105 in vivo selected scFv-phages. 
IMGT/HighV-QUEST with its scFv functionality allowed for 
further filtration and characterization of the 348,659 PacBio CCS 
reads as containing full-length scFv, which represent 89.02% of 
the overall filtered sequences from the 15 SMRT cells run. Among 
them, 346,934 identified expected VH-VL or VL-VH full-length 
scFv reads.

In order to evaluate the PacBio scFv read sequencing quality, 
a selected scFv-phage clone P3, previously identified from the 
AAR3 fraction by biological screenings and sequenced by the 
Sanger methodology, was tracked within the 346,934 VH-VL 
and VL-VH scFv reads characterized by IMGT/HighV-QUEST. 
Sixty PacBio CCS2 reads were identified from the 15 SMRT cells 
that demonstrated 100% identity on a length of 939 bp (including 
the complete scFv of 767 bp and the 5′ and 3′ regions) and for 
53 of them on the full length of 977 bp (including the primers at 
both ends). Thus no sequencing error was observed on a total of 
51,728 bp for these 53 reads, obtained from the 15 SMRT cells (and 
58,354 bp if the seven reads with 100% on 939 bp are included), 
validating the capacity of the PacBio SMRT-CCS2 method to pro-
duce reads with an accuracy of >99.9% for complete sequences 
of inserts approaching 1,000 bp. It is of interest to note that these 
PacBio reads were obtained from the 15 SMRT cells.

In addition to the 60 PacBio reads with a 100% identity, 25 
“related” P3 reads were identified and for 15 of them, mutation 
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tABLe 4 | Mutation heterogeneity observed in 25 P3-related PacBio reads, in contrast with the 60 P3 identical PacBio reads with 100% identity on the complete scFv.

Read 
categories

Pacific Biosciences 
(PacBio) read no. 

(assigned in the list 
1–85)

PCR 
sample 

no.

sMRt cell 
No.

Number 
of reads/
mutation 

type

Mutation type Mutation descriptiona GenBank/eNA/
ddBJ accession 
number

A (15 reads) 7, 18, 43, 67, 69, 79 1, 2, 3, 4 1, 3, 7, 11, 
12, 14

6 Four 1 nt-substitution a545 > g (VL), g686 > a (VL),  
a757 > g (VL), c838 > g (VL)

MG272218

58 3 9 1 Four 1 nt-substitution with, in 3′, a large deletion a545 > g (VL), g686 > a (VL),  
a757 > g (VL), c838 > g (VL),  
a886-a977 > del (92 nt)

MG272219

61 3 9 2 Four 1 nt-substitution c741 > t (VL), g837 > a (VL),  
c838 > g (VL), g843 > t (VL)

MG272220

74 4 13 Four 1 nt-substitution with, at the 3′ end of the 3′ primer, a 
1 nt- deletion

c741 > t (VL), g837 > a (VL),  
c838 > g (VL), g843 > t (VL), a977 > del

MG272221

5, 14, 31, 34, 42, 82 1, 2, 4 1, 2, 4, 7, 14 6 Two 1 nt-substitution c720 > t (VL), t744 > c (VL) MG272223

B (10 reads) 85 2 4 2 One 1 nt-deletion c242 > del (VH) MG272216
40 2 6 One 1 nt-deletion g600 > del (VL) MG272217

77 4 13 6 One 1 nt-substitution g495 > a (linker) MG272227
22 4 14 One 1 nt-substitution t624 > c (VL) MG272224
55 3 9 One 1 nt-substitution a627 > g (VL) MG272225
62 3 10 One 1 nt-substitution g736 > a (VL) MG272226
78 4 13 One 1 nt-substitution with, at the 3′ end of the 3′ primer, a 

3 nt-deletion
t599 > g (VL), 
 t975-a977 > del (3nt)

MG272228

81 4 14 One 1 nt-substitution with, at the 5′ end of the 5′ primer, a 
1 nt-deletion, and at the 3′ end, a 19-nt primer deletion

g2 > del, a715 > g (VL), c959-a977 > del (19 nt) MG272222

84 2 5 1 Two 1 nt-insertion 209^210 > ins^a (VH), 762^763 > ins^t (VL) MG272214

9 1 2 1 One 1 nt-substitution in VH, one 2 nt-insertion + two 
1 nt-substitution in VL

c322 > t (VH), 658^659 > ins^cc  
(VL), c659 > t (VL), t660 > a (VL)

MG272215

Total: 25 Total: 25

Positions of the primers are 1–23 and 958–977. Category A: 15 P3-related reads of potential biological interest (mutations due to the VL diversity originating from the combinatorial library). Pink, green, and blue colors highlight groups 
of reads with in common identical substitution mutations. Category B: 10 P3-related reads with undefined origin of the mutations.
aMutations are described according to the IMGT Scientific chart rules (http://www.imgt.org/IMGTScientificChart/Nomenclature/IMGTmutation.html) (40). The mutations in the primers are shown in italics.

10

H
em

adou et al.
P

acB
io scFv S

equencing and IM
G

T/H
ighV-Q

U
E

S
T A

nalysis

Frontiers in Im
m

unology | w
w

w
.frontiersin.org

D
ecem

ber 2017 | Volum
e 8 | A

rticle 1796

http://www.imgt.org/IMGTScientificChart/Nomenclature/IMGTmutation.html
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


11

Hemadou et al. PacBio scFv Sequencing and IMGT/HighV-QUEST Analysis

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1796

analysis (category A in Table 4) clearly showed that they are related 
to P3. This was supported by the fact that identical mutated reads 
in the VL (in agreement with the diversity generated during the 
library construction) were obtained from different PCR samples 
and from different SMRT cells. P3 (60 reads) with its 15 related 
reads are among the top 100 most represented associated VH-VL 
domains in all the 15 data sets.

This study provides the first proof-of-concept that similar 
sequences could be tracked in phage-display selected scFv sam-
ples and their frequency determined by the number of reads. The 
favorite candidates chosen for their high frequency of enrichment 
could be rescued from these in silico data for implementation of 
downstream biological assays. This could be easily done by cus-
tom gene chemical synthesis, which offers the utmost flexibility 
and efficiency with high production yields (45).

Thus the large number of sequenced reads delivered, follow-
ing the enrichment process, could be ideally suited for a more 
extensive evaluation of antibody candidates by biological assays. 
In that way, bringing full sequence data from NGS will acceler-
ate search for identification of both the antibodies and their 
targeted biomarkers. We thus aimed to combine the sensitivity 
of the sequencing approach with the functional information 
provided by the immune assays. This in  silico approach could 
be applied to any other pathology and phage-display screening 
methodology. Resolving the issue of complete scFv sequencing 
has the potential to profoundly impact the selection process of 
antibodies with desired properties after phage display biopan-
ning with a special focus of in vivo selections. It is expected that 
this will contribute to therapeutic antibody discovery, selection 
and development.

Limitations
Scientists working on IGs are very concerned by the problems of 
sequencing errors versus mutations and of short read assembly. 
This study demonstrates that the PacBio SMRT-CCS2 method is 
able to produce reads with an accuracy of >99.9% for complete 
sequences of scFv inserts without the need of in silico VH and VL 
assembly as usually necessary using MiSeq or Ion Torrent tech-
nologies (43, 44). To assess the read quality of PacBio sequenc-
ing, we performed a pilot study using different PCR samples 
and 3 or 4 SMRT for each PCR, starting from the same AAR3 
fraction. Using the biologically validated P3 clone as a reference, 
we demonstrated that P3 clone is among the top 100 in  vivo 
selected clones with a representativity of 0.025%. Moreover, 
among the 85 P3 related sequences, 60 were 100% identical and 
15 clearly originated from the scFv phagemid combinatorial 
library. From the IMGT/V-QUEST alignment of P3 pink, blue, 
and green groups of reads with the initial P3 Sanger sequence, 
we can confidently say that 88% of reads were free of sequenc-
ing errors. However, a doubt remains for 10 of them, present in 
just one copy. The nt-deletions or nt insertions observed in VH 
and VL for six of the 10 reads could be definitively considered 
as sequencing errors. For the single substitutions observed in 
seven reads, it is obviously impossible to determine their ori-
gin. To circumvent this limitation, other technologies could be 
considered, such as inverse PCR method based on VH CDR3 
or VL CDR3 sequences (44) to synthesize these clones from the 

AAR3 fraction. Nonetheless, what is of upmost importance in 
our study is to identify over-represented clones (from the top 
100 candidates) and to proceed to the rescue of highly enriched 
scFv and not isolated clones. Indeed, during phage-display selec-
tions, the reads of greatest interest will have the greatest depth of 
coverage, having expanded in the pool and thus receiving greater 
proportional read depth.
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