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This paper describes the sequencing protocol and computational pipeline for the PGV-
001 personalized vaccine trial. PGV-001 is a therapeutic peptide vaccine targeting 
neoantigens identified from patient tumor samples. Peptides are selected by a computa-
tional pipeline that identifies mutations from tumor/normal exome sequencing and ranks 
mutant sequences by a combination of predicted Class I MHC affinity and abundance 
estimated from tumor RNA. The personalized genomic vaccine (PGV) pipeline is modular 
and consists of independently usable tools and software libraries. We hope that the 
functionality of these tools may extend beyond the specifics of the PGV-001 trial and 
enable other research groups in their own neoantigen investigations.

Keywords: neoantigens, personalized vaccine, immunoinformatics, genomics, computational pipeline

InTRoDUcTIon

Cancer neoantigens are antigens presented on tumor cells which, due to either mutation or modifica-
tion, are not presented on normal cells. Neoantigens generated by tumor DNA mutations have been 
shown to play a significant role in mediating the destruction of tumor cells by the adaptive immune 
system (1–3). Several groups have used therapeutic vaccines targeting neoantigens to clear tumors 
in murine models (4–6). Consequently, many human neoantigen vaccine trials are now under way 
and several have published promising early results (7, 8). Since very few cancer mutations are recur-
rent between patients, the identification of neoantigens requires a personalized genomic approach 
(9). We describe the sequencing protocol and immunogenomic pipeline of PGV-001, a neoantigen 
vaccine trial at the Mount Sinai Hospital (10).

The personalized genomic vaccine (PGV) computational pipeline takes tumor/normal sequenc-
ing data as an input and generates a ranked list of mutated peptide sequences. The steps along the way 
of determining a personalized vaccine’s contents are implemented as configurable independent tools.

oVeRVIeW oF The pgV-001 peRSonAlIZeD VAccIne TRIAl

PGV-001 is a phase I clinical trial at Mount Sinai Hospital, studying the safety and immunogenicity 
of a multipeptide personalized genomic vaccine for the treatment of cancers. A PGV dose consists of 
10 synthetic long peptides (11), each containing a somatic mutation from the patient’s tumor, as well 
as an immunostimulatory adjuvant: poly-ICLC (12). In the PGV-001 trial, the personalized vaccine 
is administered in the adjuvant setting, for patients who undergo a complete resection and have no 
evidence of residual disease.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01807&domain=pdf&date_stamp=2018-01-18
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01807
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:correspondence@hammerlab.org
https://doi.org/10.3389/fimmu.2017.01807
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01807/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2017.01807/full
http://loop.frontiersin.org/people/311946
http://loop.frontiersin.org/people/466251
http://loop.frontiersin.org/people/480628
http://loop.frontiersin.org/people/466142
http://loop.frontiersin.org/people/118653
http://loop.frontiersin.org/people/390651


FIgURe 2 | Schematic of bioinformatics tools used in PGV-001 pipeline.

FIgURe 1 | Overview of PGV-001 trial.
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When a new patient enrolls in the trial, their tumor and nor-
mal samples are collected and processed to isolate and sequence 
DNA and RNA. The computational pipeline of PGV-001 is then 
used to select the peptide contents of the vaccine. The major steps 
between surgery and vaccination are shown in Figure 1, whereas 
details of the computational pipeline are shown in Figure 2.

The candidate vaccine peptides generated by the computa-
tional pipeline are ranked by abundance and predicted MHC 

affinity, which both contribute to immunogenicity. The manufac-
turer attempts to synthesize the top 15 ranked candidate peptide 
sequences and delivers 10 lyophilized peptides which they are 
able to purify to sufficient quality and quantity. The peptides 
are dissolved in DMSO and mixed with poly-ICLC immediately 
before use. The personalized vaccine is administered as an intra-
cutaneous injection and is given to the patient 10 times over a 
span of 6 months.
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SeQUencIng pRoTocol FoR DnA  
AnD RnA

The sequencing protocols used for both DNA and RNA can 
dramatically affect the sensitivity of variant detection, and thus 
ultimately change the results of the vaccine pipeline. The larg-
est determinants of sensitivity are the sample quality, method 
of sequencing library preparation, and quantity of sequenced 
reads. Whenever possible, PGV uses fresh frozen tumor tissue 
samples, which results in significantly improved variant detec-
tion accuracy as compared with sequencing of formalin-fixed 
(FFPE) samples (13). An additional benefit of using fresh frozen 
samples is that mRNA can be enriched using poly-A capture, 
whereas the fragmented RNA of FFPE samples can only be 
prepared with less efficient methods such as ribosomal depletion 
(14). For patients with solid tumors, normal DNA is extracted 
from peripheral blood rather than potentially contaminated 
adjacent tissue (15).

Fragmentation by sonication was preferred to transposase-
based methods (16) due to significant sequence bias, leading 
to lost coverage after marking duplicate reads (17). Among the 
exome enrichment techniques which use sonication, we chose 
Agilent’s SureSelect XT kit due to its efficient rate of capturing 
on-target reads (18).

We chose to target 150× mean coverage for the normal DNA 
(exome) sequencing since this was found to be the point of 
diminishing sensitivity across different variant calling pipelines 
(19). Several of the cancer types allowed in the PGV-001 trial 
(particularly lung and head/neck cancers) have been shown to 
result in systematically low purity samples (20). To accommodate 
a significant degree of non-cancerous DNA, we assume 50% 
tumor purity and consequently target 300× exome coverage for 
the tumor DNA sample.

A final consideration is the choice of read length, which does 
not significantly impact variant discovery from DNA but does 
impact variant phasing in RNA. Since a 25mer vaccine peptide is 
translated from 75 bp of coding sequence, PGV could theoreti-
cally use any read length above that minimum. To allow for many 
distinct aligned positions overlapping the same region of coding 
sequence, the PGV protocol uses 125-bp reads. These provide a 
good compromise between length and base quality on the HiSeq 
2500 instrument.

oVeRVIeW oF The coMpUTATIonAl 
pIpelIne

The inputs to the computational pipeline are unmapped sequenc-
ing data from tumor DNA, tumor RNA, and normal patient DNA. 
The tumor and normal DNA samples are aligned against the 
human GRCh37 reference genome using BWA-MEM (21). The 
tumor RNA is aligned using STAR (22), which has been found 
to have particularly high sensitivity for detecting indel variants 
(23). Both DNA and RNA alignment files are processed accord-
ing to GATK Best Practices (24). One noteworthy deviation from 
the standard GATK pipeline is our use of assembly based indel  
realignment on tumor RNA data (in addition to the DNA 

samples). This is done to improve the sensitivity of detecting RNA 
reads which support indel somatic variants.

Somatic Variant calling
Somatic variant calling is performed using MuTect (25) and 
Strelka (26), whose results are combined by taking a union of 
called variants. In cases where the final pipeline yields an insuf-
ficient number of vaccine peptides (fewer than 15), we rerun the 
pipeline including MuTect2 among the set of variant callers to 
increase sensitivity.

hlA Typing
To make predictions about epitope presentation to T-cells, it is 
necessary to know the patient’s HLA type. This can be deter-
mined computationally from exome or bulk RNA sequencing 
or validated externally using HLA-specific amplicon sequencing 
(27). The PGV pipeline currently uses seq2hla (28) for HLA typ-
ing from tumor RNA while also using amplicon sequencing of 
normal DNA for validation. Across 10 patients, the two methods 
have only disagreed on a single allele, where HLA-C*07:02 was 
mistyped as HLA-C*07:01. This high degree of concordance 
matches our previous experience with HLA typing of fresh 
frozen tissue samples; formalin-fixed tissue is more likely to give 
discordant results between different sequencing methods.

Vaccine peptide Selection
The bulk of the custom software developed for this trial is related 
to vaccine peptide selection. The results of the above steps are a set 
of somatic variants, aligned tumor RNA reads, and the patient’s 
HLA type. These data are then used to determine mutant protein 
sequences, estimate mutation abundance, predict MHC ligands 
overlapping mutations, and finally to generate a ranked list of 
candidate vaccine peptides.

Some of the tools used in vaccine peptide selection include:

• Vaxrank (29): overall vaccine selection tool with ranking logic.
• Isovar (30): determines mutant protein sequence from somatic 

variants and tumor RNA.
• Varcode (31): predicts variant effects for filtering out silent 

mutations.
• PyEnsembl (32): provides reference genome annotations that 

are used by Varcode to determine exon boundaries and tran-
script sequences.

• MHCtools (33): common interface to peptide–MHC-binding 
predictors.

Due to their importance, Isovar and Vaxrank are both 
described in greater detail in the following two sections.

ISoVAR: DeTeRMInIng The MUTAnT 
pRoTeIn SeQUence

There are several different software packages that predict the 
protein-level effect of a coding mutation (31, 34, 35). However, 
for the purposes of selecting a vaccine peptide’s sequence, it 
is not sufficient to predict a DNA mutation’s protein effect 
without considering the transcripts in which it occurs. A 
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FIgURe 3 | Overview of Isovar algorithm for determining mutant protein 
sequences.

FIgURe 4 | Schematic representation of a somatic mutation co-occurring with a germline mutation.
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somatic mutation can be associated with selective splicing  
of particular RNA isoforms (36) and can also cooccur with 
other genomic variants. Thus, in the PGV pipeline, the tumor 
RNA sequencing data are also used to determine a mutant 
coding sequence.

For each mutation, it is possible to infer multiple coding 
sequences from supporting RNA reads due to sequencing error, 
splicing diversity, and tumor heterogeneity. To account for these 
potentially complicating factors, we developed a tool called Isovar 
(30), which can be downloaded from https://github.com/ham-
merlab/isovar. Isovar uses RNA to assemble the most abundant 
coding sequence for each mutation. An overview of the algorithm 
is given in Figure 3.

One advantage of using RNA to determine the coding sequence 
is that it phases adjacent (germline or somatic) variants. Examples 
of the impact of adjacent variants on a coding sequence are shown 
in Figures 4 and 5. A further advantage is that Isovar, by using 
mutation-supporting RNA reads to determine each mutant 
protein sequence, naturally estimates allele-specific expression. 
If the PGV pipeline, on the other hand, used bulk expression it 
would potentially overestimate how much of a mutant protein is 
being made. In an extreme case, all of the RNA reads aligning to 

a particular gene could be wild type, with none supporting the 
somatic variant of interest.

VAXRAnK: VAccIne pepTIDe SelecTIon

Once we have determined the amino acid sequences containing 
somatic mutations and estimated their abundance in the tumor, 
the final step is to rank them according to desirability of inclusion 
in personalized vaccine.

There are many potential correlates of immunogenicity that 
can be used to prioritize neoantigens, such as expression, MHC-
binding affinity, peptide–MHC complex stability, proteasomal 
cleavage, and other antigen-processing steps. Of those, the PGV 
pipeline optimizes for high expression and predicted strong Class 
I MHC binding. There are several published computational pre-
dictors of Class I MHC-binding affinity which have demonstrated 
high accuracy (37–39). PGV uses NetMHCpan (37) due to its 
extensive coverage of patient alleles.

The final ranking of candidate vaccine peptides according to 
predicted MHC binding and expression is performed by a tool 
called Vaxrank (29). Vaxrank identifies high-affinity mutant 
MHC ligands within each peptide and combines these predic-
tions into a single MHC-binding score. This score is then scaled 
according to the expression of that mutation in the tumor. The 
formula for computing these MHC and expression scores is given 
in Figure 6. The scale and offset for MHC affinity normalization 
was determined by a logistic fit of affinity versus immunogenicity 
from the dataset used to determine the classical 500-nM affinity 
threshold (40). There is no rigorous justification for the multi-
plicative scoring function, other than the intuition that epitope 
abundance and MHC affinity are independent prerequisites for 
immunogenicity.

Since some peptides cannot be manufactured using solid-
phase synthesis, our vaccine peptide selection algorithm includes 
manufacturability heuristics, such as minimization of cysteine 
content.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
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FIgURe 6 | TotalScore used to rank somatic variants in a way that attempts 
to balance predict MHC binding and abundance. ExpressionScore uses read 
count (instead of a normalized measure like FPKM) since these scoring 
criteria are not meant to be compared between patient samples. 
BindingScore sums normalized binding affinities of mutant peptides across all 
patient alleles and lengths between 8 and 11.

FIgURe 5 | Screenshot from IGV with tumor DNA on top and tumor RNA on bottom. The two somatic variants from patient data 7 amino acids apart. If these 
mutations were considered without phasing, we would get two different vaccine peptides, neither of which would match the protein sequence produced by tumor cells.
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Vaxrank can be downloaded from https://github.com/
hammerlab/vaxrank.

epIDISco: pARAllel IMpleMenTATIon 
oF The pgV pIpelIne

The workflow management tool that orchestrates the execution 
of the PGV pipeline is called Epidisco (41). Epidisco is used to 
set up a local or cluster compute environment, install all relevant 
bioinformatics tools (external software such as GATK, as well as 
our own tools including Isovar and Vaxrank), and coordinate the 
execution of these different tools on the input data.

Epidisco accelerates portions of the genomics pipeline on two 
levels. Independent computational tasks such as QC checks, the 

processing of the RNA-sequencing data, and the joint analyses of 
the normal-tumor DNA-sequencing data are all run in parallel. 
Within the invocation of each tool, when possible, sequencing 
data are split into multiple segments, partial results are computed 
in parallel and then merged.

Epidisco supports local computation, traditional HPC sched-
ulers such as LSF, and cloud-based resources from Google Cloud 
and AWS. On a typical machine, running the complete PGV 
pipeline for a single patient can take up to 4 days; but making use 
of five or more computers for parallelization reduces the overall 
running time down to a single day.

Epidisco also makes the PGV pipeline tolerant to failures of 
intermediate steps and allows resuming the pipeline from the 
point of failure with a simple restart request. By handling such 
failures in an automated way, carrying out cleaning procedures, 
and restarting only the tasks that need to be rerun, the workflow 
makes it easier for researchers to operate such complex compu-
tational tasks. Epidisco provides command line and web-based 
utilities to facilitate starting a new workflow, collecting the results, 
and troubleshooting specific parts of a pipeline.

The individual infrastructure tools used by the PGV pipeline 
are implemented as an OCaml stack and include:

• Ketrew: custom workflow manager who handles dependency 
management, parallelization, and smart restarts of failed tasks.

• Biokepi: wraps bioinformatics tools so they can be used with 
Ketrew and statically ensures the absence of common mistakes 
during pipeline construction.

• Secotrec: cluster management tool that allows deployment on 
cloud services such as the Google Cloud Platform and Amazon 
Web Services.

• Epidisco: the actual implementation of the PGV-001 pipeline.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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DIScUSSIon

The PGV pipeline is a modular, highly configurable, freely 
available method for selecting the contents of a therapeutic 
neoantigen vaccine. The PGV pipeline has been used to predict 
vaccine peptides for several mouse models (LLC, B16 F1/F10), 
five “dry run” patients whose samples were processed according 
to the PGV protocol but did not participate in the trial, and five 
patients who were being considered for enrollment in the trial. 
Of the patients eligible for enrollment, one has been treated so 
far and another enrolled. The remainder did not enroll due to 
progression of disease or low-quality tumor samples.

Several other groups have released pipelines for neoantigen 
vaccine prediction, most notably pVAC-seq (42) and MuPeXI 
(43). A deep comparison between neoantigen pipelines likely 
requires evaluating T-cell response and antitumor activity after 
vaccination, which is beyond the scope of this paper. There are, 
however, a few obvious differences between the PGV pipeline and 
others which have been published:

• Modularity: the PGV pipeline has been developed as a 
collection of flexible standalone tools, rather than a single 
monolithic script. These tools can be repurposed for other 
immunogenomics analyses and have already been used for 
retrospective analyses of checkpoint blockade clinical trials 
(44).

• Inputs are FASTQ files: MuPeXI and pVAC-seq both require the 
implementation of separate genomics pipeline to infer patient 
HLA type, call somatic variants, and quantify expression. The 
PGV pipeline, by contrast, is self-contained in the sense that its 
inputs are raw FASTQ files and its outputs are vaccine peptide 
predictions.

• Dependence on tumor RNA: the PGV pipeline relies on tumor 
RNA reads to determine the mutant protein coding sequence. 
MuPeXI and pVAC-seq, by contrast, only consider expression 
data after predicting a mutant protein sequence from a variant 
in isolation. PGV’s approach has potential benefits in captur-
ing altered patterns of splicing and phasing somatic variants 
with other nearby variants. These potential benefits, however, 
have yet to be evaluated systematically.

• Liberal software license: all of the software components that 
comprise the PGV pipeline are freely available under the 
Apache software license. MuPeXI does not yet appear to have 
a fully open source license, while pVAC-seq uses the more 
restrictive non-profit open software license.

• Optimization of peptide sequence for solid-phase synthesis: 
PGV appears to be unique among freely available neoantigen 
pipelines in attempting to choose peptides whose sequence 
content is more likely to be successfully manufactured. We 
have found this to be an important step, especially when using 
longer peptides, due to the significant delays introduced by 
failed synthesis or purification attempts.

The PGV-001 trial is the first in a series of planned neoantigen 
vaccine investigations. Several improvements to the PGV pipe-
line are planned, including the use of genomic fusions and other 
structural variants as neoantigen sources, clonality as a consid-
eration for variant prioritization, and additional immunological 
predictions such as proteasomal cleavage and Class II MHC bind-
ing. As immune response data from ongoing preclinical work 
and PGV-001 becomes available, our method for combining 
correlates of immunogenicity into a single ranking will require 
extensive evaluation.

AUThoR conTRIBUTIonS

The first draft of this paper was originally written by IH and 
substantially revised by AR and JK. Genomics and immuno-
informatics tools were implemented by AR, JK, and other lab 
members. The workflow libraries were written mostly by SM. 
The actual pipeline (connecting all the individual tools and run-
ning them in parallel) was written mostly by IH with help from 
BA. The overall design of the software was determined through 
extensive conversation with JH. The PGV trial was designed by 
NB, JF, AR, and several others in the Bhardwaj lab.

FUnDIng

This work is partially funded by the Parker Institute for Cancer 
Immunotherapy.

ReFeRenceS

1. Fritsch EF, Rajasagi M, Ott PA, Brusic V, Hacohen N, Wu CJ. HLA-binding 
properties of tumor neoepitopes in humans. Cancer Immunol Res (2014) 
2:522–9. doi:10.1158/2326-6066.CIR-13-0227 

2. Finnigan  JP Jr, Rubinsteyn A, Hammerbacher J, Bhardwaj N. Mutation-
derived tumor antigens: novel targets in cancer immunotherapy. Oncology 
(2015) 29:970–2, 974–5. 

3. Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occur-
ring and therapeutically induced immune responses to cancer. Adv Immunol 
(2016) 130:25–74. doi:10.1016/bs.ai.2016.01.001 

4. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et  al. 
Checkpoint blockade cancer immunotherapy targets tumour-specific mutant 
antigens. Nature (2014) 515:577–81. doi:10.1038/nature13988 

5. Castle JC, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, 
et  al. Exploiting the mutanome for tumor vaccination. Cancer Res (2012) 
72:1081–91. doi:10.1158/0008-5472.CAN-11-3722 

6. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, et al. 
Predicting immunogenic tumour mutations by combining mass spectrometry 
and exome sequencing. Nature (2014) 515:572–6. doi:10.1038/nature14001 

7. Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al. 
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic 
immunity against cancer. Nature (2017) 547:222–6. doi:10.1038/nature23003 

8. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic 
personal neoantigen vaccine for patients with melanoma. Nature (2017) 
547:217–21. doi:10.1038/nature22991 

9. Hartmaier RJ, Charo J, Fabrizio D, Goldberg ME, Albacker LA, Pao W, et al. 
Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness 
and targeted cancer immunotherapy strategies. Genome Med (2017) 9:16. 
doi:10.1186/s13073-017-0408-2 

10. Kyi C, Sabado RL, Blazquez A, Posner MR, Genden EM, Miles BA, et al. A 
phase I study of the safety and immunogenicity of a multipeptide personalized 
genomic vaccine in the adjuvant treatment of solid cancers. J Clin Orthod 
(2017) 35:TS3114–3114. doi:10.1200/JCO.2017.35.15_suppl.TPS3114 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1158/2326-6066.CIR-13-0227
https://doi.org/10.1016/bs.ai.2016.01.001
https://doi.org/10.1038/nature13988
https://doi.org/10.1158/0008-5472.CAN-11-3722
https://doi.org/10.1038/nature14001
https://doi.org/10.1038/
nature23003
https://doi.org/10.1038/nature22991
https://doi.org/10.1186/s13073-017-0408-2
https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS3114


7

Rubinsteyn et al. Computational Pipeline for PGV-001

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1807

11. Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, 
et al. Dendritic cells process synthetic long peptides better than whole protein, 
improving antigen presentation and T-cell activation. Eur J Immunol (2013) 
43:2554–65. doi:10.1002/eji.201343324 

12. Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E,  
et  al. Poly(I:C) as cancer vaccine adjuvant: knocking on the door of med-
ical breakthroughs. Pharmacol Ther (2015) 146:120–31. doi:10.1016/j.
pharmthera.2014.09.010 

13. Oh E, Choi Y-L, Kwon MJ, Kim RN, Kim YJ, Song J-Y, et al. Comparison of 
accuracy of whole-exome sequencing with formalin-fixed paraffin-embedded 
and fresh frozen tissue samples. PLoS One (2015) 10:e0144162. doi:10.1371/
journal.pone.0144162 

14. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison 
of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA 
microarray for expression profiling. BMC Genomics (2014) 15:419. 
doi:10.1186/1471-2164-15-419 

15. Wei L, Papanicolau-Sengos A, Liu S, Wang J, Conroy JM, Glenn ST, et  al. 
Pitfalls of improperly procured adjacent non-neoplastic tissue for somatic 
mutation analysis using next-generation sequencing. BMC Med Genomics 
(2016) 9:64. doi:10.1186/s12920-016-0226-1 

16. Adey A, Morrison HG, Asan, Xun X, Kitzman JO, Turner EH, et al. Rapid, 
low-input, low-bias construction of shotgun fragment libraries by high- 
density in  vitro transposition. Genome Biol (2010) 11:R119. doi:10.1186/
gb-2010-11-12-r119 

17. García-García G, Baux D, Faugère V, Moclyn M, Koenig M, Claustres M, et al. 
Assessment of the latest NGS enrichment capture methods in clinical context. 
Sci Rep (2016) 6:20948. doi:10.1038/srep20948 

18. Shigemizu D, Momozawa Y, Abe T, Morizono T, Boroevich KA, Takata S, et al. 
Performance comparison of four commercial human whole-exome capture 
platforms. Sci Rep (2015) 5:12742. doi:10.1038/srep12742 

19. Cornish A, Guda C. A comparison of variant calling pipelines using 
genome in a bottle as a reference. Biomed Res Int (2015) 2015:456479. 
doi:10.1155/2015/456479 

20. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. 
Nat Commun (2015) 6:8971. doi:10.1038/ncomms9971 

21. Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs 
with BWA-MEM. arXiv [q-bio.GN] (2013). Available from: http://arxiv.org/
abs/1303.3997

22. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et  al. 
STAR: ultrafast universal RNA-seq aligner. Bioinformatics (2013) 29:15–21. 
doi:10.1093/bioinformatics/bts635 

23. Sun Z, Bhagwate A, Prodduturi N, Yang P, Kocher J-PA. Indel detection 
from RNA-seq data: tool evaluation and strategies for accurate detection of 
actionable mutations. Brief Bioinform (2016) 18:973–83. doi:10.1093/bib/ 
bbw069 

24. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-
Moonshine A, et  al. From FastQ data to high confidence variant calls: the 
Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 
(2013) 43:11.10.1–33. doi:10.1002/0471250953.bi1110s43 

25. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. 
Sensitive detection of somatic point mutations in impure and heterogeneous 
cancer samples. Nat Biotechnol (2013) 31:213–9. doi:10.1038/nbt.2514 

26. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: 
accurate somatic small-variant calling from sequenced tumor-normal sample 
pairs. Bioinformatics (2012) 28:1811–7. doi:10.1093/bioinformatics/bts271 

27. Cereb N, Kim HR, Ryu J, Yang SY. Advances in DNA sequencing technologies 
for high resolution HLA typing. Hum Immunol (2015) 76:923–7. doi:10.1016/j.
humimm.2015.09.015 

28. Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V, et al. HLA 
typing from RNA-Seq sequence reads. Genome Med (2012) 4:102. doi:10.1186/
gm403 

29. Rubinsteyn A, Hodes I, Kodysh J, Hammerbacher J. Vaxrank: A Computational 
Tool for Designing Personalized Cancer Vaccines. bioRxiv 142919 (2017) 
142919. Available from: http://biorxiv.org/content/early/2017/05/27/142919.
abstract

30. Rubinsteyn A, Kodysh J, Aksoy BA. hammerlab/isovar: Version 0.7.0 (2017). 
doi:10.5281/zenodo.821224

31. Rubinsteyn A, O’Donnell T, Nathanson T, Ahuja A, Kodysh J, Aksoy BA, et al. 
hammerlab/varcode: Version 0.5.15 (2017). doi:10.5281/zenodo.822503

32. Rubinsteyn A, Nathanson T, Kodysh J, O’Donnell T, Ahuja A, Hammerbacher J, 
et al. hammerlab/pyensembl: Version 1.1.0 (2017). doi:10.5281/zenodo.822502

33. Rubinsteyn A, Nathanson T, Kodysh J, O’Donnell T, Ahuja A, Damaraju N. 
hammerlab/mhctools: Version 1.5.0 (2017). doi:10.5281/zenodo.822504

34. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program 
for annotating and predicting the effects of single nucleotide polymorphisms, 
SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; 
iso-3. Fly (2012) 6:80–92. doi:10.4161/fly.19695 

35. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic 
variants from high-throughput sequencing data. Nucleic Acids Res (2010) 
38:e164. doi:10.1093/nar/gkq603 

36. Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA 
splicing in cancer; expression changes and driver mutations of splicing factor 
genes. Oncogene (2016) 35:2413–27. doi:10.1038/onc.2015.318 

37. Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a 
method for MHC class I binding prediction beyond humans. Immunogenetics 
(2009) 61:1–13. doi:10.1007/s00251-008-0341-z 

38. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. 
NetMHC-3.0: accurate web accessible predictions of human, mouse and 
monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 
(2008) 36:W509–12. doi:10.1093/nar/gkn202 

39. Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consen-
sus method for the major histocompatibility complex class I predictions. 
Immunogenetics (2012) 64:177–86. doi:10.1007/s00251-011-0579-8 

40. Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, et al. The 
relationship between class I binding affinity and immunogenicity of potential 
cytotoxic T cell epitopes. J Immunol (1994) 153:5586–92. 

41. Mondet S, Aksoy BA, Rozenberg L, Hodes I, Hammerbacher J. Bioinformatics 
Workflow Management with the Wobidisco Ecosystem. bioRxiv 213884 
(2017) 213884. doi:10.1101/213884

42. Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, et al. 
pVAC-Seq: a genome-guided in silico approach to identifying tumor neoanti-
gens. Genome Med (2016) 8:11. doi:10.1186/s13073-016-0264-5 

43. Bjerregaard A-M, Nielsen M, Hadrup SR, Szallasi Z, Eklund AC. MuPeXI: 
prediction of neo-epitopes from tumor sequencing data. Cancer Immunol 
Immunother (2017). doi:10.1007/s00262-017-2001-3 

44. Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD, 
et al. Contribution of systemic and somatic factors to clinical response and 
resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic 
analysis. PLoS Med (2017) 14:e1002309. doi:10.1371/journal.pmed.1002309 

Conflict of Interest Statement: The authors declare that the research was  
conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The reviewer BS and handling editor declared their shared affiliation.

Copyright © 2018 Rubinsteyn, Kodysh, Hodes, Mondet, Aksoy, Finnigan, Bhardwaj 
and Hammerbacher. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are 
credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which 
does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1002/eji.201343324
https://doi.org/10.1016/j.pharmthera.2014.09.010
https://doi.org/10.1016/j.pharmthera.2014.09.010
https://doi.org/10.1371/journal.pone.0144162
https://doi.org/10.1371/journal.pone.0144162
https://doi.org/10.1186/1471-2164-15-419
https://doi.org/10.1186/s12920-016-0226-1
https://doi.org/10.1186/gb-2010-11-12-r119
https://doi.org/10.1186/gb-2010-11-12-r119
https://doi.org/10.1038/srep20948
https://doi.org/10.1038/srep12742
https://doi.org/10.1155/2015/456479
https://doi.org/10.1038/ncomms9971
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bib/bbw069
https://doi.org/10.1093/bib/bbw069
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1093/bioinformatics/bts271
https://doi.org/10.1016/j.humimm.2015.09.015
https://doi.org/10.1016/j.humimm.2015.09.015
https://doi.org/10.1186/gm403
https://doi.org/10.1186/gm403
http://biorxiv.org/content/early/2017/05/27/142919.abstract
http://biorxiv.org/content/early/2017/05/27/142919.abstract
https://doi.org/10.5281/zenodo.821224
https://doi.org/10.5281/zenodo.822503
https://doi.org/10.5281/zenodo.822502
https://doi.org/10.5281/zenodo.822504
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1038/onc.2015.318
https://doi.org/10.1007/s00251-008-0341-z
https://doi.org/10.1093/nar/gkn202
https://doi.org/10.1007/s00251-011-0579-8
https://doi.org/10.1101/213884
https://doi.org/10.1186/s13073-016-0264-5
https://doi.org/10.1007/s00262-017-2001-3
https://doi.org/10.1371/journal.pmed.1002309
http://creativecommons.org/licenses/by/4.0/

	Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial
	Introduction
	Overview of the PGV-001 Personalized Vaccine Trial
	Sequencing Protocol for DNA and RNA
	Overview of the Computational Pipeline
	Somatic Variant Calling
	HLA Typing
	Vaccine Peptide Selection

	Isovar: Determining the Mutant Protein Sequence
	Vaxrank: Vaccine Peptide Selection
	Epidisco: Parallel Implementation of the PGV Pipeline
	Discussion
	Author Contributions
	Funding
	References


