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T cells are pivotal in immunity and immunopathology. After activation, T cells undergo 
a clonal expansion and differentiation followed by a contraction phase, once the 
pathogen has been cleared. Cell survival and cell death are critical for controlling the 
numbers of naïve T cells, effector, and memory T cells. While naïve T cell survival has 
been studied for a long time, more effort has gone into understanding the survival and 
death of activated T cells. Despite this effort, there is still much to be learnt about T cell 
survival, as T cells transition from naïve to effector to memory. One key advance is the 
development of inhibitors that may allow the temporal study of survival mechanisms 
operating in these distinct cell states. Naïve T cells were highly reliant on BCL-2 and 
sensitive to BCL-2 inhibition. Activated T cells are remarkably different in their regulation 
of apoptosis by pro- and antiapoptotic members of the BCL-2 family, rendering them 
differentially sensitive to antagonists blocking the function of one or more members of 
this family. Recent progress in understanding other programmed cell death mecha-
nisms, especially necroptosis, suggests a unique role for alternative pathways in regu-
lating death of activated T cells. Furthermore, we highlight a mechanism of epigenetic 
regulation of cell survival unique to activated T cells. Together, we present an update of 
our current understanding of the survival requirement of activated T cells.
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inTRODUCTiOn

Death is fundamental to cellular development and response, with immune cells no exception. 
It facilitates the selection and retention of desirable clonotypes, while ridding the population of 
superfluous or often harmful cells. As T cells only become functional upon activation, understand-
ing the control and transition of survival mechanisms in naive, activated and memory T cells is 
crucial to our ability to harness T cell responses or limit pathology in situations where destructive 
T cells survive. Although the control of naïve T cell survival has been mostly resolved, how activated 
T cells regulate their survival is less well understood, despite thorough investigation. In this review, 
the contribution of several cell death pathways to the life and death of activated T cells will be 
discussed.

T  cells consist of many subtypes including TCRαβ-bearing conventional T  cells, Treg cells, 
TCRγδ T cells, and T cells expressing invariant or semi-invariant TCR chains (such as NKT cells 
and MAIT cells). Most of our current understanding of T cell survival has largely been focused 
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FigURe 1 | Principal pathways of cell death. Apoptosis comprises of the intrinsic and extrinsic pathway. In the intrinsic pathway, cells sense stress signals, leading 
to upregulation and activation of BH3 proteins. When antiapoptotic molecules that normally bind and keep BH3 proteins and/or BAX/BAK in check are displaced, 
BH3 proteins will trigger activation of BAX and BAK. BAX/BAK then mediate cytochrome c release from the mitochondrial outer membrane to the cytosol, activating 
Caspase-9 and downstream caspases leading to cell demise. In the extrinsic pathway, extracellular ligands engage cell death receptors, leading to formation of the 
death-inducing signaling complex (DISC) with the adaptor protein Fas-associated death domain protein (FADD) and pro-caspase 8, leading to activation of caspase 
8 and subsequent activation of effector caspases and apoptosis. In this pathway, c-FLIP acts as a negative regulator. c-FLIP is structurally highly similar to 
procaspase-8 but lacks catalytic activity, thus outcompetes caspase 8 binding blunting the death-inducing signal. When extrinsic apoptosis in inhibited (Caspase 8 
deficiency, caspase inhibition, and high c-FLIP expression), engagement of death ligand can initiate necroptosis that involves activation of the necroptosome 
comprising RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL). Pytoptosis is a type of cell death initiated from activation of several Caspases that cleave 
IL-1β and IL-18. A downstream molecule Gasdermin is critical for cell death by pyroptosis. Autophagy promotes proteolytic degradation of mitochondria and other 
cytosolic components at the lysosome. It can promote survival or diminish survival depending on degraded molecules. BCL-2 family members with antiapoptotic 
and proapoptotic molecules can interact with upstream autophagy signaling molecules.
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on two types of TCRαβ-bearing T cells: conventional CD4+ and 
CD8+ T  cells. After development in the thymus, conventional 
T cells exist in naïve form. Upon activation, they undergo clonal 
expansion and gain different effector functions. A small fraction 
of activated cells become long-lived memory cells. It has been 
appreciated for a long time that naïve T cells and activated T cells 
differ in their survival program (1, 2). In this section, we will 
discuss the findings from recent studies investigating the role of 
pro- and antiapoptotic molecules in activated T cells by analysis 
of their expression patterns, the use of selective inhibitors, and 
the genetic deletion of genes in these cell death pathways. The 
use of selective antagonists offers several advantages. First, they 
allow quantitative dissection of the contributions of individual 
antiapoptotic molecules. Second, they allow us to separate the 
developmental or precursor effects from direct effects in the 
activated cells. The inhibitor approach is particularly useful for 
the in  vitro dissection of survival requirements of T  cells. This 
approach can also be used for dissection of in  vivo survival 
requirement of T cells. However, the in vivo application can be 
complicated by effects of antagonists on cells other than T cells, 
which in turn influence T cell survival. Third, and perhaps most 
importantly, they may have the therapeutic potential for curtail-
ing unwanted T-cell responses.

BCL-2 inTRinSiC PATHwAY OF 
APOPTOSiS

The BCL-2 family can be separated into three groups, the pro-
survival molecules BCL-2, BCL-XL, BCL-W, MCL-1, and A1/
BFL1; the group of BH3-only pro-apoptotic molecules BID, BIM, 
PUMA/BBC3, BAD, NOXA/PMAIP, BIK/BLK/NBK, BMF, and 
HRK/DP5; and the pro-apoptotic “effectors” BAX and BAK (3) 
(Figure 1). The interplay of these molecules is a finely orchestrated 
system. As antiapoptotic proteins sequester BH3 proteins that 
initiate apoptosis, BH3 proteins require BAX/BAK for apoptosis 
induction as multiple BH3 proteins fail to induce apoptosis in 
BAX−/−/BAK−/− system while reintroduction of BAX restores the 
ability of BH3 proteins to induce apoptosis (4, 5). When BH3 
protein function becomes dominant, the pro-apoptotic “effec-
tors” proteins BAX and BAK will permeabilize the mitochondrial 
outer membrane, leading to cytochrome c release into the cytosol 
to assemble with APAF-1 and pro-caspase 9 to form the apopto-
some, followed by the activation of effector caspases. Our most 
recent studies suggest that immune cell survival is controlled by 
the quantitative participation of multiple antiapoptotic proteins 
(6). Nevertheless, their contribution to T cell survival is not equal, 
probably related to their dynamic regulation of expression and 
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lifespan. Below we will discuss the BCL-2 antiapoptotic molecules 
separately.

BCL-2
BCL-2 is the prototype of BCL-2 family members and has been 
the most extensively studied. Overexpression of BCL-2 delays 
T-cell death (7, 8) while BCL-2 deficiency reduced T-cell survival 
(9, 10). Survival of naïve T cells mediated by BCL-2 was largely 
dependent on IL-7 as BCL-2 rescued the severe defect in T cells 
in IL-7R-deficient mice (11, 12). Naive T cells almost exclusively 
express BCL-2 and are heavily dependent on BCL-2 for survival 
since they show high sensitivity to BCL-2 antagonist ABT-199 
(6). Similar findings have also been derived from earlier stud-
ies with ABT-737, an inhibitor with a broader binding activity 
to BCL-2, BCL-xL, and BCL-w (13–17). It is evident from these 
studies that activated T  cells including effector and memory 
T  cells are less sensitive to the inhibitor when compared to 
naïve T  cells. However, there are some variations in sensitivity 
between activated CD4+ and CD8+ T cells. Compared to CD4+ 
T cells, CD8+ memory T cells are relatively sensitive to BCL-2 
inhibition with ABT-737 (14–16). However, ABT-737 killed only 
a relatively minor fraction of CD8+ OT-1 T cells under optimal 
stimulation in vitro (18). As for CD4+ T cells, it is also revealed 
that Th1 memory cells are long-lived while Th17 cells are short-
lived, probably related to their lower expression of BCL-2 (19).  
It remains to be determined whether functionally different T cells 
show differential survival requirements for BCL-2. A simple 
interpretation regarding different sensitivity to BCL-2 antagonist 
by naïve and activated T cells is that T cells alter their survival 
program when T  cells get activated. They downregulate their 
BCL-2 sensitivity while at the same time upregulate A1, BCL-xL 
and MCL-1 (18, 20, 21). This in turn may lead to a higher resist-
ance to BCL-2 inhibitors in vitro and in vivo.

BCL-xL and BCL-w
It had been shown that genetic elimination of BCL-xL in the 
mouse reduces the survival of double-positive thymocytes but not 
the survival of single-positive thymocytes in culture or peripheral 
T cells in vivo (22). Early studies demonstrated that BCL-xL was 
an activation-upregulated antiapoptotic molecule promoting 
survival of activated T cells and memory T cells (23, 24); however, 
more recent studies have shown that BCL-xL is dispensable for 
the generation of effector and memory T  cells (25). Recently, 
highly selective BCL-xL inhibitors have been developed (26), but 
have shown minimal T-cell killing ability (unpublished). BCL-w 
is less studied, although it can be expressed by some subsets of 
T  cells (27). The similarity of action on T  cells between ABT-
737 (antagonizing BCL-2, BCL-xL, and BCL-w) and the BCL-2 
specific ABT-199 suggests that BCL-w has little impact on T cell 
survival (6, 15). No T cell defects have been documented in BCL-
w-deficient mice (28).

MCL-1
As global deletion of MCL-1 in mice led to embryonic lethality 
(29), conditional deletion of MCL-1 has been adopted to examine 
its contribution to T-cell development and survival (30). It has been 
shown that the development and maintenance of T cells requires 

MCL-1, implying that MCL-1 is also important for the survival of 
naïve T cells (30). These findings are also supported by the char-
acterization of mice with MCL-1 haplodeficiency (6). Conversely, 
overexpression of MCL-1 can promote T  cell development and 
survival (6, 31). Even for developing T cells, MCL-1 seems to have 
a unique role in supporting T cell development, as the develop-
mental defects arising from deletion of MCL-1 can be partially 
rescued by BAK deficiency but not by BAX deficiency or over-
expression of BCL-2 (32). During activation, MCL-1, along with 
A1 and BCL-xL show elevated expression in T cells (18, 21). In a 
system of inducible deletion of MCL-1, Mx1Cre-induced deletion 
of Mcl-1 led to massive loss of antigen-specific T cells in LCMV-
infected mice (21). Notably, loss of activated T cells with MCL-1 
deletion could be rescued with concomitant loss of BAX and BAK 
but not BIM (21). In contrast, BIM deficiency could rescue T cell 
defect caused by BCL-2 deficiency (13). Considering that activated 
T cells expressed not only BIM but also PUMA and NOXA (21), 
perhaps multiple BH3 proteins participate to regulate cell death. 
At least in vitro, stimulated human T cells seem to depend on the 
MCL-1/NOXA axis for survival (33). The recent development of 
the selective MCL-1 inhibitor (34) also allows timely dissection 
of MCL-1 contribution to T cell death in vitro (6). It could induce 
significant death of T  cells (6). Together with revelation of the 
importance of MCL-1 in regulating Treg cell survival (35), MCL-1 
is a key antiapoptotic molecule for T cell survival.

A1
A1 was initially identified as a GM-CSF regulated pro-survival 
gene and its expression restricted to the hematopoietic system 
(36). In T cells, A1 is largely only induced upon TCR stimulation 
(18, 37). Several studies have demonstrated an association of A1 
upregulation with enhanced T cell survival (38, 39). Due to the 
quadruplication of A1 genes in mice, mice with a full deletion 
of A1 genes only recently became available, allowing for a direct 
assessment of A1’s contribution to T  cell survival. Somewhat 
surprisingly, A1 deficiency has a relatively minor impact on 
T-cell survival and the induction of T-cell response (40, 41). 
Nevertheless, when other antiapoptotic molecules were sup-
pressed by inhibitors, A1 deficiency could result in significantly 
poorer survival of T cells (6).

Pro-Apoptotic BH3 Proteins  
and T Cell Survival
BIM has been shown to have a dominant role in regulation of 
T  cell survival among the BH3 proteins (13, 42). The deletion 
of immature autoreactive thymocytes was defective in BIM-
deficient mice, leading accumulation of T cells with self-reactivity 
(43, 44). For mature T cells reaching the periphery, BIM is also 
important for survival of naïve T cells (45), which was found to 
be partly regulated via IL-7 signaling (46, 47). Upon activation, 
BIM is also crucial for the termination of T-cell immune response 
against acute infection with herpes simplex virus (48). Similarly, 
peripheral deletion of activated T cells is also mediated by BIM 
(49, 50). Interestingly, during a chronic infection, activated T cells 
with different antigen specificity showed differential require-
ments from BIM (51). It is proposed that infection duration 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Zhan et al. Life and Death of Activated T Cells

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1809

and antigen loads may switch apoptosis pathways for activated 
T  cells (51). Apart from BIM, other BH3 proteins also have a 
non-redundant role in regulating survival of activated T  cells. 
Deficiency in NOXA could lead to accumulation of activated 
T cells and immunopathology during chronic LCMV infection 
(52, 53). Interestingly, PUMA but not NOXA, BID, or BAD was 
shown to have a non-redundant role in protection from cell death 
of antigen-specific T  cells in HSV-1 infection (54). The basis 
of the varied requirement for different BH3 proteins remains 
unclear. Furthermore, BH3 proteins can collaborate to regulate 
T-cell survival. It has been reported that the combined loss of 
PUMA and BIM protected mitogen-induced T cell blasts from 
IL-2 deprivation-induced death more potently than the loss of 
BIM in vitro (55). BIM also collaborates with NOXA or PUMA 
to control effector CD8+ T-cell responses during CMV infection, 
probably by targeting different antiapoptotic molecules (56).  
Even without infection, simultaneous defects in both BIM and 
PUMA could lead to severe forms of autoimmunity and organ 
damage (57). BIM also cooperated with BID for contraction of 
the anti-viral T cell response (58). Furthermore, three concurrent 
studies also demonstrated that BIM and Fas, a key molecule of 
extrinsic apoptosis pathway, also cooperate to regulate different 
types of T-cell responses (59–61). Thus, BH3 proteins, particu-
larly BIM, are key molecules to limit T-cell survival.

BAK/BAX and T Cell Survival
Multidomain pro-apoptotic molecules BAK/BAX are often 
referred as “effectors” of the intrinsic mitochondrial cell death 
pathway and are essential, yet each individually redundant, for 
T-cell apoptosis (62). As individual BH3, only proteins may 
be redundant and could not rescue the T cell defect caused by 
MCL-1 deficiency, concomitant loss of BAX and BAK rescued 
the loss of activated T  cells with MCL-1 deletion (21). Thus, 
BAX and BAK are critical for apoptosis of activated T cells and 
naïve T cells. However, careful examination has revealed subtle 
differences between BAK and BAX in apoptosis induction. BAK 
binds preferentially to MCL-1 and BCL-xL (63). Fittingly, loss 
of BAK was able to partially rescue T-cell defects caused by 
conditional deletion of MCL-1, whereas overexpression of 
BCL-2 or loss of BAX was unable to rescue the cell (32). Notably, 
chimeric mice reconstituted with BAK−/− bone marrow cells, but 
not BAX−/− bone marrow cells, developed immunopathology 
and died prematurely (64). In humans, mutations in BAK have 
been associated with some forms of autoimmune disease (65). 
Thus, this group of pro-apoptotic molecules is also dynamically 
involved in regulation of T-cell survival.

OTHeR MeCHAniSMS OF T CeLL DeATH

There is great interest to repurpose BCL-2 antagonists that have 
been approved for cancer treatment to dampen inflammation 
(66–68). Notably, for T  cell-mediated inflammation (collagen-
induced arthritis), ABT-737 (antagonizing BCL-2, BCL-xL, and 
BCL-w) was only effective before but not after induction of dis-
ease (67). Differential sensitivity to ABT-737 by naïve T cells and 
activated T cells may offer an explanation to above discrepancy. 
Given that a large fraction of activated T cells can still survive 

even when all antiapoptotic molecules were impaired (6), other 
mechanisms must contribute to the survival of activated T cells. 
Here, we provide a brief summary what impact other death 
pathways have on T-cell survival. Many of these pathways are 
inter-connected, resulting in a complicated regulatory network 
balancing T-cell-mediated immunity and tolerance.

The extrinsic Pathway of Apoptosis
Soon after BCL-2 was discovered as a key player of the intrinsic 
pathway of apoptosis (69), Fas/FasL were discovered as the 
prototype receptor/ligand pair of the extrinsic (death receptor) 
pathway of apoptosis (70, 71). Fas, upon engagement to FasL, 
forms the death-inducing signaling complex with the adaptor 
protein Fas-associated death domain protein and pro-caspase 8, 
leading to activation of caspase 8 and subsequent activation of 
effector caspases and apoptosis (72). Deletion of Fas and FasL in 
mice resulted in lymphadenopathy and an increase in the unusual 
TCRαβ+B220+ CD4−CD8− (DN) T cells (73, 74). Human mutations 
in CD95 also resulted in increased TCRαβ+B220+ CD4−CD8− DN 
T cells and were associated with the development of autoimmune 
lymphoproliferative syndrome (75). Thus, the death receptor 
apoptotic pathway is important for T cell homeostasis.

However, the importance of this pathway in clearance of 
activated T  cells seems to be dependent on the experimental 
conditions [reviewed in Ref. (42)]. Early on, in vitro induction of 
activation-induced cell death (AICD) in T cells has been found 
to be critically dependent on Fas and FasL interaction (76–78). 
In vivo, deletion of SEB-activated T cells in mice was impaired 
with defective FasL–Fas pathway in some (79, 80) but not in other 
studies (49). Similarly, deletion of antigen-activated CD8+ T cells 
during acute a viral (HSV-1) infection was not affected by Fas 
deficiency (48, 81) but was impaired during a persistent chronic 
infection (82). Similarly, work on c-FLIPL in T cells, a classical 
negative regulator of death receptor/extrinsic pathway signaling, 
also generated controversial results. c-FLIPL-deficient T  cells 
were shown to display enhanced cell death upon TCR stimula-
tion (83), while an earlier study found that activation-induced 
death of T cells in c-FLIPL transgenic mice was unaffected (84). 
The nature of an immune response—acute vs chronic infection, 
transient vs repeat stimulation or signal strength of T cell activa-
tion has been offered as potential explanations for the reported 
varied dependency (42, 61).

There are two other complex aspects regarding the pathway 
in regulation of T cell survival. First, AICD could occur via the 
interaction of death receptor and their ligands other than Fas/
FasL. TNF-α/TNF receptor 1 and TRAIL/DR4/DR5 also con-
tribute to AICD (85, 86). For TNF-mediated AICD, it has been 
reported that soluble TNF-α but not transmembrane TNF-α 
(tmTNF-α) induced AICD in vitro and in vivo (87). A more recent 
study showed that tmTNF-α could promote AICD via reverse 
signaling in which tmTNF-α behaves as a receptor to interact 
TNFR (88). Furthermore, the ligand binding to death receptor 
results in not only downstream activation of initiator caspases 8 
and 10 (89) but also of prosurvival signaling pathways, including 
nuclear factor-κB and mitogen-activated protein kinase (89).  
It remains to be fully appreciated how a final outcome (death vs 
life) is determined when a ligand binds death receptor.
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Second, apart from cooperating with the intrinsic apoptosis 
pathway to regulate T-cell death (59–61), extrinsic apoptosis 
pathway is also heavily entangled with programed necroptosis. 
Despite caspase activity is critical for death receptor-mediated 
apoptosis, Fas can trigger Caspase-8-independent death of 
activated human and murine T cells (90, 91). The death pathway 
(necroptosis) involves the receptor-interacting serine-threonine 
kinases RIPK 1 and RIPK3 (90, 91) (Figure 1). The involvement 
of necroptosis in T cell death is discussed in the following section.

necroptosis
Necroptosis requires activation of signaling complex consisting of 
RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL). 
When activity of Caspase 8 is absent or suppressed, three key 
components will assemble the necroptosome (Figure  1). Both 
RIPK1 and RIPK3 are key upstream components of TNF signal-
ing and can mediate apoptosis, necroptosis, and inflammation 
while MLKL, as a downstream signaling molecules is primarily 
involved in necroptosis (92). At least in vitro, TNF can induce 
necroptosis in the absence of RIPK1 (93). As for activated T cells, 
two aforementioned studies demonstrated that necroptosis can 
occur at certain conditions (90, 91). For death ligand-mediated 
necrotptosis, RIPK1 is essential for cell death (90). For TCR-
mediated necrotptosis (at least without exogenous death ligands), 
necroptosis occurred in the absence of Caspase 8 is rescued by 
RIPK3 deficiency and partially rescued by RIPK1 inhibition 
with necrostatin-1 (91). Notably, necroptosis occurred in  vitro 
in actively proliferating cells (91). In vivo, RIP3 deficiency only 
prevent the loss of Caspase 8−/− T cells in expansion phase but 
not in contraction phase during a viral infection (91), implying 
a stage-specific role. MLKL has been identified as a key player in 
necroptosis of fibroblasts and macrophages triggered by TNF in 
conjunction with caspase inhibitors and IAP inhibitors (94, 95).  
Notably, T  cells develop normally in MLKL knockout mice  
(95, 96). As most myeloid cells constitutively express high levels 
of MLKL, naïve T cells express low levels of MLKL, but display an 
increase in MLKL expression upon activation (97). Currently, the 
importance of MLKL in regulating the death of activated T cells 
is unknown. Overall, necroptosis of activated T  cells is mostly 
prominent when caspase activity is suppressed. Significance of the 
pathway in regulation of T cell survival remains to be established.

Pyroptosis
Pyroptosis describes pro-inflammatory programmed cell death 
(98). Differing from classical apoptosis, pyroptosis employs 
inflammatory pyroptotic caspases (caspase-1, -4, -5, -11). Caspase-
1-dependent and inflammation-induced pyroptosis is critical for 
CD4 T-cell death in HIV-infected host (99). It is unclear whether 
pyroptosis is involved in the death of TCR-triggered T cells.

Autophagy
Autophagy promotes proteolytic degradation of mitochondria 
and other cytosolic components at the lysosome. It can promote 
or diminish cell survival depending on degraded molecules. 
We mainly discuss here the role of autophagy in regulation of 
T  cell survival, although autophagy can influence the induc-
tion and maintenance of an immune response independent of 

cell survival mechanisms (100). Several reports showed that 
autophagy promotes T-cell survival (101–103). In vitro dissec-
tion of contribution of autophagy to AICD had demonstrated 
that both the activity of upstream kinase AMPK and key 
downstream molecule LC3 in autophagy signaling was reduced 
upon AICD induction, leading to the accumulation of damaged 
mitochondrial and apoptosis progression. T  cells from mouse 
models defective in autophagy had higher sensitivity to AICD 
(104). Apart from inhibition of autophagy leading to accumula-
tion of damaged mitochondrial, TCR signaling during AICD 
induction can also lead to mitochondrial fragmentation in a 
Drp1-dependent fashion, resulting in AICD involving reactive 
oxygen species and CD95 induction (105). Beyond the potential 
contribution of autophagy to regulate cell survival at early activa-
tion stage, both CD4+ and CD8+ memory T cells have been shown 
to be preferentially affected by the autophagy process (106, 107). 
Nevertheless, how this pathway impacts on survival of activated 
T cells remains to be fully explored. Particularly, how does this 
pathway interplay with BCL-2-regulated apoptosis? It has been 
reported that autophagy enhances degradation of pro-apoptotic 
proteins such as BIM and various caspases (103). Upstream of 
autophagy signaling, interaction of antiapoptotic molecules 
and pro-apoptotic molecules with key signaling molecules of 
autophagy remains controversial. Beclin-1 is a BCL-2-binding 
protein that is essential to autophagy (108). BCL-2 can inhibit 
Bectin-1-dependent autophagy to maintain autophagy at levels 
that are compatible with cell survival (109). However, a more 
recent study showed that BCL-2 or other antiapoptotic molecules 
do not directly inhibit components of the autophagic pathway 
but affect autophagy indirectly by inhibition of Bax/Bak (110). 
The findings are in contrast to a subsequent study showing that 
the longer exposure of BH3 mimetic ABT-737 induces autophagy 
through a BAX and BAK-independent mechanism (111). In addi-
tion, it has been shown that BIM directly interacts with Beclin-1 
to inhibit autophagy (112). It remains to be investigated how 
these players in BCL-2-regulated pathways affect autophagy of 
T cells and the consequences of these effects.

epigenetic Control of Activated  
T Cell Survival
Epigenetic regulation through DNA methylation and histone 
modification is essential to fine-tune gene expression. Depletion 
of the methyltransferase SUV39H1, which mediates H3K9 
trimethylation in Th2 cells, can lead to the transcription of Th1 
cytokine IFN-γ (113). EZH2 (Enhancer of zeste homolog 2) is 
another histone methyltransferase that catalyzes H3K27me3 and 
acts primarily as a gene silencer. EZH2 is a key component of 
the polycomb repressive complex (PRC) 2, which also contains 
SUZ12 and EED (Figure 2). It has emerged that EZH2 is criti-
cally involved in regulation of cell survival and differentiation of 
activated T cells. T-cell lineage specific deletion of EZH2 (CD4-
Cre/EZH2fl/fl) did not alter normal development of CD4 and CD8 
T cells. However, it led to enhanced Th1 and Th2 differentiation 
(114). Counterintuitively, suppression or loss of EZH2 also accel-
erated the death of activated T cells (97, 115, 116). The precise 
mechanisms of cell death that cause loss of activated T cells are 

http://www.frontiersin.org/Immunology/
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FigURe 2 | Putative roles of EZH2 and PRC2 complex in regulation of cell 
death of activated T cells. The polycomb repressive complex (PRC) contains 
EZH1/2, SUZ12, and EED. EZH2 deficiency in T-cell lineage does not affect 
normal development of CD4 and CD8 T cells. However, EZH2-deficient 
T cells display enhanced Th1 differentiation and enhanced cell death upon 
activation. EZH2-deficient T cells also have enhanced mixed lineage kinase 
domain-like (MLKL) expression upon TCR stimulation.

TABLe 1 | Survival requirement of T cells at a glance.

Death pathways naïve T cells Activated T cells

BCL-2 regulated apoptosis 
(intrinsic)

BCL-2++++
MCl-1++

High expression of 
BCL-2

MCL-1+++
A1+

BCL-2++ (CD8 memory)
High expression of MCL-1, 
A1, BCL-xL

Bim+++ Bim+++
Puma+, NOXA+, BID+ 
(prominent at contraction 
phase)

Death receptor-regulated 
apoptosis (extrinsic)

+/− ++ (prominent at 
persistent antigen 
stimulation)

Necroptosis −/+ ++ (when Caspase 
8 disabled) (mainly 
expansion phase)

High MLKL expression

Low mixed lineage 
kinase domain-like 
(MLKL) expression

Pyroptosis +/− HIV-infected CD4

Autophagy +/− ++ +++

++++ > +++ > ++ > + >—illustrating the degree of dependence by T cells on the 
indicated molecules or pathways.
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currently unknown. Expression of both antiapoptotic and pro-
apoptotic molecules were higher in activated EZH2−/− T  cells, 
compared to activated WT T  cells (116). Notably, deletion of 
Bim did not prevent the loss of activated EZH2−/− T cells (116). 

Somewhat surprisingly, despite massive loss of GVDH caus-
ing T cells, antileukemia T cells of EZH2−/− donor origin were 
preserved. Similar to the example of differential requirements for 
BIM for T cells with different antigen specificity (51), stimula-
tion duration and strength may cause differential dependence 
on EZH2 for survival. In addition, we found that the induction 
of MLKL in activated T  cells was enhanced by EZH2 deletion 
(97). This raises the possibility that MLKL-mediated necroptosis 
contributes to loss of activated T cells in EZH2-deficient mice.  
It has also been shown that loss of EZH2 in donor T cells has been 
shown to inhibit GVHD in mice after allogeneic bone marrow 
transplantation (115, 116), indicating that manipulation of PRC2 
signaling may offer an avenue to specifically target activated cells.

COnCLUDing ReMARKS

T  cells are a key component of the immune system and play a  
critical role in orchestrating the immune responses to self and 
foreign antigens. The magnitude of the T-cell response is critically 
regulated by cell survival/death. Conceivably, targeting the survival 
mechanisms may provide an avenue for immune intervention. 
Enhancement of T  cell survival can be beneficial in  situations 
of immune deficiency, immunization, and cancer immuno-
therapy. On the other hand, an inappropriate immune response  
(e.g., autoimmunity and transplant rejection) can be curtailed by 
inducing T-cell death. We now appreciate that survival control of 
naïve and activated T cells is different and that multiple pathways 
contribute to survival control of activated T cells (Table 1). Currently, 
there are still many unknowns regarding how life and death of 
activated T cells is regulated. A better understanding of how the 
survival of T cells, particularly activated T cells, is regulated should 
increase the potential to harnessing T-cell immune responses.
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