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Non-human primates (NHP) are suitable models for studying different aspects of the 
human system, including pathogenesis and protective immunity to many diseases. 
However, the lack of specific immunological reagents for neo-tropical monkeys, such 
as Saimiri sciureus, is still a major factor limiting studies in these models. An alternative 
strategy to circumvent this obstacle has been the selection of immunological reagents 
directed to humans, which present cross-reactivity with NHP molecules. In this context 
and considering the key role of inhibitory immunoreceptors—such as the signal regu-
latory protein α (SIRPα)—in the regulation of immune responses, in the present study, 
we attempted to evaluate the ability of anti-human SIRPα monoclonal antibodies to 
recognize SIRPα in antigen-presenting S. sciureus peripheral blood mononuclear cells 
(PBMC). As shown by flow cytometry analysis, the profile of anti-SIRPα staining as well 
as the levels of SIRPα-positive cells in PBMC from S. sciureus were similar to those 
observed in human PBMC. Furthermore, using anti-SIRPα monoclonal antibody, it was 
possible to detect a decrease of the SIRPα levels on surface of S. sciureus cells after 
in  vitro stimulation with lipopolysaccharides. Finally, using computed-based analysis, 
we observed a high degree of conservation of SIRPα across six species of primates 
and the presence of shared epitopes in the extracellular domain between humans and 
Saimiri genus that could be targeted by antibodies. In conclusion, we have identified a 
commercially available anti-human monoclonal antibody that is able to detect SIRPα of 
S. sciureus monkeys and that, therefore, can facilitate the study of the immunomodula-
tory role of SIRPα when S. sciureus is used as a model.
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inTrODUcTiOn

Saimiri sciureus, also known as squirrel monkey, is a small species of non-human primate natively 
found in the tropical rainforests of South America (1, 2). As many other non-human primates 
(NHP), S. sciureus is used in diverse areas of biomedical research and, although its full genome 
has not yet been sequenced, the well-known close phylogenetic relationship of NHP to humans 
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renders this model an accurate system to study biological, 
immunological, and pharmacologycal phenomena of medi-
cal importance (2). Indeed, S. sciureus has been shown to be 
susceptible to several human pathogens and, in this way, has 
been proposed as model for study the pathogenesis of malaria 
(3), measles (4), HTLV-associated diseases (5), BK virus infec-
tion (6), and vaginal trichomoniasis (7). Moreover, S. sciureus 
has been studied in the context of Parkinson’s disease therapy 
(8) and, as recommended by the World Health Organization 
(9), malaria vaccine candidates have been frequently tested 
in preclinical trials using S. sciureus in the last three decades  
(10, 11). However, the lack of specific immunological tools to 
assess immune response of S. sciureus represents a major factor 
limiting vaccinology and immunopathology studies using this 
model.

An alternative strategy to circumvent this limitation is the 
identification of immunological reagents directed to molecules 
of human immune system that also present reactivity with  
S. sciureus. In fact, a variety of anti-human monoclonal antibod-
ies commercially available are able to satisfactorily detect surface 
molecules of immune cells as well as cytokines of S. sciureus 
(12–14) and other non-human primate models, such as com-
mon marmoset (Callithrix jacchus), rhesus macaque (Macaca 
mulatta), and chimpanzee (Pan troglodytes) (15–17). To the best 
of our knowledge, however, there is no evaluation concerning the 
signal regulatory protein α (SIRPα) in NHP.

Signal regulatory protein α is a transmembrane protein present 
in leukocytes of the myeloid lineage, including monocytes and 
dendritic cells (DC), which is implicated in inhibitory signaling 
of innate immune functions, such as phagocytosis, proinflamma-
tory cytokine production, and DC maturation (18–20), as well 
as induction of programmed cell death (21). Comprehensively, 
SIRPα is believed to play a relevant role in the regulation of 
immune responses, impacting the pathogenesis of etiologically 
distinct diseases as well as vaccination (22–24). Nevertheless, 
SIRPα has not been investigated in non-human primate models. 
Thus, attempting to support further studies related to involve-
ment of SIRPα in immune responses, in the present work, we 
evaluated by flow cytometry if monoclonal antibody directed to 
human SIRPα cross-reacts with peripheral blood mononuclear 
cells (PBMC) from S. sciureus.

MaTerials anD MeThODs

animals and Blood samples
Seven clinically healthy S. sciureus monkeys from the breeding 
colony at the Department of Primatology of the Instituto de 
Ciência e Tecnologia em Biomodelos/Fiocruz, Rio de Janeiro, 
Brazil, were studied. Animals were male adults, aged 3–10 years, 
housed in accordance with the guidelines of the institutional 
ethical committee for animal use. For blood sample collec-
tion, animals were anesthetized with a combination of 0.1 mL 
midazolan and 0.4  mL ketamine and, then, 4  mL heparinized 
venous blood were drawn via femoral venipuncture. All animal 
experimentation was performed in compliance with the pro-
tocol reviewed and approved by the Fiocruz ethical committee 

(LW-9/14). Peripheral blood samples (4 mL) from five healthy 
human donors were also obtained by venipuncture in heparin-
ized tubes, as approved by the Fiocruz Research Ethic Committee 
(46084015.1.0000.5248).

PBMc isolation and antigenic 
stimulation
Peripheral blood mononuclear cells were isolated from  
S. sciureus whole blood through density gradient centrifugation 
using Histopaque-1077 (Sigma). Cells were washed twice in 
RPMI-1640 medium (Sigma) containing 2.05 mM l-glutamine, 
25  mM Hepes, and 2.0  g/L sodium bicarbonate and, then, 
resuspended in RPMI medium supplemented with 200 U/mL  
penicillin (Gibco), 200 mg/mL streptomycin (Gibco), and 10% 
inactivated fetal calf serum (Gibco). Cells (2.5  ×  105) were 
assayed ex vivo or after 24 h stimulation with Escherichia coli 
lipopolysaccharides (LPS, 5  µg/mL, Sigma) in 96-well culture 
plates (Falcon) at 37°C in 5% CO2.

Flow cytometry assay
Detection of SIRPα in S. sciureus PBMC was assayed by flow 
cytometry using allophycocyanin (APC)-conjugated anti-human 
SIRPα monoclonal antibody purchased from eBioscience (iso-
type: mouse/IgG2a, clone: 15-414). Cells (2.5 × 105) were washed 
in phosphate saline buffer (PBS) and, subsequently, incubated at 
4°C for 30 min in PBS containing 10% fetal bovine serum (FBS) to 
reduce non-specific staining. After incubation, cells were stained 
with 2.0 µL anti-SIRPα monoclonal antibody or APC-conjugated 
isotype control (eBioscience) at 4°C for 40 min in 100 µL PBS 
containing 1% FBS. Cells were washed twice and, finally, analyzed 
by a FACSVerse flow cytometer (Becton Dickinson). In parallel, 
anti-SIRPα monoclonal antibody was tested ex vivo with PBMC 
obtained from blood human samples, as described in Section 
“PBMC Isolation and Antigenic Stimulation.”

computer-assisted analysis of sequence 
alignment and Potential B-cell epitopes
To detect SIRPα protein homology among several primate 
species, protein BLAST were done and protein sequences of 
Homo sapiens (AAH26692.1), P. troglodytes (JAA44167.1),  
C. jacchus (JAB51896.1), Macaca fascicularis (XP_015313155.1), 
Gorilla gorilla (XP_004061735.2), and Saimiri boliviensis 
(XP_010350139.1) were analyzed. Multiple alignment CLUSTAL 
OMEGA, distance matrix, and the phylogenetic tree were done 
using the Megalign Pro 15 (Lasergene DNASTAR) program and 
the circular map of protein alignment was generated using the 
software GenVision 15 (Lasergene DNASTAR). The prediction 
of linear B-cell epitopes was carried out using the web server 
BepiPred. For each input FASTA sequence of extracellular 
domain of SIRPα, the server outputs a epitope prediction score 
for each amino acid. The recommended cutoff of 0.35 was used to 
determine potential B-cell linear epitopes, ensuring sensibility of 
49% and specificity of 75%. Linear B-cell epitopes of SIRPα extra-
cellular domain of H. sapiens and S. boliviensis were predicted to 
be located at the residues with the highest scores in at least nine 
consecutive amino acids.
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FigUre 1 | Flow cytometry analysis of anti-human signal regulatory protein α (SIRPα) monoclonal antibody cross-reactivity with Saimiri sciureus cells. Peripheral 
blood mononuclear cells (PBMC) were isolated from human or S. sciureus whole blood, stained with anti-SIRPα monoclonal antibody or isotype control and, then, 
analyzed by flow cytometry. Reactivity of anti-SIRPα antibodies [allophycocyanin (APC)] with human (a) and S. sciureus (B) PBMC was evaluated gating 
lymphocytes (P1) or monocytes populations, as defined by forward scatter (FSC) and sideward scatter (SSC) parameters.
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resUlTs anD DiscUssiOn

Signal regulatory protein α has been studied by flow cytometric 
analysis in both human (25, 26) and animal models, i.e., mice, 
rats, and cattle (27–29), but the frequency and distribution of 
SIRPα-positive cells in peripheral blood has not been reported. 
Thus, to investigate the reactivity of anti-human SIRPα monoclo-
nal antibody with S. sciureus PBMC by flow cytometry; we first 
evaluated anti-SIRPα staining profile in PBMC obtained from 
five normal healthy human donors.

Signal regulatory protein α is known as an immune inhibi-
tory receptor present in leukocytes of the myeloid lineage and, 
therefore, it is expected that SIRPα in PBMC population is 
mainly detected on surface of cells showing monocyte morphol-
ogy by size and granularity analysis in flow cytometry using 
forward scatter and sideward scatter parameters (30). Indeed, 
an elevated percentage (95.55  ±  1.16%) of SIRPα-positive 
cells was observed in the human monocyte population, while 
only 3.27  ±  3.38% cells presented SIRPα in the lymphocyte 
population (Figures 1A and 2). Moreover, SIRPα-positive cells 
corresponded to 18.98 ± 3.12% of total PBMC, agreeing with 
the frequency of total myeloid innate immune cells found in 
human PBMC samples, which manly comprises monocytes and 
DC (31, 32).

Subsequently, anti-human SIRPα monoclonal antibody was 
tested against S. sciureus cells. Previous reports demonstrated 
that different immune cell surface receptors as well as cytokines 
of S. sciureus can be detected by a range of antibodies directed 

to human (12–14) and, in the same way, we observed that 
anti-human SIRPα antibody cross-reacted with cell surface of 
S. sciureus PBMC. As shown in Figure 1B, the profile of anti-
SIRPα staining in PBMC from S. sciureus was similar to that 
observed in human samples. SIRPα-positive S. sciureus cells 
corresponded to 8.92 ± 3.65% of total PBMC and 1.59 ± 1.03% 
of the lymphocyte population, while an increased frequency 
of SIRPα-presenting cells (85.27  ±  1.41%) was observed in 
monocytes population (Figure 2). These data suggest that anti-
human SIRPα antibody recognizes a specific antigen present on 
surface of S. sciureus innate immune cells, possibly the cognate 
of human SIRPα in S. sciureus.

Although the cross-reactivity of antibodies cannot indicate 
per se the degree of homology between proteins across phyla, an 
increased similarity (>90%) has been shown through molecular 
approaches between human, S. sciureus, and other NHP con-
cerning nucleotide sequence of genes coding for many cytokines 
(33, 34) as well as dopamine transport (35) and, therefore, it was 
already possible to quantify gene expression of 12 S. sciureus 
cytokines (IL-1A, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12B, IL-17, 
IFN-β, IFN-γ, LTA, and TNF) by commercially available real-
time PCR assays using predesigned human gene-specific prim-
ers and probes (14). Moreover, genomic studies demonstrate 
the presence of SIRPα gene in a vast group of animals, from 
cats to NHP, supporting that SIRPα is a ubiquitous molecule of 
innate immune system of mammalians (36, 37). In the case of  
S. sciureus SIRPα, however, there are no molecular data available, 
i.e., neither genome nor SIRPα gene was reported yet, limiting 
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FigUre 3 | Homology analysis of signal regulatory protein α (SIRPα) across primates. (a) Circular alignment of amino acid sequences of SIRPα protein in human 
and five non-human primates (Pan troglodytes, Gorilla gorilla, Macaca fascicularis, Callithrix jacchus, Saimiri boliviensis). The outer circle shows the amino acid scale. 
Green and gray bars on the second circle show the percent matching among all sequences used in the analysis. Inner circles show the sequence alignment in which 
each amino acid was represented by a different color. (B) Pairwise distance among all primates studied and (c) phylogenetic tree based on SIRPα protein 
alignments.

FigUre 2 | Frequency of signal regulatory protein α (SIRPα)-positive cells  
in peripheral blood mononuclear cells (PBMC) samples from humans and 
Saimiri sciureus monkeys. PBMC were isolated from whole blood, stained 
with anti-human SIRPα monoclonal antibody and, then, analyzed by flow 
cytometry. Cells presenting SIRPα were quantified considering three main 
cells populations by morphological criteria: total PBMC, monocytes, and 
lymphocytes, as shown in Figure 1. Data represent mean ± SEM for five 
humans and seven monkeys.
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the analysis of S. sciureus SIRPα homology with their cognates 
in other primates.

In this scenario, to confirm that the cross-reactivity herein 
detected was a natural consequence of the similarity of SIRPα 
protein across primates, we aligned the amino acid sequences 
of SIRPα from six different primate species including Saimiri and 

Homo sapiens (Figure 3). As expected, a significant degree of 
identity was observed across the primates, which showed a com-
plete matching in 72% of all sequences analyzed (Figure 3A). 
The homology rate ranged from 87% (M. Fascicularis vs.  
S. boliviensis) to 99% (P. troglodites vs. G. gorilla) and human 
SIRPα showed a high identity with its orthologs, ranging from 
88% in S. boliviensis to 98% in G. gorilla, despite the deletion 
of 58 amino acid present in S. boliviensis sequence, which was 
determinant to reduce the homology rate (Figures 3A,B). Since 
the amino acid sequence to which the commercial anti-human 
SIRPα monoclonal binds is not available, we also checked if 
the deletion in S. boliviensis, which is taxonomically the closest 
to S. sciureus among the NHP species studied herein, could 
potentially influence the antibody recognition. In this way, we 
verified the potential epitopes shared between the H. sapiens 
and S. boliviensis through analysis of linear B-cell epitopes 
in SIRPα extracellular domain and we observed at least 10 
B-cell epitopes that can be targeted by antibodies (Figure 4). 
Importantly, all of these regions were shared by both species, 
indicating that anti-human SIRPα antibodies can target SIRPα 
of Saimiri monkeys in a similar way to its orthologous in 
human.

Thus, to better study the capacity of anti-human antibodies 
to detect S. sciureus SIRPα, we additionally evaluated the levels 
of this immune receptor on surface of PBMC after stimula-
tion with LPS. It has been described that pathogen-associated 
molecular patterns present modulatory effects on SIRPα levels in 
macrophages and DC and, in this context, LPS was recognized as 
a negative modulator (24, 38, 39). Indeed, analyzing monocytes 
population by flow cytometry, which mainly includes innate 
immune cells present in PBMC, we found that the anti-human 
SIRPα monoclonal antibody was able to identify a significant 
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FigUre 4 | Prediction of linear B-cell epitopes in extracellular domain of signal regulatory protein α protein in Saimiri (a) and Homo sapiens (B). Linear B-cell 
epitopes were predicted to be located at the residues with the scores above 0.35 (yellow) and regions not predicted to be B-cell epitopes are under the threshold 
(green). The epitope score represents the average of the scores of least nine consecutive amino acids above the cut-off, and the sequences with higher mean 
values were detected as potential linear epitopes.

reduction not only in the frequency of SIRPα-positive cells but 
also in the levels of SIRPα present on the surface of these cells 
after LPS stimulation (Figure 5). Despite LPS-mediated regula-
tion of SIRPα expression has not been investigated in human or 
NHP PBMC, decreased levels of SIRPα on the surface of periph-
eral blood monocytes were found in LPS-treated pigs and it was 
already reported a downregulation of SIRPα gene expression in 
cultured primary mouse microglia following LPS-stimulation 
(40, 41), agreeing with our data on PBMC and, consequently, 
supporting that anti-human SIRPα antibodies can recognize 

SIRPα of S. sciureus, whose levels were downmodulated by LPS 
in monocyte population.

Collectively, the flow cytometry assays showing that SIRPα-
positive cells are similarly present and distributed in PBMC of 
human and S. sciureus, together with observation by computed-
based analysis that SIRPα has a high degree of conservation 
across primates, with the presence of conserved B-cell epitopes in 
the extracellular domain between humans and the Saimiri genus, 
strongly indicate that anti-SIRPα antibodies directed to humans 
can detect SIRPα of S. sciureus. Take into account the role of SIRPα 
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