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The human leukocyte antigen (HLA) genes code for proteins that play a central role 
in the function of the immune system by presenting peptide antigens to T  cells. As 
HLA genes show extremely high genetic polymorphism, HLA typing at the allele level is 
demanding and is based on DNA sequencing. Determination of HLA alleles is warranted 
as HLA alleles are major genetic risk factors in autoimmune diseases and are matched 
in transplantation. Here, we compared the accuracy of several published HLA-typing 
algorithms that are based on next-generation sequencing (NGS) data. As genome 
sequencing is becoming increasingly common in research, we wanted to test how well 
HLA alleles can be deduced from genome data produced in studies with objectives 
other than HLA typing and in platforms not especially designed for HLA typing. The 
accuracies were assessed using datasets consisting of NGS data produced using an 
in-house sequencing platform, including the full 4 Mbp HLA segment, from 94 stem cell 
transplantation patients and exome sequences from 63 samples of the 1000 Genomes 
collection. In the patient dataset, none of the software gave perfect results for all the 
samples and genes when programs were used with the default settings. However, we 
found that ensemble prediction of the results or modifications of the settings could be 
used to improve accuracy. For the exome-only data, most of the algorithms did not 
perform very well. The results indicate that the use of these algorithms for accurate 
HLA allele determination is not straightforward when based on NGS data not especially 
targeted to the HLA typing and their accurate use requires HLA expertise.

Keywords: genetic variation, histocompatibility, human leukocyte antigen alleles, genome sequence, 
transplantation

inTrODUcTiOn

Successful transplantation of solid organs and stem cells requires good immunogenetic matching. 
The matching of alleles in human leukocyte antigen (HLA) genes is particularly crucial (1, 2). All 
HLA genes are located in the MHC gene complex on chromosome 6p21.3 (3). The most important 
transplantation HLA molecules, HLA-A, -B, -C, -DR, -DQ, and -DP, are integral membrane pro-
teins, which bind short peptides that are recognized by T cells of the cellular immune system. HLA 
molecules are the starting point of the adaptive immune response, making them interesting not only 
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in the normal immune response but also in the susceptibility to 
autoimmune diseases and tissue and cell transplantation match-
ing. The hallmark of the HLA genes is their very extensive genetic 
polymorphism. More than 17,000 alleles have been identified 
in the HLA genes in the IPD-IMGT/HLA database (4). Their 
determination is challenging due to the extremely high number 
of alleles, closely related gene sequences between HLA genes, and 
similar or even identical gene segments shared by some alleles 
or genes.

Currently, PCR-based molecular techniques, including Sanger 
sequencing, are the gold standard for HLA allele determination 
(“HLA typing”). The sequencing using commercial HLA typing 
kits usually includes the whole exons 2–4 for the class I genes 
HLA-A, -B, and -C, most of exon 2 for the class II HLA gene 
DRB1, the whole exon 2 for HLA-DPB1, and exons 2 and 3 for 
HLA-DQB1. Methods based on next-generation sequencing 
(NGS) techniques are also emerging. For the NGS-HLA typing, a 
subset of exons, the whole HLA genes or the whole MHC region 
may be targeted (5–10). Several commercial HLA kits based on 
different NGS techniques are already available. These targeted 
panels specifically designed for HLA allele determination 
together with long range PCR enable high accuracy HLA typing 
at the allele resolution level for clinical transplantation use.

Genomic sequencing projects may encompass the HLA gene 
region, hence producing data of which HLA alleles may be 
deduced. The data may originate from different genomic sources 
depending on the targeting method utilized. For example, a typi-
cal target may be the whole exome or a set of genes. NGS can also 
be performed without targeting, as is done in whole-genome or 
transcriptome sequencing. Even though HLA allele determina-
tion in many research projects is not the main objective, the 
projects certainly would benefit from a valid interpretation of 
HLA alleles based on the sequence produced.

Most of the widely used high-throughput NGS instruments 
produce only short reads, from approximately 100 to a few 
hundred nucleotides per read. This, together with the lack of 
information on which of the chromosomes or highly similar 
genes a particular read originates from, causes problems in the 
bioinformatics analyses of NGS data. These problems are par-
ticularly substantial in the case of the highly polymorphic HLA 
genes, which can differ from each other only by a single nucleo-
tide. In addition, different genes may share highly homologous 
sequences, leading to problems in the short-read alignment. NGS 
technologies producing longer read lengths have the potential to 
solve many of these problems.

As algorithms or computer programs are a key factor in the 
utilization of NGS data, we selected a set of publicly available 
programs for the determination of HLA alleles based on NGS 
data and tested their accuracies using two datasets with different 
characteristics. One dataset included the whole-genomic MHC 
region as part of an in-house sequencing platform (11) in 94 
patient samples, while the other, a set of samples from the 1000 
Genomes catalog (12), targeted primarily exons. The in-house 
sequencing platform primarily focuses on identification of rare 
variants in immunologically relevant regulatory areas but also 
includes the full genomic sequencing of the MHC region, which, 
however, was not optimized for HLA allele determination. We 

selected both assembly based and alignment-based methods, 
which increases methodological diversity. In addition, we used 
an ensemble approach (13) to test whether accuracy could be 
increased by combining results from different programs. The 
classifiers that are part of an ensemble should be diverse enough 
so that they do not all produce the same erroneous result. 
Hence, it was essential to select programs that applied different 
approaches, either assembly based or alignment based. We also 
describe some modifications to the default instructions to achieve 
more reliable results with one of the programs. While none of the 
programs, when used alone or according to the standard default 
instructions gave perfect allele assignments, our results show that 
the ensemble approach produced better results.

MaTerials anD MeThODs

Finnish red cross Blood service (FrcBs) 
Dataset
A total of 94 samples from patients who were HLA typed for pos-
sible hematopoietic stem cell transplantation formed the FRCBS 
dataset. This study was carried out in accordance with the recom-
mendations of the Ethical Review Board of Helsinki University 
Hospital with written informed consent from all subjects. All 
subjects gave written informed consent in accordance with the 
Declaration of Helsinki. The protocol was approved by the Ethical 
Review Board of Helsinki University Hospital.

Clinical HLA typing was performed from 2003 to 2008 in 
the HLA laboratory of the FRCBS, using methods accredited 
by the European Federation for Immunogenetics. Four different 
techniques were used. For both low- and medium-resolution 
HLA typing, LIPA (Innogenetics Group, Gent, Belgium), rSSO-
Luminex Technology (Labtype, One Lambda Inc., Canoga Park, 
CA, USA), and PCR-SSP (Micro SSP™ Generic HLA Class I/II 
DNA Typing Trays, One Lambda Inc., Canoga Park, CA, USA; 
Olerup SSP® genotyping, Olerup SSP AB, Stockholm, Sweden) 
were used. The results were analyzed with the appropriate soft-
ware provided by the manufacturers. Sequence-based typing for 
determining the medium-resolution HLA alleles was performed 
with AlleleSEQR PCR/Sequencing kits (Atria Genetics, Hayward, 
CA, USA), using the ABI 3130xl genetic analyzer (Applied 
Biosystems, Thermo Fisher Scientific, MA, USA), and the results 
were analyzed with the Assign 3.5+ software (Conexio Genomics 
Pty Ltd., Fremantle, Australia) according to the supplier’s instruc-
tions. For the high-resolution HLA typing, combinations of 
techniques described earlier were used.

Next-generation sequencing was performed using Roche 
SeqCap EZ Human MHC Design capture, which captures 
approximately 95% of the MHC/HLA region (11). The sequenc-
ing was performed with Illumina HiSeq 2000, yielding 100  bp 
paired-end reads and a median on-target coverage of 27.5× per 
sample. The data were quality checked using FastQC, and adapt-
ers were trimmed using Cutadapt (14).

1000 genomes Dataset
We used data of 63 samples from the 1000 Genomes project 
(12). The samples represented three different ethnic groups: 33 
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Finnish, 15 Puerto Ricans, and 15 Yoruba. HLA typing had previ-
ously been carried out at the intermediate-resolution level using 
Sanger sequencing for the HLA-A, -B, -C, -DRB1, and -DQB1 
genes (15), hence, these genes were included in the test. The 
samples were not selected based on the date of sequencing, depth 
of sequencing, or any other quality measure as our purpose was 
to test the methods on data produced using the standard, exome 
sequencing.

Programs for Determination of hla alleles 
from ngs Data
The programs can be categorized into read-mapping and assembly 
based approaches. Instead of using a single reference, as is usually 
done for NGS data, the read-mapping methods are often based 
on the alignment of NGS reads with a reference sequence set 
consisting of all known HLA alleles. Then, the HLA alleles of the 
sample are predicted based on the properties of the alignments, 
often summarized as a likelihood or probability score formed by, 
for example, the number of mapped reads and the overall quality 
of the alignment. The assembly based methods first construct 
or “assemble” the NGS reads into larger contigs, which are then 
queried against a reference database containing all known HLA 
allele sequences. The reference sequences and allele names are 
derived from the IPD-IMGT/HLA database (4).

Below, we briefly describe the methods selected for compari-
son in this study, but refer the reader to the references for further 
information on the programs.

All the methods were installed and used as instructed in their 
manuals.

ATHLATES
ATHLATES (16), version 1.0, is an assembly based method devel-
oped for use with exome sequencing data. ATHLATES first filters 
the sequencing reads by aligning them to HLA allele sequences 
(either gDNA or cDNA) obtained from the IPD-IMGT/HLA data-
base, allowing for soft clipping to include intron–exon spanning 
reads. Reads mapping to more than one HLA gene (e.g., HLA-A 
and non-HLA-A) is excluded. Paired-end reads are merged and 
reads with potential sequencing errors (low frequency k-mers) 
are discarded. Contig assembly is initiated by using each paired-
end read as a contig. Contigs are then merged by considering 
those sharing an l-mer and l is decreased iteratively from the full 
read length until a fixed threshold is met. We kept track of the 
frequency at each base all the time. Contigs sharing longer and 
more high-frequency substrings are prioritized in comparisons 
and merging.

The exons of each HLA allele are then matched with the 
assembled contigs and the overall difference (Hamming distance) 
is calculated as the sum of the differences of each exon in the 
allele. Only alleles with no more than two mismatches and 
adequate coverage (20× read coverage, minimum of 85% of exon 
sequence covered by best-hit contigs, more than 70% of cDNA 
length captured by summed exon lengths) are considered further.

A list of candidate alleles is then formed by selecting those 
with no missed exons and no more than one mismatch. When 
the alleles correspond to multiple protein coding sequences, no 

mismatches are allowed. Pairs of alleles are formed from this list, 
scores are calculated for each pair (using a scoring scheme based 
on multiple sequence alignment), and, finally, the pair(s) with the 
best score is reported.

ATHLATES was installed and used as instructed in the 
ATHLATES User Manual 1.0. Novoalign V3.03.00 was used for 
alignment using the parameters recommended in the ATHLATES 
manual and for defining the fragment lengths according to the 
input data.

From the typing results, we selected only allele pairs listed 
under “Inferred Allelic Pairs.” As ATHLATES often reports more 
than one possible allele pair, the list was reduced to arrive at 
only one allele pair to make the comparison with other typing 
methods more unbiased. The selection was carried out by allow-
ing the listed alleles to vote and then selecting the highest shared 
level, e.g., alleles A*11:01:01:01 and A*11:01:01:02 would result in 
A*11:01:01. The call was considered to be empty if low-resolution 
assignations failed to achieve a higher vote than the higher ones. 
If the files had no calls at all, they were interpreted as having a 
missing allele.

ATHLATES does not report only a single allele pair, but a 
list of the best allele pairs. To keep the comparison fair to other 
programs, a voting scheme similar to the one described below 
was used to select the most likely alleles. Selection of the most 
likely allele pair could also be performed, for example, based 
on population frequencies of alleles, but this approach was not 
utilized here.

HLAssign
HLAssign was developed (mainly) for HLA typing using specific 
targeted capturing with baits that was designed to consider the 
highly polymorphic sequences in the HLA region (16). The 
Windows 64-bit version 14.04 with database IPD-IMGT/HLA 
v 3.21.0 was used. HLAssign works by mapping all the reads 
to cDNA sequences from the IPD-IMGT/HLA database (4). It 
then discards those that are not completely covered or only have 
coverage on a small, central portion of the read. Several different 
parameters/statistics are then calculated for all the allele pairs 
formed from the remaining alleles. The allele pair with the high-
est weighted harmonic mean of the scaled parameters is selected 
as the most likely allele pair. This is the allele pair we used for 
comparisons.

OptiType
OptiType (17), version 1.3.1, is a mapping-based method and 
can produce typings from both DNA and RNA sequencing data. 
It also aims at utilizing multi-mapping reads, whereas, in many 
other programs, these are discarded. OptiType gives results only 
for major class I genes (A, B, and C). Even though in principle 
it should be possible to modify the program to also type class II 
genes, we did not carry out such modifications.

OptiType has its own HLA allele reference database, that 
is, constructed from exons 2 and 3 of class I HLA alleles from 
the IPD-IMGT/HLA database constituting an intermediate-
resolution reference data (4). It also includes the intervening 
intronic sequences (using special phylogenetic-based imputation 
if intron sequences are missing) for use with DNA sequencing 
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data. Non-classical HLA class I genes HLA G, H, and J are also 
included. Sequencing reads are first aligned against the database, 
allowing multiple matches per read. A binary matrix is then cre-
ated, indicating which alleles best align to each read. Using this 
matrix and integer linear programming, the best allele combina-
tion is selected by maximizing the number of reads mapping to 
each gene.

HLAreporter
HLAreporter version 1.03 (18) begins by filtering the NGS reads, 
which is done by mapping them to a reference sequence panel. 
This reference set is at intermediate level of resolution consisting 
of exons 2–4 for class I HLA genes and exons 2 and 3 for class II 
HLA genes. The sequences are obtained from the IPD-IMGT/
HLA database (4). The panel is further modified by appending 
50 bp of intronic sequence to both ends of each exon, including 
non-classical HLA class I genes. NGS reads that receive no map-
ping results or map perfectly to more than one gene are filtered 
away. The remaining set of reads for each gene is then used to 
assemble contigs. Then, to match the assembled contigs, two 
more databases are used: one with only exons 2 and 3 for class I 
and exon 2 for class II genes, and the other one with sequences 
for less polymorphic exons (exon 4 for class I and exon 3 for class 
II genes). Matching to the first database allows identification of 
the alleles, but often only at the G-group level, while the second 
database is used to further break down the result. Contig-HLA 
allele matching is performed by calculating scores for each contig 
(as a product of contig size, average depth of coverage, and per-
centage of exonic sequence) as well as counting the score for an 
allele by summing the scores of the contigs supporting this allele. 
The program only accepts perfect matches between the assembled 
contigs and the candidate HLA alleles or allele groups. The best 
scoring of those are reported as the result.

A list of possible alleles may be produced, but there can be 
several possible alleles listed for both allele pairs. In the same 
way as for ATHLATES we used voting to reduce the lists to a 
single allele pair. If the voting gave no consensus, the gene call 
was marked as missing.

Omixon Target
This program, version 1.93, was the only commercially available 
program. Only a limited amount of information appears to be 
public and can be found on the www site of the producer www.
omixon.com, where a reference to Ref. (19) is given. The algo-
rithm (19) works by aligning reads against the IPD-IMGT/HLA 
sequences with certain constraints. It then scores the alleles and 
reports the most likely allele pair. However, the exact functioning 
of the program might differ from that described in the publica-
tion. As the Omixon Target program was no longer available by 
the end of year 2016 we also tested its updated version Omixon 
Explore (Version 1.0).

ensemble Prediction
We used majority voting to combine the results from different 
typing programs into an ensemble prediction. Because of the 
multilevel nature of HLA alleles, there are situations where a gene 
is voted as two alleles, for example, 01:01:01 and 01:01:02. In this 

case, the resulting majority vote would be 01:01, i.e., the most 
detailed level up to which the majority of the voting methods 
agree. To find such majority-voted alleles, we used a tree to 
capture all the alleles and their votes. Let this majority voting tree 
be called V. The root node of V is an empty node, meaning no 
typing result (which can occur if there is no consensus on any of 
the alleles).

For each voted allele, a temporary voting tree is formed so that 
the level of detail in typing increases toward the child nodes. For 
example, allele 01:01:02 would result in a tree 01 → 01 → 02. Each 
node also tracks the given vote (by default one). Such temporary 
trees are then added under the root node of V so that new nodes 
are appended and, for the existing nodes, the vote count is incre-
mented. Each node of V also keeps track of the alleles that have 
contributed to its votes.

For each sample and gene, all typing methods/programs are 
given two votes each, since the programs (typically) return an 
allele pair. However, for some genes there are typing results from 
only a subset of the programs (e.g., OptiType includes HLA-A, 
-B, and -C genes only). Therefore, there is not always the same 
number of voting programs for each gene. If a typing program 
returns an ambiguous result (for both or either allele), such 
results are skipped and not used in voting. Some programs might 
also return missing calls meaning that the missing typing results 
are considered as “evidence” for the allele being absent. Thus, they 
contribute a vote for a missing allele, even though such results 
might also be indicative of various typing problems (related to 
sequencing or algorithms).

Selection of the majority-voted alleles is done by traversing 
V from the root node toward child nodes, if there is at least 
one child node whose vote reaches the required threshold (i.e., 
more than half of all the votes). If more than one child node has 
the same (highest) number of votes, the child can be selected 
randomly. When it is not possible to go any deeper (due to 
going below the voting threshold or being at a leaf node), the 
allele group represented by this node is selected, and the votes 
of all alleles that contributed to this node are subtracted from 
V. This selection is done as long as there are nodes that have 
received more than half of all the possible votes. If there are no 
nodes with sufficient votes to start with, the result is deemed 
ambiguous.

Depending on the threshold, the voting result can range from 
no alleles to several alleles. Varying the threshold can be used to 
control the number of returned alleles. However, it is not always 
possible to get, for example, just a pair of alleles with unique pro-
tein sequence as the result. This is due to possible ties in voting. In 
this case, either one or three alleles may be given as the result for 
any gene. In our comparisons, we used a threshold of 0.5. In the 
event of more than two options per gene, the genes were inves-
tigated to see if there were alleles that could be combined at the 
level of the accuracy of the reference typing. As the voting does 
not necessarily return only one pair per gene, varying numbers 
of allele comparisons may have to be performed. For example, 
if for a given sample the gene voting resulted in three alleles or 
allele groups, one of which could not be matched to the reference 
typing, the unmatched one is counted as an error and thus the 
result is three allele comparisons.
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g groups
Some programs, such as the HLAreporter, do not return allele 
pairs, but instead report G groups. A G group for a gene consists 
of the alleles with identical nucleotide sequences in exons 2 and 3 
(for HLA class I genes) or exon 2 (for HLA class II genes). A single 
G group can contain tens of different alternative alleles, reflecting 
uncertainty in the typing. For such results, a temporary G-group 
tree is formed consisting of all the alleles in the G group and each 
node (also parent nodes) have weights of one. For example, for 
G group A*02:11:01G both alleles 02:11:01 and 02:69 would get 
one vote. The low-resolution assignation A*02 gets only one vote 
as well even though it is shared by both alleles in the G group. 
The G-group tree is then added to the actual voting tree V. When 
selecting a majority-voted allele, the whole G-group tree is again 
subtracted from the voting tree if the majority-voted allele was 
voted by this G group.

resUlTs

We tested four publicly available programs (HLAssign, 
HLAreporter, ATHLATES, and Optitype) and one commercial 
(Omixon Target) program package for their accuracy in the 
interpretation of HLA alleles based on genomic NGS sequence 
data. Two datasets were tested. First, the FRCBS dataset (N = 94 
samples of apparent Finnish origin) was produced using a 
sequencing platform (11) that has been developed to screen rare 
DNA variants in immunologically relevant gene regions and has 
not been optimized for HLA typing. The platform uses the Roche 
SeqCap EZ Human MHC Design capture and basically produces 
the full genomic sequence of the 4 Mbp HLA segment, with nearly 
100% coverage of exons of the HLA genes. Sequencing depths of 
HLA genes, as calculated by ATHLATES, were as follows: HLA-A 
14-138x; HLA-B 13-99x; HLA-C 14-165x; HLA-DRB1 22-216x; 

HLA-DQA1 14-191x; HLA-DQB1 15-165x; and HLA-DPB1 
15-152x. The FRCBS dataset had been previously typed using 
standard EFI-accredited clinical methods. Second, to test the 
exome-only data, we selected 63 samples from the 1000 Genome 
dataset; the samples were of Finnish (N = 33 samples), Puerto 
Rican (N = 15 samples), and Yoruba (N = 15 samples) origins. 
The 1000 Genome dataset covered only the exons of HLA genes, 
rather than the entire genomic sequence of MHC.

FrcBs Data
The sequencing datasets were first trimmed for adapter sequences 
and nucleotides of poor quality using Cutadapt (14). All typ-
ing programs were run as described in Section Materials and 
Methods. As one of the 94 samples obviously showed a loss of 
heterozygosity (LOH) (see below for details for this sample), the 
comparisons were done with only 93 samples. The HLA results 
assigned by each software tested and the clinical HLA typing are 
shown in Table S1 in Supplementary Material.

Not all the programs were intended to be used for the typing 
of all HLA genes. Hence, the comparisons were divided into HLA 
class I and II genes. All the programs were able to give typing 
results for HLA-A, -B, and -C genes. We calculated the concord-
ance between the results from each program and the reference, 
clinical HLA result (Figure 1; Table 1) for each of the HLA class 
I genes separately, as well as for class I combined. Overall, the best 
performing programs were ATHLATES, Omixon, and OptiType, 
which all gave the same alleles as the reference typing in 99–100% 
of cases. The other two programs gave concordant results in 
96–97% of the cases. The ensemble prediction was beneficial as 
100% concordance with the reference typing was achieved with 
this method for all the three HLA class I genes.

Figure  2 and Table  1 show the results for class II genes. It 
is noteworthy that OptiType did not return any results for this 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 2 | Accuracy of human leukocyte antigen (HLA) interpretation programs to type HLA class II alleles in the Finnish Red Cross Blood Service dataset 
comprising 93 Finnish individuals. Concordance rate to standard clinical HLA typing together with ensemble results are shown for each program package.

TaBle 1 | Summary of accuracies of the HLA interpretation programs and the 
ensemble result based on Finnish Red Cross Blood Service dataset comprising 
93 samples.

Program concordant result Different accuracy %

Class I HLAssign 538 20 96.42
HLAreporter 533 25 95.52
ATHLATES 556 2 99.64
Optitype 555 3 99.46
Omixon Target 554 3 99.28
Ensemble 558 0 100

Class II HLAssign 703 45 93.98
HLAreporter 836 15 98.24
ATHLATES 703 147 82.24
Optitype na na na
Omixon Target 822 28 96.71
Ensemble 848 4 99.53

Concordance rates to standard clinical human leukocyte antigen (HLA) typing are 
shown.
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concordant. An HLA-DRB5*02:06; 02:02:01 heterozygosity was 
suggested in a sample with only one DRB5-associated class II 
haplotype, and an extra DRB4*03:01N was proposed in three 
samples with HLA-DRB1*01;15 haplotypes. It should be noted 
that a discordant result is not be interpreted as incorrect, as it only 
implies discordance to the reference result.

Since not all clinical HLA typings were performed to the 
same resolution level, we next tested whether the concordance 
rates would change if only those cases with a unique amino acid 
sequence assignments were included in the analyses. For HLA 
class I, the accuracies were in general slightly lower, except for 
ATHLATES, which improved its accuracy. The differences seen in 
class II gene results were negligible (data not shown).

The discordant results varied between the different software. 
However, some samples seemed to be problematic in particular 
loci as the majority vote gave more than two possible assignments 
or the consensus could be drawn only at the one-field resolution 
level (i.e., low-resolution assignment). As an example, there were 
three samples with a deviant majority vote result and a discordant 
HLA assignment with Omixon Target (Table 2). The discordant 
assignment could not be explained by low coverage or sequencing 
depth, as both alleles had an average coverage range of 97–100 
and average sequencing depth range of 118–322. Furthermore, 
two out of three discrepancies disappeared after analyzing the 
data with an updated version of the Omixon software, Omixon 
Explore (samples FRC13 and FRC37). In the only remaining 
discrepant sample (FRC36), the average sequencing depth of 
HLA-DQB1*03:22 was lower than that of HLA-DQB1*03:01:01 
(118 versus 173, respectively). The full sequence of DQB1*03:22 
allele is not known.

Among the 94 Finnish samples, one was found to have an LOH 
in the original clinical typings. Hence, it was not included in the 
comparison. In the clinical typings, three separate samples from 

set of genes; therefore, OptiType was not included in the final 
comparison. Even though HLAreporter was not among the best 
performing programs for class I genes, it performed best for 
class II genes, with a 98% concordance with the reference typing. 
Omixon also achieved an excellent result with a concordance 
rate of over 96%. It is noteworthy that ATHLATES gave a poor 
performance for the HLA-DPB1 gene. The program is clearly not 
designed for DPB1 typing using the default settings and instruc-
tions. However, as shown later, its performance can be enhanced 
significantly with certain modifications. HLA-DQB1 seemed 
to present a challenge for HLAssign, with a concordance rate 
of only approximately 80%. We did not investigate this further. 
The ensemble result for class II gave an excellent outcome with 
a 99% concordance rate. Four HLA-DRB3-5 alleles were not 
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TaBle 2 | Sequencing depth and coverage in three samples with discrepant results in human leukocyte antigen (HLA) interpretation by the Omixon Explore software.

exons 
covered

Depth range exon 1 exon 2 exon 3 exon 4 exon 5 exon 6 exon 7 Omixon 
Target

Omixon 
explore

reference 
method

all samples hla-DQB1 5 3–279 37–305 3–105 51–446 40–307 155–413 na na

Frc13

HLA-DQB1 allele 1 4 Average 134 167 89 148 178 – na na 02:01 02:01 02:01
HLA-DQB1 allele 2 4 Average 138 167 89 148 178 – na na 02:06 02:02 02:02

Frc36

HLA-DQB1 allele 1 4 Average 173 189 77 245 205 – na na 03:01 03:01 03:01
HLA-DQB1 allele 2 2 Average 118 – 77 158 – – na na 03:22 03:22 03:01

all samples hla-a 7 16–322 4–206 5–239 4–305 4–463 12–426 1–389 1–366

Frc37

HLA-A allele 1 6 Average 322 206 239 305 463 426 – 1 02:01 02:01 02:01
HLA-A allele 2 6 Average 322 206 239 305 463 426 – 1 02:197 02:01 02:01

Samples FRC13 and FRC36 had an HLA-DQB1 discrepancy and sample FRC37 had an HLA-A discrepancy.
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the individual were required to confirm the heterozygosity in the 
HLA-C locus. Obviously, higher proportions of malignant cells 
with an LOH hampered HLA determination. The NGS programs 
suggested homozygous HLA-C assignment, which was also sug-
gested by the majority vote. It is noteworthy that Omixon cor-
rectly suggested an unbalanced result in HLA-C locus, indicating 
a minor fraction of reads from another putative allele. We have 
recently reported (20) a systematic screening of LOH in patients 
waiting for stem cell transplantation due to hematological malig-
nancies. The sample from this study was not included in the study.

Modified aThlaTes
Improvements in the ATHLATES results could be achieved 
by using the Mosaik v2.2.3 (21) aligner as described in the 
ATHLATES user manual 1.0 with the addition of the -om 
option to redirect multiple mapped reads to a separate bam file. 
When these reads were excluded from the HLA typing phase 
substantially better results were obtained (details not shown), 
demonstrating that minor modifications to the programs may 
result in more accurate performance.

1000 genomes Data
As exome sequencing is probably the most widely used method 
for genomic sequencing, we tested the ability of the programs 
to determine HLA alleles from such non-MHC or non-HLA 
targeted data. We used 63 samples from the 1000 Genomes 
Project for which HLA alleles had been determined using Sanger 
sequencing (15). The selected samples were from three different 
ethnic groups (33 Finnish, 15 Puerto Ricans, and 15 Yoruba), and 
for each sample, the HLA types for five genes (HLA-A,-B, -C, 
-DQB1, and -DRB1) were available. Samples were not selected 
based on the date of sequencing, depth of sequencing, or any 
other quality measure as our purpose was to test the methods on 
standard, exome sequenced samples.

HLAssign was tested on several exome datasets, but it failed 
to produce calls, except for just a few genes in some samples. 
Thus, HLAssign was excluded from further analyses with the 

1000 Genomes Project data. In addition, we did not test the 
commercial Omixon Target program because it was no longer 
available but was replaced by the new software, Omixon 
Explore. Its performance with 1000 Genome samples has been 
published (19).

For both HLAreporter and ATHLATES, we used voting to get 
a single best allele or allele group pair for each gene. If this did not 
produce a consensus, the allele call was marked as “no call” and 
was counted as a typing error. If voting gave an HLA assignment 
at the one-field resolution level, it was also marked as “no call.” 
Missing calls were also counted as errors unless the reference 
typings indicated a missing allele as well, although there were no 
missing calls for any of the typed genes in the 1000 Genomes set.

Results for the comparisons are shown in Table 3. To estimate 
the relative accuracy between the programs for the cases where 
data quality and/or coverage were not a limiting factor, we identi-
fied the intersection of genes for which the different programs 
returned results and counted the accuracies for the resulting set 
of alleles. Both HLAreporter and ATHLATES missed a large 
fraction of the alleles, whereas OptiType gave calls for all the 
alleles, with an accuracy of over 98%. This difference may be 
related to the fact that HLAreporter requires higher read cover-
age than was available. In addition, the assembly based methods 
cannot cope with sequence gaps, whereas gaps present no serious 
problem for the mapping-based OptiType. One factor explaining 
the HLAreporter discrepancy between the accuracies presented 
here and those achieved by Huang et al. (18) may be that we did 
not select only the good quality samples from the 1000 Genomes 
collection.

DiscUssiOn

A major finding in this article was that none of the programs alone 
gave perfect assignments for all HLA genes based on sequencing 
platform that was not specifically designed for HLA typing but 
for other research purposes. In fact, some of the programs were 
clearly unsuitable for use with certain genes, particularly when 
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TaBle 3 | Summary of accuracies of the human leukocyte antigen (HLA) interpretation programs for 1000 Genomes samples.

Program number of alleles correct  
(all alleles)

accuracy  
(all alleles) (%)

Missing alleles  
(%)

correct  
(intersection N = 164)

accuracy  
(intersection) (%)

HLAreporter 630 202 32.06 190 (30.16) 91 55.49
ATHLATES 630 468 74.29 78 (12.38) 137 83.54
Optitype 378 372 98.41 0 (0.00) 161 98.17

Missing allele refers to either a completely missing call or one for which no consensus could be formed based on a list of detected alleles. Intersection denotes the set of alleles for all 
sample–gene pairs that had a non-missing typing in all tested typing programs. No results could be achieved using HLAssign.
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tested using the 1000 Genome data containing only exomes. 
This may be related to the relatively low sequencing depth of the 
1000 Genome samples as compared with the depth needed for 
clinical HLA typing. Second, none of the programs consistently 
outperformed the other programs in all the cases and genes. 
Therefore, it was not possible to conclude the best performing 
program. Finally, with the ensemble prediction method, the 
accuracy improved, reaching almost 100% concordance with the 
reference. However, it is noteworthy that the ensemble approach 
is not very practical in clinical settings, but it may be used for 
research purposes to get the best possible HLA determination. In 
cases with discrepancy in typing results, we could not conclude 
which of the allelic alternatives was the correct one, as it was no 
longer possible for us to have genuine control alleles by perform-
ing clinical grade NGS sequencing of these samples. Reliable 
HLA results can hence be achieved by using several programs 
and by applying the ensemble approach in the research context 
where the genome data are obtained without HLA genes being 
the primary analysis target.

The ensemble approach, however, has its drawbacks. All 
methods returning the same allele may lull us into a false sense 
of security regarding the allele call. It should be noted that even 
a unanimous result is not necessarily the right one, but can, for 
example, be caused by problems in sequencing or in the refer-
ence allele database. Use of sequencing methods that are based on 
short sequencing reads results in sequence alignment problems 
when applied to allele interpretation of the highly homologous 
HLA alleles and genes. Also the data with short reads and low 
read depth are very challenging for the highly polymorphic genes, 
such as HLA genes, resulting in ambiguous HLA assignments. 
This has been solved in the commercial HLA typing kits where 
read lengths are several hundred nucleotides and the sequencing 
depth is usually several thousands. We also noted that some of 
the problems with accuracy were associated with the properties 
of the software. A good example is shown in Table 2 in which the 
updated version of the Omixon Explore program could resolve 
two of the three discrepancies found using the older version 
Omixon Target. Furthermore, this example shows the problems 
related to partial sequences known of some alleles: only exons 2 
and 3 sequences of DQB1*03:22 are known. We were also able 
to show that the ATHLATES program could be adjusted to give 
much more reliable results by using modifiers as described by Lee 
et al. (21). We assume that similar modifications could be done to 
other programs as well.

The results presented here for some of the programs were likely 
worse than the results that might be achieved by an experienced 

HLA professional looking at the list of reported alleles and mak-
ing interpretations based on the population allele or haplotype 
frequencies. Instead, we used a simple minded approach and 
compared the programs as instructed by their manuals and 
applied default parameters. In addition, in cases where a program 
gave multiple alternatives with equal scores, we did not utilize 
the reference typing or population frequencies to determine the 
apparently correct alternative. In the real research project, it cer-
tainly is wise to do some interpretation based on prior population 
data.

Some differences in the relative performances of the programs 
might be due to the various versions of the IPD-IMGT/HLA 
database they use. However, we did not try to unify the versions 
since the programs use their own, slightly modified format of the 
database and because the programs were all released within a 
short period. The IPD-IMGT/HLA database is an obvious choice 
for reference. However, the sequences therein have been found to 
contain some errors (8), and we do not know whether some of the 
programs utilize the corrected sequences.

Determination of HLA class I alleles from the 1000 Genomes 
exome NGS data has been reported earlier (19). They reported 
an accuracy of over 90% between the NGS and Sanger data. In 
the case of the 1000 Genomes samples, it is notable that in our 
study most of the tested programs returned a significant number 
of missing results. A missing result may indicate that the gene 
was missing or that the quality of the data was insufficient for the 
program. The latter is a known problem because the targeting 
baits for exome sequencing are usually designed for the human 
reference genome, ignoring the very high variability in the HLA 
region (8). However, OptiType retained a very high accuracy even 
for exome-only data. Therefore, exons 2 and 3 for HLA class I 
genes were likely well captured in the exome sequences of the 
1000 Genomes Project. Alternatively, even though the exons 
might not be fully captured, OptiType is still able to make the 
most of the data, whereas some other programs had filtering cri-
teria that could not be met when the exons were sequenced only 
partly. One such program is HLAssign where the cDNA allele 
sequences need to be fully covered in the alignment.

The results of this study clearly indicate that selecting a pro-
gram for HLA allele determination based on NGS data that were 
not designed for HLA typing purposes is not simple. This process 
requires a good understanding of the type of NGS data produced 
and the HLA allele frequencies in the study population. Some 
modifications in the programs, the adoption of an ensemble 
approach or testing with multiple programs may be needed for 
accurate performance.
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