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Secondary lymphoid organs are integral to initiation and execution of adaptive immune 
responses. These organs provide a setting for interactions between antigen-specific 
lymphocytes and antigen-presenting cells recruited from local infected or inflamed 
tissues. Secondary lymphoid organs develop as a part of a genetically preprogrammed 
process during embryogenesis. However, organogenesis of secondary lymphoid tissues 
can also be recapitulated in adulthood during de novo lymphoid neogenesis of tertiary 
lymphoid structures (TLSs). These ectopic lymphoid-like structures form in the inflamed 
tissues afflicted by various pathological conditions, including cancer, autoimmunity, 
infection, or allograft rejection. Studies are beginning to shed light on the function of 
such structures in different disease settings, raising important questions regarding their 
contribution to progression or resolution of disease. Data show an association between 
the tumor-associated TLSs and a favorable prognosis in various types of human cancer, 
attracting the speculation that TLSs support effective local antitumor immune responses. 
However, definitive evidence for the role for TLSs in fostering immune responses in vivo 
are lacking, with current data remaining largely correlative by nature. In fact, some more 
recent studies have even demonstrated an immunosuppressive, tumor-promoting role 
for cancer-associated TLSs. In this review, we will discuss what is known about the 
development of cancer-associated TLSs and the current understanding of their potential 
role in the antitumor immune response.

Keywords: tertiary lymphoid structures, cancer immunotherapy, high endothelial venules, lymphoid neogenesis, 
tumor microenvironment

iNTRODUCTiON

Secondary lymphoid organs (SLOs) primarily serve to initiate adaptive immune responses to exog-
enous pathogens. For this, SLOs provide a location for interactions between rare antigen-specific 
naive lymphocytes and antigen-presenting cells draining from local tissues. The importance of 
SLOs in mediating homeostatic lymphocyte proliferation and rapid recall responses to returning 

Abbreviations: SLO, secondary lymphoid organ; TLS, tertiary lymphoid structure; MALT, mucosal-associated lymphoid tissue; 
LN, lymph node; PP, Peyer’s patch; NALT, nasal-associated lymphoid tissue; BALT, bronchial-associated lymphoid tissue; CCL, 
CC motif chemokine ligand; CCR, CC-chemokine receptor; CXCL, CXC motif chemokine ligand; CXCR, CXC-chemokine 
receptor; FDC, follicular dendritic cell; HEV, high endothelial venule.
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antigens have long been appreciated (1, 2). Also it is now well 
recognized that SLOs contribute to peripheral immune toler-
ance to self-antigens and commensals by regulating trafficking 
of immunosuppressive Foxp3+ regulatory T cells (Tregs), major 
cellular mediators of peripheral tolerance, and facilitating the 
deletion of autoreactive T  cells by SLO-resident extrathymic 
Aire-expressing cells (3, 4).

Canonical SLOs comprise the lymph nodes (LNs), the white 
pulp of the spleen, the appendix (in humans), and mucosal-
associated lymphoid tissues (MALTs) including intestinal Peyer’s 
patches (PPs) and the tonsils. SLOs are strategically placed at 
distinct, predetermined sites throughout the body, together 
forming a sophisticated network that facilitates continual 
immune surveillance of interstitial areas, epithelial and mucosal 
surfaces, and the blood. Individual SLOs have highly organized, 
specialized architecture that is specifically adapted to promote 
the immune cell interactions necessary for immune response 
initiation (2, 5, 6).

The development of canonical SLOs is a genetically prepro-
grammed process initiated during embryogenesis. Although LNs 
and PPs develop prenatally, the organogenesis of MALT, such as 
bronchial-associated lymphoid tissue (BALT) and more plastic 
lymphoid tissues, including cryptopatches and isolated lymphoid 
follicles in the intestine, occurs postnatally. Thus, there exists a 
continuum of lymphoid tissues, from canonical, constitutive SLOs 
preprogrammed during ontogeny to highly plastic, inducible and 
transient lymphoid structures that form later in life (2, 7).

SLO organogenesis is recapitulated in the de novo develop-
ment of tertiary lymphoid structures (TLSs) under pathological 
circumstances (6, 8, 9). TLSs, also termed ectopic lymphoid-like 
structures or tertiary lymphoid organs, form at the site of infec-
tion or chronic inflammation and have been noted in autoim-
mune disease, allograft rejection, and more recently cancer (2, 6, 
10). Crucially, the clinical significance of TLSs is thought to vary 
from deleterious to protective, emphasizing the need to better 
understand the formation and function of these structures, which 
may be contextually different, before clinical targeting.

In this review, we will compare and contrast TLS neogenesis 
with the development of a prototypic SLO, the LN. Importantly, 
we will discuss current knowledge surrounding the function of 
TLSs, specifically within cancer, and consider the implications for 
the use of next-generation therapeutics.

COMPOSiTiON AND ORGANiZATiON  
OF A TLS COMPAReD TO A PROTOTYPiC 
SLO: THe LN

Lymph nodes comprise an organized collection of immune and 
stromal cells encapsulated by a fibrous capsule and an underlying 
subcapsular sinus (SCS; Figure 1) (6, 11, 12). Cells are topologi-
cally segregated into a cortex of densely packed B cells and follicu-
lar dendritic cells (FDCs) arranged into discrete primary follicles; 
the paracortex that accommodates less densely packed T  cells, 
dendritic cells (DCs), and fibroblastic reticular cells (FRCs); and 
the medulla, composed of lymphatic medullary cords, separated 
by lymph-filled cavities called medullary sinuses. After antigen 

exposure, B cells proliferate extensively, giving rise to secondary 
follicles [germinal centers (GCs)] (6). Alongside FDCs and FRCs, 
marginal reticular cells (MRCs) constitute a third stromal cell 
network of the LN, situated just under the SCS (13, 14).

LNs contain two vasculature systems: lymphatic vasculature 
and high endothelial venules (HEVs). Afferent lymphatic 
vessels deliver lymph, containing antigens and immune cells, 
primarily DCs, to the SCS (11, 15). From the SCS, lymph perco-
lates through cortical and medullary sinuses and leaves the LN 
via the efferent lymphatic vessel, which delivers lymph to the 
venous blood (6, 11). HEVs are highly specialized postcapillary 
venules found in the blood vascular bed within the paracorti-
cal region of LNs, the main function of which is homeostatic 
delivery of naive and central memory lymphocytes from the 
adjacent bloodstream. Endothelial cells lining HEVs have a 
distinct plump, cuboidal morphology and express highly spe-
cific addressin molecules, collectively termed peripheral node 
addressins (PNAds) (11, 16). Lymphocytes extravasate through 
HEV walls according to a multistep adhesion cascade, dictated 
by the expression of adhesion molecules and chemokines on 
HEV endothelial cell surfaces (11, 17).

The term “TLS” can refer to structures of varying organiza-
tion, from simple clusters of lymphocytes, to sophisticated, 
segregated structures highly reminiscent of SLOs (10, 18–22). 
TLSs form at localized sites of microbial infection or chronic 
inflammation and have been noted in many autoimmune dis-
eases and more recently cancer (10). De novo development of 
TLSs is referred to as ectopic lymphoid neogenesis or lymphoid 
neoorganogenesis (9, 10).

A notable difference between LNs and TLSs is the fact that the 
former are encapsulated, while the latter represent a congrega-
tion of immune and stromal cells confined within an organ or 
tissue. Crucially, while SLO development represents a genetically 
preprogrammed process occurring during ontogeny, TLSs form 
in response to chronic inflammatory cues. Furthermore, while 
SLOs form at predetermined specified anatomical locations, TLSs 
typically form in non-lymphoid organs and exhibit plasticity, as 
they can present transiently, becoming resolved after the elimina-
tion of antigen (2, 6). TLS development has been documented 
in practically all organ settings under conditions of chronic 
inflammation, including the heart, kidneys, intestine, vasculature 
system, central nervous system, and bone marrow. The clinical 
diseases and experimental models in which TLSs have been 
documented are extensively reviewed in Ref. (10).

Pathologists use specific criteria to define TLSs. According to 
these criteria, TLSs contain distinct T and B cell compartments, 
FRC networks and PNAd+ HEVs within T cell zones, FDCs and 
evidence for class switching and reactive GCs in B cell zones, and 
expression of the enzyme activation-induced cytidine deami-
nase (AID); an enzyme expressed in GC B cells required for the 
initiation of somatic hypermutation and immunoglobulin gene 
class switching (18, 23). Like LNs, TLSs have also been shown 
to contain lymphatic vessels, although the role of these vessels 
and whether they resemble afferent or efferent lymphatics of LN 
vasculature is as yet unknown (4–6). A set of criteria to define 
bona fide TLSs were also recently proposed by Fridman and 
colleagues (7).
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FiGURe 1 | The structure of the lymph node. Lymph nodes comprise a collagen-rich fibrous capsule and an underlying subcapsular sinus (SCS). Cells are 
segregated into (1) the cortex, consisting of B cells, T follicular helper cells, and follicular dendritic cells (FDCs) arranged in primary follicles, in which B cells survey 
antigens presented on the FDC stromal network; and (2) the paracortex, which accommodates T cells, dendritic cells (DCs), and fibroblastic reticular cells (FRCs) 
that form stromal cell networks and reticular fibers, along which T cells and DCs migrate. Upon antigen exposure and stimulation, B cell proliferation within the 
primary follicle gives rise to germinal centers, containing antibody-producing plasma cells. The inner medulla is composed of lymphatic tissues (medullary cords) 
separated by medullary sinuses consisting of lymph. FRCs express CCL19 and CCL21, whereas CXCL13 is expressed by FDCs. Marginal reticular cells (MRCs) 
form a third stromal cell network, situated just under the SCS. Lymph nodes contain lymphatic vasculature and high endothelial venules (HEVs). Afferent lymphatic 
vessels deliver lymph containing antigen and immune cells, and HEVs are specialized postcapillary venules that primarily deliver naive and central memory 
lymphocytes.
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However, many groups apply the term TLS to less well-
organized structures (18). Here, we will also use the term “TLS” 
more loosely. The observed heterogeneity in TLS architecture 
and organization could reflect disease stage at which biopsies 
are taken and could therefore represent sampling at varying 
phases of TLS development, maturation, and/or resolution. 
Furthermore, we believe that the potential functional resem-
blance that TLS share with canonical SLOs could be more 
relevant than precise anatomical structure: these structures 
have been associated with either deleterious or protective 
clinical outcomes in human patients, leading to the speculation 
that TLSs can generate functional adaptive immune responses 
capable of influencing the progression of disease (10). This will 
be discussed in detail later.

TLSs iN CANCeR

Tertiary lymphoid structures were initially described in the 
context of non-neoplastic chronic inflammatory conditions, 
including autoimmune diseases, infections, and idiopathic dis-
eases (6, 18, 21). Neoplastic malignancies share many features 
with environments of chronic inflammation, including the chro-
nicity of inflammation itself. However, malignant tumors differ 
from chronic inflammatory environments in one significant 
aspect that many would assume may preclude the formation 
of TLSs: the highly immunosuppressive tumor microenviron-
ment (24, 25). Yet, the occurrence of TLSs of varying degrees of 
organization has been reported in patients afflicted by multiple 
types of primary and metastatic cancer (Table 1).
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TABLe 1 | Tertiary lymphoid structures and high endothelial venules in human cancer.

Cancer type TLS features Location Prognostic value References

Lung HEVs NS ND (26)

Lung 
(non-small-cell)

Compartmentalized T and B cell zones, mature DCs,  
FDCs, GCs, lymphatic vessels, and HEVs

NS Favorable (OS, DSS, and DFS) (27–29)

Colorectal 
carcinoma

T cells, B cells, and mature DCs Extratumoral (at invasive margin of 
tumor stroma)

ND (30)

T cells, B cells, and HEVs Extratumoral (ahead of invasive 
margin of tumor stroma)

No association (OS)/detrimental 
(disease stage)

(31)

Compartmentalized T and B cell zones, GCs,  
FDCs, HEVs, lymphatic vessels, and 
lymphoid chemokine expression

Extratumoral (at invasive margin of 
tumor stroma)

Favorable (DFS, risk of relapse) (32)

T cells and mature DCs NS Favorable (percent survival and CD3+ 
T cell density within TLS)

(33)

Compartmentalized T and B cell zones, GCs,  
FDCs, and DCs

Extratumoral (at invasive margin of 
tumor stroma) and intratumoral

Favorable (OS and 12-gene TLS 
signature)

(34)

Compartmentalized T and B cell zones, mature DCs,  
and FDCs

Extratumoral (at invasive margin 
of tumor stroma and adjacent to 
tumor nests)

ND (35)

HEVs NS ND (26)

Colorectal 
carcinoma lung 
metastases

T cells, B cells, mature DCs, NK cells, and HEVs Extratumoral (within tumor stroma) Favorable (OS and CD8+ and mature 
DC infiltration in TLS)

(36)

Breast 
carcinoma

T cells and mature DCs Extratumoral ND (37)

Compartmentalized T and B cell zones, GCs,  
FDCs, and PCs

Extratumoral (stromal area 
adjoining tumor nests)

ND (38)

Compartmentalized T and B cell zones, FDCs, 
macrophages, Tfh cells, and GCs

Extratumoral (adjacent to the 
tumor bed)

Favorable (DFS and 8-gene  
Tfh signature)

(39)

T cells, B cells, PCs, and FDCs NS ND (40)

T cells, B cell, mature DCs, Foxp3+ Tregs, and HEVs Extratumoral (tumor stroma) Favorable (risk of relapse, MFS,  
DFS, and OS)

(26, 41)

T cells, mature DCs, and Foxp3+ Tregs Extratumoral Detrimental (RFS and OS) (42)

Compartmentalized T and B cell zones, GCs,  
FDCs, Tfh cells, and HEVs

Extratumoral Detrimental (tumor grade) (43)

T cells, B cells, and HEVs NS Favorable (pCR) (44)

Melanoma T cells, B cells, HEVs, and mature DCs Extratumoral (at invasive margin of 
tumor stroma)

Favorable (signs of tumor regression, 
low Clark level of invasion, and thin 
Breslow thickness)

(45)

Activated T cells and mature DCs Extratumoral (tumor stroma) Favorable (OS) (46)

Compartmentalized T and B cell zones, and CD86+  
antigen-presenting cells

Intratumoral Favorable (OS and 12-gene  
TLS signature)

(47)

Lymphocytes and HEVs NS Favorable (tumor regression and  
HEV density)

(48)

Prostate cancer Compartmentalized T and B cell zones, FDCs, CD68+ 
myeloid cells, T-bet+ Th1 T cells, Foxp3+ Tregs, mature 
DCs, HEVs, lymphatic vessels, and PCs

Intratumoral (Phenotypic changes in TLS 
associated with evanescent prostate 
carcinomas)

(49)

Cutaneous 
melanoma 
metastases

T cells, B cells, mature DCs, FDCs, HEVs, PCs,  
and GCs

Extratumoral (tumor stroma) ND (50)

Ovarian HEVs NS ND (26)

CD8+ T cells, and antigen experienced atypical  
memory B cells

Extratumoral (tumor stroma) and 
intratumoral (tumor epithelium)

Favorable (DSS and CD8+/CD20+ 
density)

(51)

Compartmentalized T and B cell zones, GCs,  
FDCs, HEVs, DCs, PCs, and Tfh cells

Extratumoral (tumor stroma) Favorable (DSS and CD8+/CD4+/
CD20+/PC density)

(52)

(Continued)
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Cancer type TLS features Location Prognostic value References

Pancreatic 
ductal 
carcinoma

T cells, B cells, mature DCs, and HEVs Intratumoral and extratumoral Favorable (intratumoral TLS with  
OS and DFS)

(53)

Hepatocellular 
carcinoma

T cells, B cells, neutrophils, NK cells,  
macrophages, Foxp3+ Tregs, FDCs, and HEVs

Extratumoral (non-neoplastic liver 
parenchyma)

Detrimental (decreased OS/
increased risk for late recurrence and 
histological/12-gene TLS score)

(54)

Testicular 
seminoma

T cells, B cells, and HEVs Extratumoral (among tumor 
epithelial cell nests)

ND (55)

Primary clear 
cell renal cell 
carcinoma

T cells, mature DCs, and HEVs Extratumoral (at invasive margin) Favorable (TLS-associated mature DC 
density with OS and DFS for CD8high 
patients)

(56)

Diffuse 
sclerosing 
variant of 
papillary thyroid 
carcinoma

T cells, B cells, GCs, and HEVs Extratumoral (within tumor stroma) ND (57)

TLS, tertiary lymphoid structure; DC, dendritic cell; Treg, regulatory T cell; FDC, follicular dendritic cell; GC, germinal center; HEV, high endothelial venule; DFS, disease free survival; 
DSS, disease specific survival; MFS, metastasis free survival; OS, overall survival; pCR, pathologic complete response; RFS, relapse free survival;  ND, not determined;  
NS, not specified.

TABLe 1 | Continued
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Tumor TLSs are largely associated with a favorable clinical 
prognosis for patients for a number of different solid tumor 
types. In a retrospective study of 74 early-stage non-small-cell 
lung cancer (NSCLC) patients, Dieu-Nosjean and colleagues 
were the first to report the presence of TLSs in patients with 
lung cancer. The TLSs, referred to as tumor-induced BALT 
(Ti-BALT), consisted of an organized distribution of DC and 
T cell clusters and B cell follicles. The researchers demonstrated 
that the density of mature DC-LAMP (CD208)+ DCs, used 
as a marker of Ti-BALT, correlated with increased overall, 
disease-specific and disease-free survival (27). The presence 
of intratumoral HEVs alone is a strong prognostic marker for 
various types of human cancer, too. Martinet and colleagues 
demonstrated a significant correlation between the presence of 
intratumoral HEVs located within lymphocyte-rich clusters and 
increased disease-free, metastasis-free, and overall survival rates 
in a retrospective study of 146 invasive breast cancer patients 
(26). Furthermore, the same group later found an association 
between tumor-associated HEVs, infiltrating lymphocytes, and 
tumor regression in malignant melanoma (45). Multiple other 
studies have provided evidence for an association between TLSs, 
or HEVs in the absence of TLSs, in tumors and favorable clinical 
outcome (Table 1).

However, the relationship between tumor-associated TLSs 
and patient outcome appears to depend on many parameters, 
including cancer type and disease stage. In our own studies, the 
majority of colorectal cancer-associated HEVs are found at the 
tumor invasive margin, where they are associated with lymphoid 
aggregates containing CD20+ B cells and CD3+ T cells. However, 
while extratumoral HEV density correlated significantly with 
numbers of T  cells within the invasive margin, the correlation 
with T  cell densities in the tumor center was weak. In fact,  
lymphoid aggregates were associated with more advanced  
(Duke’s C stage) disease and were not associated with a more 

favorable prognosis; indeed, there was a trend toward higher 
numbers of lymphoid aggregates in those patients who did not 
survive >5 years posttumor resection relative to those who did 
(31). In addition, quantification of TLSs within the non-neoplastic 
liver parenchyma of 66 patients who had undergone resection for 
hepatocellular carcinoma (HCC) revealed an increased risk for 
late tumor recurrence and lower overall survival for patients with 
a high histological TLS score (54). Furthermore, tumor-associated 
TLS formation was associated with a higher tumor grade in 290 
primary breast carcinoma patients (43). TLSs or isolated PNAd+ 
HEVs have also been documented in diverse mouse models of 
cancer, including lung adenocarcinoma, HCC, melanoma, and 
fibrosarcoma (54, 58–61). As is the case for human cancer, the 
relationship between TLSs/HEVs and tumor control appears to 
be variable: data evidencing these disparate roles will be discussed 
in detail later.

DeveLOPMeNT OF TLSs

Studies of the ontogenic development of SLOs provide a 
paradigm for understanding TLS formation. Despite structural 
differences between canonical SLOs and TLSs, we now know that 
many molecular mechanisms underlying SLOs initiation, devel-
opment, and maintenance are shared with TLSs formation (10) 
(Figure 2). For instance, chronically inflamed tissues resident to 
TLSs are often characterized by the expression of homeostatic 
chemokines and cytokines reminiscent of SLOs (62). However, a 
detailed understanding of the exact mechanisms by which TLSs 
form in various pathogenic circumstances, in particular cancer, 
is still lacking.

Control of TLS/Hev Neogenesis by Tregs
A key cellular population recurrently suggested to play a regula-
tory role in ectopic TLS and/or HEV neogenesis is Foxp3+ Tregs. 
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FiGURe 2 | Secondary lymphoid organ and tertiary lymphoid structure development. (A) During secondary lymphoid organ development, precursor lymphoid tissue 
inducer (pre-LTi) cells are initially attracted to the lymph node anlagen from adjacent blood vessels by CXCL13 secreted by resident mesenchymal cells. Clustering of 
these first cells facilitates crosstalk leading to their maturation into mature LTi cells, which express surface LTα1β2. Interaction of LTi cells with LTβR expressing 
stromal cells leads to their differentiation into lymphoid tissue organizer (LTo) cells. Mature LTo cells express chemokines as a result of LTβR triggering, which attract 
further pre-LTi cells and other hematopoietic cells to the developing lymph node anlagen. Also as a result of LTβR triggering, LTo cells express adhesion molecules, 
which retain infiltrating hematopoietic cells, eventually leading to lymph node growth. Finally, the developing lymph node fosters formation of high endothelial venules 
(HEVs), and expression of lymphangiogenic factors aids connection of the lymph node to the surrounding lymphatic vasculature. (B) In tertiary lymphoid structure 
neogenesis in tumors, the initiating cues are likely to be of inflammatory origin and may differ between different tumors. These cues attract circulating lymphocytic 
cells, such as T lymphocytes and NK cells, which have been shown to initiate HEV development via secretion of TNFα or LTα3. These cytokines may act directly on 
TNFR expressing endothelial cells in the tumor microenvironment, causing differentiation of already existing tumor vasculature into specialized HEVs. Whether this 
event precedes tertiary lymphoid structure neogenesis in tumors is currently unknown. The signals involved in SLO development are also shared with TLS formation, 
including homeostatic chemokines and adhesion molecules. Little is currently known about the involvement of lymphatic vasculature in TLS development or 
maintenance. Foxp3+ regulatory T cells (Tregs) exert a negatively regulatory role over HEV/TLS development in tumors, potentially via direct inhibition of initiating 
hematopoietic cells including T cells.
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Tregs are highly immunosuppressive T  cells that maintain 
immune homeostasis and promote immunological tolerance to 
self-antigens. Tregs prevent autoimmunity by keeping in check 

the activation and expansion of overreactive immune cells, 
therefore limiting excessive and harmful immune responses 
(63, 64).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Colbeck et al. TLSs in Cancer

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1830

Regulatory T cells are highly enriched in tumors, where they 
impinge on antitumor immune responses (65, 66). In line with 
this negative regulatory role, several seminal studies have dem-
onstrated the prevention of tumor development or regression of 
established tumors, following efficient and selective depletion of 
Foxp3+ Tregs (67–69). In our own studies, Treg ablation in the 
methylcholanthrene (MCA) carcinogen-induced fibrosarcoma 
mouse model of carcinogenesis resulted in profound activation of 
Foxp3− CD4+ and CD8+ T cells and an overall highly significant 
reduction in tumor growth rate. However, the response to Treg 
loss was highly variable, with a large proportion of Treg-depleted 
animals displaying no significant alteration in tumor control. 
Critically, successful tumor control was determined by the extent 
of T cell infiltration into the tumor, which was in turn dictated 
by the development of ectopic, isolated PNAd+ HEVs within 
the tumor mass. HEVs were only ever observed in a proportion 
of tumors following Treg depletion, and there was an absolute 
concordance between HEV presence, high numbers of tumor-
infiltrating lymphocytes (TILs), and tumor growth control. In 
our hands, therefore, depletion of immunosuppressive Tregs is a 
prerequisite for the development of isolated intratumoral HEVs 
in MCA-induced fibrosarcomas, implying that Tregs can inhibit 
neogenesis of HEVs, and possibly TLSs, in tumors (61).

Indeed, highly organized inducible BALT (i-BALT) contain-
ing PNAd+ HEVs, which normally only develop in response to 
inflammatory insult in wild-type animals, spontaneously develop 
in lung tissue of germ-free CCR7−/− mice, which are defective 
in Treg-mediated immune regulation (70, 71). Adoptive transfer 
of wild-type but not CCR7−/− Tregs into CCR7- deficient hosts 
largely interrupted i-BALT formation, and homing of Tregs to 
peripheral lymphoid organs was essential for their prevention of 
i-BALT formation (70). A separate study reported the develop-
ment of spontaneous i-BALT in IL-2-deficient animals, which are 
devoid of Tregs (72). Furthermore, Foo and colleagues showed 
that i-BALT that form in response to LPS exposure in the lung 
was driven by neutrophils and negatively regulated by Tregs 
(73). Such studies imply a crucial regulatory role for Tregs in the 
prevention of ectopic lymphoid neogenesis. It will be important 
in the future to define the mechanisms by which Tregs suppress 
HEV and/or TLS formation in different scenarios if we wish to 
develop therapeutic strategies to manipulate these ectopic lym-
phoid structures.

Lymphotoxin/Tumor Necrosis Factor (TNF) 
Signaling in SLO Development and TLS 
Neogenesis
A body of work has demonstrated that the successful develop-
ment of LNs critically depends on coordinated interactions 
between stromal lymphoid tissue organizer (LTo) cells and 
hematopoietic lymphoid tissue inducer (LTi) cells. These 
interactions occur via signaling between the lymphotoxin (LT) 
α1β2 ligand, expressed on the surface of LTi cells, and the LTβ 
receptor (LTβR), expressed on LTo cells [reviewed in Ref. (2, 
74, 75)]. Signaling through the LTβR on gp38 (podoplanin) 
expressing LTo cells results in the expression of lymphoid 
chemokines CCL19, CCL21, and CXCL13, which attract 

migrating hematopoietic cells. Also as a result of LTβR signaling, 
LN stromal cells express adhesion molecules, including vascular 
cell adhesion molecule-1 (VCAM-1), intercellular adhesion 
molecule-1 (ICAM-1), and mucosal vascular addressin cell 
adhesion molecule-1 (MAdCAM-1), which retain the newly 
arriving hematopoietic cells, leading to LN growth [reviewed in 
Ref. (2)]. Furthermore, LTβR signaling induces the expression 
of vascular growth factors such as the lymphangiogenic factor, 
VEGF-C, by LTo cells, which aids connection of the developing 
LN to the surrounding lymphatic vasculature (76). Finally, the 
developing LN becomes colonized by infiltrating lymphocytes, 
which are guided to specific zones by homeostatic chemokine 
expression, giving rise to a highly organized LN [reviewed in  
Ref. (2)]. Embryonic venous blood vessels play a key role in 
lymphoid organogenesis by delivering LTi cells, which initiate 
development, as well as other cellular subsets that mature and 
maintain HEVs (77). Interestingly, some recently published data 
have challenged certain aspects of this long accepted scheme and 
will be discussed in detail later.

Lymphotoxin signaling also appears to play a central role in 
TLS neogenesis. Overexpression of Ltα in the kidney and pan-
creas using the RIP tissue-specific promoter results in chronic 
inflammation accompanied by highly organized TLS induction. 
This study by Nancy Ruddle’s group was one of the first to 
demonstrate the involvement of the same signaling molecules, 
namely Ltα, that control SLO development in TLS formation 
(9). The mechanisms by which Ltα directs embryonic lymphoid 
organogenesis and TLS neogenesis in the context of chronic 
inflammation seem similar, particularly in regard to the induc-
tion of chemokine expression (78).

Studies have also strongly implicated LTβ and LTβR in TLS 
neogenesis. Pancreatic TLSs in RIPLTαβ transgenic animals 
displayed more distinct T and B  cell zone separation, higher 
chemokine expression, luminal expression of PNAd on HEVs, 
and increased infiltration of naive L-selectin+ lymphocytes, 
relative to RIPLTα mice (79). Furthermore, the loss of LTα1β2-
LTβR signaling resulted in reversion of many aspects of 
pancreatic TLS formation, including HEV dedifferentiation, 
stromal network disruption, and loss of chemokine expression 
(80). These and multiple other studies have strongly implicated 
LTα1β2-LTβR signaling in TLS neogenesis at sites of chronic 
inflammation, particularly in the development and mainte-
nance of specific TLS structures, namely FDC networks and 
HEVs (19, 80–86).

Signaling via the LTβR has also been implicated in neogenesis 
of TLSs and/or HEVs in cancer. Targeting of an antibody-LTα 
fusion protein directly to mouse melanomas resulted in neogen-
esis of TLS-like lymphoid aggregates including PNAd+ HEVs (87). 
Martinet and colleagues demonstrated that DC-LAMP+ DCs 
were the major producers of LTβ in human breast tumors and 
that LTβ is overexpressed specifically in tumors displaying a high 
density of HEVs (41).

The alternative LTβR ligand, LIGHT, is thought to play a 
redundant role specifically in mesenteric LN development (88). 
LIGHT has also been implicated in neogenesis of cancer-associ-
ated TLSs (89). In breast cancer patients, enhanced expression 
of LIGHT in ectopically formed TLSs in breast tissue relative to 
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SLOs implies a role for this TNF superfamily member in driving 
cancer-associated TLS formation (90). Similarly, the expression 
of LIGHT in a fibrosarcoma cell line resulted in upregulation 
of CCL21 and MAdCAM-1, facilitating the recruitment of 
vast numbers of naive CD8+ T  lymphocytes, which were then 
sufficiently activated in  situ to facilitate rejection of established 
tumors (91). Furthermore, a very recent study demonstrated the 
ability of LIGHT, if targeted to tumor vasculature by the use of 
a vascular targeting peptide (VTP), to normalize aberrant blood 
vessels, induce de novo TLS neogenesis, and facilitate influx of 
endogenous T  cells. In combination with checkpoint inhibitor 
immunotherapy and vaccination, the LIGHT-VTP agent ena-
bled the efficient destruction of tumors previously refractory to 
immunotherapy (92). These results suggest that, at least in some 
malignant contexts, LIGHT represents an initiating signal to 
induce TLS formation in tumors.

Interestingly, studies have demonstrated that TLS neogenesis 
can be dictated by different signaling circuitries to those clas-
sically associated with SLO development. Moyron-Quiroz and 
colleagues cataloged the presence of primitive TLSs, lacking FDC 
networks and HEVs, in Ltα-deficient mice, which lack LNs and 
PPs (93–96). More recent studies of tumor-associated TLSs in 
mouse models of cancer have also suggested a potential departure 
from canonical SLO development. Peske and colleagues noted 
the presence of HEV-like vasculature expressing PNAd and 
CCL21 within lymphocytic aggregates in several murine tumors 
growing in different anatomical locations in wild-type mice (60). 
Surprisingly, the authors found that blockade of LTβR signaling in 
B16-OVA tumor bearing animals had no effect on PNAd expres-
sion on tumor vasculature and concurrent trafficking of naive 
OT-I cells into tumors was even enhanced, implicating no loss of 
HEV function. Instead, the researchers found that homotrimeric 
LTα3, but not TNF, signaling via TNFRs was responsible for the 
induction of HEV-like vasculature in tumors (60).

Indeed, our own studies of Treg-depleted MCA-induced fibro-
sarcomas underpin this reliance on TNFR signaling in ectopic 
HEV neogenesis in tumors. Surprisingly, treatment of animals 
with an antagonistic LTβR.Fc fusion protein increased intratu-
moral HEV total area and maintained numbers of infiltrating 
T cells, suggesting preserved function of the vessels. In striking 
contrast, administration of a TNFR.Ig fusion protein, anti-LTα 
monoclonal antibody, or anti-TNFα monoclonal antibody led to 
a drastic decrease in intratumoral HEV total area, with concomi-
tant effects on T cell infiltration. Therefore, we found that, similar 
to the case of tumor-associated HEV development in the presence 
of Treg, TNFR signaling predominates as the governing signaling 
circuitry modulating HEV development in tumors following Treg 
depletion (97).

Chemokine involvement in SLO 
Development and TLS Neogenesis
Precursor LTi (pre-LTi) cells that seed the LN anlagen are ini-
tially attracted by CXCL13 expressed by local stromal cells (74, 
98–100). Mice genetically deficient in CXCL13 or its receptor, 
CXCR5, display failed LTi clustering and an absence of several 
peripheral LNs. Lymphatic endothelium-derived CCL21 is able 

to compensate for the lack of CXCL13 expression in the develop-
ment of certain LNs by attracting the first LTi cellular clusters 
(99, 101). However, in general, the CCR7/CCL21 ligand receptor 
pair seems to contribute only an additive affect to the attractive 
function of CXCL13, as all LNs form in a normal fashion in mice 
deficient for the CCR7/CCL21 axis but competent in CXCR5/
CXCL13 signaling (102).

Chronically inflamed tissues containing TLSs display sig-
nificantly increased expression levels of homeostatic chemokines 
involved in SLO development, including CXCL12, CXCL13, 
CCL19, and CCL21. All four lymphoid chemokines are individu-
ally capable of inducing TLS formation when overexpressed using 
the RIP in the pancreas (80, 103–106). Conversely, the loss of 
CXCL13, CXCR5, or CCR7 prohibits the formation of TLSs in 
disease settings (107–109).

However, the TLSs formed following forced expression of these 
various chemokines differ significantly in terms of size, cellular 
composition, and structural organization, revealing defined roles 
for these chemokines in governing organization and thereby the 
functionality, of TLSs. For instance, while CXCL13 and CCL21 
function in terms of segregation of T and B cells into distinct com-
partments, CCL19 and CXCL12 primarily seem to facilitate lym-
phocyte recruitment and positioning of various cell types within 
the organized TLS. These chemokines seem to function upstream 
of LTα1β2 signaling, as shown by induction of LTα1β2 expression 
on T or B cells by CCL19, CCL21, or CXCL13 (80, 103). However, 
the anatomical site of TLS formation and/or specific disease pro-
cesses may influence the relative involvement of various lymphoid 
chemokines: while CCL21 overexpression drives TLS formation 
in the pancreas, ectopic expression of this chemokine in the skin 
fails to stimulate lymphoid neogenesis (104).

Studies of human cancer patients have additionally implicated 
chemokines CCL19, CCL21, and CXCL13 in the formation of 
intratumoral TLSs (24, 28, 110). In human lung carcinoma-
associated TLSs, CCL19-expressing cells were found to belong 
predominantly to the mature DC-LAMP+ DC population and 
are suggested to contribute toward maintenance of the lymphoid 
structure via recruitment of CCR7+ immune cells, including 
naive and central memory T cells, and further, recently activated, 
DCs. CXCL13 expression in lung carcinoma TLSs was detected 
specifically on CD21+ FDCs within GC-like areas of the TLS. 
These CXCL13-expressing FDCs were found to colocalize with 
CXCR5+ follicular helper T cell-like cells, suggesting that CXCL13 
expression in tumor TLSs could contribute toward generation of 
humoral immune responses via recruitment of CXCR5+ immune 
cells into the GC. As is true for TLSs in inflammatory settings, the 
CCL21 expression in lung tumor TLSs was found to be restricted 
to lymphatic vessels. This invites the attractive speculation that 
CCL21+ lymphatic vessels in and around tumor TLSs could 
provide major trafficking systems guiding activated immune 
cells to local tumor-draining LNs where systemic protection 
against metastatic dissemination of primary tumor cells could 
be established (24, 28). However, there is, as of yet, no formal 
evidence to support this hypothesis. Overexpression of lymphoid 
chemokines has also been more recently reported in breast 
carcinomas, where CXCL13-expressing CD4+ T follicular helper 
cells constitute an important component of breast tumor TLSs. 
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Furthermore, a strong Tfh signature robustly predicted increased 
patient survival (39).

Cellular initiators of SLO Development  
and TLS Neogenesis
Lymphoid tissue inducer cells were first described in the mouse as 
a fetal population of hematopoietic cells, essential for secondary 
lymphoid organogenesis (111–114). LTi cells are CD45+ CD4+ 
CD3− c-Kit+ interleukin 7 receptor-α (IL-7Rα)+ ID2+ RORγt+ 
cells that derive from a common progenitor found in the liver 
(115, 116). The absolute requirement for LTi cells in LN develop-
ment was demonstrated by the complete lack of LNs in animals 
genetically deficient in genes required for LTi development and 
maturation: Rorc, which encodes the transcription factor retinoic 
acid receptor-related orphan receptor-γt (RORγt), and Id2, which 
encodes helix-loop-helix protein inhibitor of DNA binding 2 
(ID2) (117–119). The function of LTi cells in the initiation of 
LN development is absolutely dependent on their expression 
of LTα1β2, which is induced by TNF-related activation-induced 
cytokine receptor (TRANCER) signaling (or IL-7Rα signaling in 
PP development) (116, 120).

Despite the requirement for LTβR signaling between LTi and 
LTo cells for LN development, LTi clustering proceeds uninter-
rupted when LTα1β2 expression by LTi cells (76, 118, 120, 121) or 
LTβR expression by LTo cells (122) is prevented. A more recent 
study demonstrated the ability of TNFα, if expressed above 
basal levels, to compensate for the lack of LTi cells in Rorc(γt)−/− 
animals in driving organogenesis of several peripheral LNs 
(those draining the skin), including axillary, cervical, inguinal, 
and brachial, albeit at lower frequency than in wild-type (123). 
Therefore, this study contradicts the dogma stating that LTi cells 
are absolutely required for SLO formation. Although these data 
imply redundancy in the communication networks governing 
SLO development, for normal development of LN anlagen in early 
postnatal life, LTβR signaling is absolutely required suggesting 
that while the identity of the cell providing the signal may not be 
as important, the signaling pathway driving secondary lymphoid 
organogenesis must be preserved (123).

Surprisingly, the loss of LTβR expression in CCL19-expressing 
mesenchymal LTo cells does not impede LN organogenesis, chal-
lenging the existing model delineating a crucial role for LTo cells 
(124). More recently, the same group led by Burkhard Ludewig 
have elegantly illustrated that lymphatic endothelial cells (LECs), 
which form a monolayer of cells lining the SCS in mature LNs, 
in fact act as the first LTo cells by regulating LTi cell migration 
and retention; activation of mesenchymal LTo cells only occurred 
following productive crosstalk between LECs and LTi cells in the 
LN anlagen (125). These results place LECs above mesenchymal 
LTo cells in the hierarchical contribution by different stromal 
cell populations in LN organogenesis. Collectively, such studies 
challenge the widely accepted dogma of a two-cell type crosstalk 
scheme involving mesenchymal LTo and hematopoietic LTi cells 
and illustrate the ongoing gap in our knowledge concerning LN 
organogenesis.

Experimental data gathered from studies utilizing knockout 
and transgenic mouse models have indicated cooperation 

between TNF superfamily members and lymphoid chemokines 
in the process of lymphoid neogenesis, much as in SLO develop-
ment (6). However, the identity of both a TNF/LT producing LTi-
like cell and a TNF/LT responsive stromal LTo-like cell involved 
in TLS formation still remains elusive. The recent discovery of 
an equivalent population of RORγt+ LTi cells in the adult, which 
are members of the innate lymphoid cell (ILC) family, prompted 
many to speculate that such a population could be directly 
responsible for TLS formation during lymphoid neogenesis  
(126, 127). Some studies have even suggested a direct role for 
adult LTi cells in lymphoid neogenesis. For instance, Meier and 
colleagues demonstrated that the induction of ectopic lymphoid 
tissue by overexpression of the gene encoding IL-7 was entirely 
dependent on the presence of LTi cells, as TLSs failed to develop 
in the absence of RORγt (128). A separate study, in which adult 
WT LTi cells were adoptively transferred into neonatal CXCR5−/− 
mice, demonstrated the ability of these cells to induce de novo 
formation of TLSs in the intestine (127). More recently, natural 
cytotoxicity receptor (NCR) expressing ILC3 cells were found 
closely associated with lymphoid aggregates in NSCLC, where 
they induced LTαβ and adhesion molecule expression, suggest-
ing a potential role in neogenesis of these structures (129).

However, several studies have now provided evidence support-
ing the notion that TLSs can develop in the absence of canonical 
RORγt+ LTi cells and ILC3 cells. Marinkovic and colleagues 
used a mouse model in which CCL21 overexpression in the thy-
roid results in TLS formation, to demonstrate the dispensability 
of conventional RORγt+ cells for ectopic lymphoid neogenesis 
(106). Deletion of Id2 resulted in the absence of LNs and PPs as 
expected, but had no effect on the development of TLSs in the 
thyroid of CCL21 overexpressing animals. Rather, the authors 
showed that mature CD3+ CD4+ T cells were absolutely required 
for the molecular program that instructs TLS development and 
suggested that these cells interact with DCs to initiate such a 
program (106). TLSs also develop in the colon of Rorc(γt)−/− 
animals following inflammatory insult (130). Furthermore, 
i-BALT forms in the lungs of Rorc(γt)−/− animals subjected to 
pulmonary inflammation (131). Interestingly, TNF/Rorc(γt)−/− 
mice demonstrate development not only of some SLOs but also 
of TLSs in the absence of LTi cells, provided TNFα signaling is 
increased. However, although TNFα compensates for LTi cell 
loss to a certain degree, Id2 expression as well as LTβR signal-
ing is required for complete secondary lymphoid organogenesis 
and de novo TLS neogenesis (123).

In the study by Rangel-Moreno and colleagues, the investiga-
tors concluded that CD4+ T  cell-derived IL-17 was responsible 
for i-BALT development by inducing LTα-independent CXCL13 
expression (131). Other studies have linked IL-17 and/or TH17 
cells to TLS neogenesis (132, 133). A recently published study 
demonstrated the involvement of TH17 cells in synovial ectopic 
lymphoid structure development in both experimental and clinical 
rheumatoid arthritis (RA). This process was under the inhibitory 
control of IL-27, a cytokine that is often elevated in the inflamed 
synovium and serum of certain RA patients (134). Interestingly, 
the IL-17-producing capability of LTi cells is one of the features 
that has recently indicated an ancestral relationship between 
LTi and TH17 cells (126, 135). However, the identity of a distinct 
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TLS-inducing cell type remains elusive, with B  cells and TNF-
producing myeloid cells also representing candidates (123, 130).

Dendritic cells, well known for their role in antigen presenta-
tion, are also implicated in the modulation and maintenance of 
the LN HEV phenotype in the adult, via expression of the LTβ 
ligand. After depletion of CD11c+ DCs in adult mice, cellularity 
and size of peripheral LNs was significantly reduced, expression 
of HEV markers was downregulated, and homing of lymphocytes 
to LNs impaired. HEVs reverted to an immature phenotype as a 
result of a direct interaction between DCs and endothelial cells, 
presumably via LT ligands expressed by DCs and endothelial cell-
expressed LTβR (136). Similarly, DC-LAMP+ DCs positively cor-
related with HEV density in breast tumors and were significantly 
associated with a favorable clinical prognosis (41). The presence 
of DC-LAMP+ DCs was also shown to correlate with HEV density 
in primary melanoma (45). However, despite clustering of DCs 
around HEVs in breast cancer, the majority of DCs are located 
outside basal laminal layers encapsulating HEVs, as in LNs, and are 
therefore unlikely to be capable of direct contact with endothelial 
cells; a likely prerequisite for initiation of HEV neogenesis (41).

In the above-mentioned study by Peske and colleagues, there 
was a distinctive lack of PNAd+ tumor vasculature in intraperi-
toneal B16-OVA tumors of gene-targeted animals specifically 
devoid of CD8+ T cells and RAG2-deficient animals. Furthermore, 
PNAd-expressing vessels were restored in these tumors to levels 
observed in WT animals upon adoptive transfer of CD8+ T cells 
to RAG2-deficient mice. In contrast, NK cells could compensate 
for the loss of CD8+ T cells in induction of PNAd+ vasculature 
in subcutaneous B16-OVA tumors, suggesting that these two 
cellular populations can act in a redundant fashion in particular 
tumors (60).

Indeed, our own studies of the MCA-induced mouse model of 
carcinogenesis have shown that conventional CD4+ CD3− IL-7R+ 
RORγ+ LTi cells are absent from HEV+ tumors of Treg-depleted 
animals (61). Instead, by selectively depleting different subsets of 
immune cells by monoclonal antibody treatment, we found that 
CD8+ T lymphocytes are the primary cell directing neogenesis of 
HEVs (97). Hence, rather than a reliance on canonical LTi cells, as 
is the case for ontogenic SLO development, neogenesis of tumor-
associated HEVs, and perhaps thereafter TLSs, appears to rely on 
cytokine-secreting CD8-expressing or NK effector lymphocytes.

While studies have implied a degree of lymphocyte depend-
ency for the development of a mature HEV phenotype in LNs 
(137), L-selectin-dependent lymphocyte trafficking to peripheral 
LNs in RAG-1-deficient mice suggests that the development of 
functional LN HEVs can proceed in the absence of lymphocytes 
(138). HEV neogenesis in Treg-depleted MCA tumors and Treg 
replete B16 tumors could therefore represent a significant mecha-
nistic departure from normal LN HEV development and indeed 
TLS development in non-malignant scenarios of chronic inflam-
mation (60, 97). We hypothesize that robust ongoing antigenic 
stimulation provided by tumor-associated antigens (TAAs) leads 
to sufficient activation of intratumoral lymphocytes, which then 
secrete the required cytokines to induce HEV differentiation of 
existing tumor vasculature. In the case of strong antigens, such as 
OVA, this activation of lymphocytes can override Treg-induced 
immunosuppression to enable a degree of HEV neogenesis in the 

presence of these potently immunosuppressive cells. However, 
depletion of Treg, a type of immunotherapy currently being given 
to cancer patients in multiple clinical trials, appears to unleash 
the reins on effector lymphocytes, such that their activation leads 
to prolific HEV-inducing cytokine production in the tumor bed, 
robust HEV formation, and concomitant tumor control.

FUNCTiON OF TLSs iN CANCeR: 
SeNTiNeL BYSTANDeRS OR ACTive 
PROPRieTORS OF THe iMMUNe 
ReSPONSe OR iMMUNOSUPPReSSiON?

It has been suggested that, similar to SLOs, TLSs function primar-
ily to potentiate the local immune response at the site of forma-
tion. Accordingly, TLSs would have the potential to exacerbate 
or control disease, depending on the nature of the pathology. 
By-in-large, the current consensus suggests that there would be 
rationale for therapeutically potentiating TLS formation in the 
contexts of microbial infection and malignancy, where exacerba-
tion of local immunity could lead to clearance of infection or 
rejection of a tumor, but inhibiting the formation of TLSs in 
chronic inflammation and autoimmunity, where heightened local 
immune responses would contribute to disease progression (10).

However, TLSs are often documented in pathology by histo-
logical examination of tissues, which precludes the gathering of 
definitive evidence for their functional consequence. The major-
ity of the current data linking TLSs with prognosis in patients 
or disease progression in animals is correlative by nature. The 
prognostic association of tumor-associated TLSs or HEVs in the 
absence of TLSs may be confounded by the fact that their neogen-
esis often occurs in the context of a robust immune response; the 
link between these ectopic lymphoid structures and a favorable 
clinical outcome may be indirect and simply reflect the presence 
of effector T  cells. Conclusive functional data are significantly 
lacking, without which we cannot be sure as to the precise role 
of these ectopic lymphoid structures within pathological foci;  
a prerequisite for effective therapeutic targeting.

Studies have implied the occurrence of an active immune 
response within TLSs found in autoimmune conditions in both 
mice and humans, evidenced by AID activity in TLS GCs of 
Sjorgen’s syndrome patients’ salivary glands, and T cell priming 
and epitope spreading within TLSs in a mouse model of multiple 
sclerosis, for example (139, 140). One particular TLS, i-BALT 
can initiate both humoral and cellular immune responses to 
protect against influenza infection independently of SLOs in 
animals lacking spleen, LNs, and PPs (94). These structures were 
even shown to foster and support immunological memory (93). 
However, studies addressing the question of tumor-associated 
TLS function in disease progression have yet to provide definitive 
conclusive evidence for their role.

Particular TLS features are indicative of the ability to support 
an immune response to antigen. For instance, HEVs found within 
human and mouse tumors, either in association with defined TLSs 
or not, express the same adhesion molecules and chemokines as 
LN HEVs (PNAd, MAdCAM-1, CCL21, and ICAM-1), presum-
ably endowing them with the ability to interact with and promote 
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the egress of lymphocytes of the naive and central memory phe-
notype from the bloodstream (28, 55, 57, 60, 61). In a preclinical 
mouse model of colon carcinogenesis, Di Caro and colleagues 
were able to demonstrate the migration of GFP-labeled spleno-
cytes to TLSs in the colonic mucosa, suggesting active recruitment 
of lymphocytes (32). Furthermore, the presence of thin walled 
vessels expressing typical LN lymphatic markers such as LYVE-1 
and podoplanin has been documented in cancer-associated TLSs, 
indicating a means for the entrance of antigen-presenting cells 
(28, 32). However, live in  vivo imaging studies of lymphocytes 
entering via HEVs and antigen-presenting cells entering via lym-
phatic vessels are required to solidify the functional consequence 
of the presence of such vascular structures.

The presence of tumor-associated TLSs in NSCLC, for which 
mature DCs serve as a reliable marker, was found to shape the 
T cell infiltrate toward an activated, Th1 and cytotoxic orienta-
tion (29). Interestingly, patients with a high infiltration of CD8+ 
T cells in combination with a high density of TLSs demonstrated 
significantly improved survival relative to patients with high 
CD8+ T cell infiltration in the absence of TLSs, suggesting TLSs 
actively license the prognostic value of intratumoral cytotoxic 
T cells. Similarly, the presence of plasma cells expressing markers 
of antigen-specific responses within TLSs in ovarian cancer was 
associated with increased responses of tumor-infiltrating CD8+ 
T  cells (52). While such studies of gene expression analysis in 
humans can only ever offer suggestive evidence for a functional 
role for tumor-associated TLSs, they do propose that TLSs may 
educate tumor-infiltrating lymphocytes to control tumors better.

Studies attempting to address the question of whether TLSs 
are capable of supporting an antigen-specific response to endog-
enous antigen in vivo in animal models have yielded intriguing 
results. Expression of LIGHT in a fibrosarcoma cell line resulted 
in upregulation of CCL21 and MAdCAM-1 on tumor vasculature, 
facilitating recruitment of vast numbers of naive CD8+ T  lym-
phocytes, which appeared to then be sufficiently activated in situ 
to facilitate rejection of established tumors (91). Furthermore, 
TLS aggregates induced in mouse melanoma lesions by targeted 
LTα expression by tumor cells seem to be able to foster an active 
antitumor immune response in the absence of all canonical 
SLOs in  vivo: Schrama and colleagues documented retarded 
tumor growth and even tumor regression in splenectomized 
LTα−/− animals. Furthermore, endogenous CD8+ T cells specific 
for the melanoma-associated antigen TRP-2 were detected by 
in situ tetramer staining only within tumors of LTα−/− animals in 
which TLSs had been induced (141). While previous studies had 
demonstrated the ability of B16 melanoma tumors to foster T cell 
priming in the absence of SLOs in LTα−/− mice (142), the study by 
Schrama and colleagues was one of the first studies to specifically 
associate this capability with the presence of intratumoral TLSs.

However, it is possible that tumor-associated TLSs are not 
essential for in  situ T  cell priming in all cases. The absence of 
fully formed TLSs in subcutaneous tumors that support HEV 
neogenesis does not appear to influence the ability of these 
tumors to facilitate in  situ priming and activation of tumor-
specific naive T  lymphocytes (60, 61, 97). It is possible that 
once lymphocytes have successfully accessed the tumor site, via 
lymphoid-like vasculature, priming and initiation of an in  situ 

immune response can occur without the support of an organized 
lymphoid structure. However, this may require activating signals 
that are not present in every tumor microenvironment: in the case 
of LIGHT expressing fibrosarcomas, the dual role of LIGHT as 
a potent costimulatory molecule for T cells in combination with 
tumor-associated antigens could suffice for robust T cell priming 
and expansion (91).

Coronella and colleagues described the presence of sophis-
ticated TLSs within human infiltrating ductal carcinoma of the 
breast, including segregated T and B  cell zones with GCs and 
interdigitating FDCs (38). What is more, the researchers dem-
onstrated a preponderance of clonal intratumoral B cells, relative 
to peripheral B cells, by sequencing IgG1 heavy chains isolated 
from three tumors. Analysis of somatic hypermutation levels 
and patterns were suggestive of affinity maturation occurring 
within TLS GCs. These findings were later supported by another 
independent study of breast carcinoma (40) and a separate study 
of metastatic melanoma (50). Indeed, GCs in LNs are indicative 
of an active immune response, and studies have demonstrated a 
humoral immune response associated with TLS GCs in human 
lung cancer (143) and a correlation between patient survival and 
TLS GC makers in breast cancer patients (39). These data indicate 
that tumor-associated TLSs have the capacity to support in situ 
oligoclonal B  cell responses driven by tumor tissue associated 
antigens.

The cellular composition, organization, and localization of 
tumor-associated TLSs may dictate whether these structures 
confer an advantageous or deleterious outcome for disease pro-
gression. Following on from the observation that the density of 
DC-LAMP+ mature DCs, as a marker of TLSs, correlated with 
long-term survival in NSCLC patients (27), Germain and col-
leagues went on to show that a high tumor follicular B cell density 
correlates with increased survival and that this prognostic value 
is enhanced when follicular B cells are present in combination 
with high mature DC densities (143). However, these analyses 
were conducted across the entire tumor area and not restricted 
to tumor-associated TLSs, precluding any inference regarding 
immune responses specifically ongoing within TLSs. In a separate 
study, García-Hernández and colleagues found a dramatic change 
in the cellular composition of prostate cancer-associated TLSs in 
patients that experienced spontaneous tumor regression: tumor-
associated TLSs in patients with evanescent prostate cancer 
consisted of lower frequencies of Tregs and greater frequencies 
of T-bet+ Th1 T cells than those in patients with more advanced 
disease (49). This dichotomy in TLS composition between 
immunostimulatory and immunosuppressive components could 
be crucial in dictating the immunological outcome of these 
tumor-associated structures.

In accordance with their well-defined immunosuppressive 
role, the recruitment of Foxp3+ Tregs and myeloid derived sup-
pressor cells (MDSCs) to TLSs within B16 melanomas engineered 
to express CCL21 led to promotion of tumor growth (59). In addi-
tion, high numbers of Foxp3+ Tregs within lymphoid aggregates 
surrounding primary breast tumors was indicative of an increased 
risk of disease relapse and death (42). Furthermore, Tregs within 
tumor-associated TLSs actively suppressed antitumor immune 
responses in a mouse model of lung adenocarcinoma (58). These 
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studies demonstrate that tumor-associated TLSs are sometimes 
associated with immunosuppression rather than immune acti-
vation. It is possible, therefore, that in the absence of a strong 
stimulus provided by tumor neoantigens or without adoptive 
transfer of transgenic T cells targeted to known tumor antigens, 
these ectopic lymphoid structures can foster immunosuppression 
and support rather than limit tumor growth. Indeed, in a mouse 
model of chronic hepatitis driven by constitutive IKK-NFkB 
signaling in hepatocytes, which develop aggressive malignant 
HCC (IKKβ(EE)Hep mice), researchers noted the development of 
TLSs highly reminiscent of human hepatic TLSs associated with 
HCC (54). Importantly, hepatic TLSs were found to foster HCC 
progenitor cells in the mouse model and depletion of TLSs by 
ablation of adaptive immunity via crossing IKKβ(EE)Hep mice to 
lymphocyte deficient Rag1−/− mice substantially attenuated hepa-
tocarcinogenesis. Hence, in certain cancers, tumor-associated 
TLSs may even serve as immunological microniches promoting 
the generation of progenitor cancer cells, rather than an effective 
antitumor immune response.

Importantly, in the study by Gobert and colleagues, the spe-
cific location of Treg infiltration in primary breast tumors proved 
critical to the prognostic value of this observation; Treg presence 
within the tumor bed itself did not influence disease evolution. 
However, Tregs present within tumor-associated TLSs displayed 
a highly activated phenotype, suggestive of their in situ activation 
in response to TAA presented within the TLSs (42). Collectively, 
these data are indicative of local suppression of T cell responses 
by activated Tregs within tumor-associated lymphoid structures 
rather than within the tumor mass itself, supporting the idea that 
TLSs are active sites of immune responses.

Crucially, depletion of Tregs within TLSs of mouse lung 
adenocarcinomas led to enhanced costimulatory capacity of DCs, 
T cell proliferation, and protective antitumor immune responses 
leading to tumor regression (58). Not only does this study support 
the developing hypothesis that intratumoral TLSs can represent 
sites of active local adaptive immunity against tumor but it also 
highlights a potential requirement to overcome the profound 
immunosuppression within the tumor microenvironment to 
license an effective antitumor response fostered by TLSs. Indeed, 
in our own studies, HEVs that develop in the absence of Tregs 
in MCA-induced fibrosarcomas are associated with significantly 
higher intratumoral T  lymphocyte frequencies and reduced 
tumor growth rates (61, 97). While HEVs have been documented 
in other mouse models of cancer in the presence of Tregs, amplifi-
cation protocols are required to visualize HEVs and tumor growth 
control is negligible despite adoptive transfer of high numbers of 
transgenic T cells reactive to tumor-expressed antigen (60). It is 
possible therefore that in the absence of strong antigenic stimula-
tion (which are provided in transgenic T cell models of cancer) 
or immune activation, HEVs and tumor-associated TLSs could 
foster immunosuppression over antitumor immunity.

Indeed, the precise location of TLSs in regard to the tumor 
mass may have important implications for the prognostic value 
of these structures. Tumor-associated TLSs and/or HEVs can be 
extratumoral, positioned at or outside the tumor invasive margin, 
or intratumoral, situated within the true tumor mass or tumor 
nests. In colorectal carcinoma (CRC), PNAd+ HEVs are rarely 

found within the tumor stroma or epithelium and are instead 
mainly situated in the surrounding extratumoral area (31). The 
lack of an association between HEVs and prognosis in CRC could 
suggest that extratumoral lymphoid neogenesis may be indica-
tive of an immune response driven by tumor and one therefore 
in support of cancer progression and immune evasion. Other 
studies documenting HEVs truly embedded within the tumor 
stroma have found a positive prognostic value associated with 
these structures (26, 45). These discrepancies could also be rec-
onciled by the importance of TLSs/HEVs in enabling infiltration 
of T cells into the tumor; extratumoral HEVs were not associated 
with increased TIL frequencies (31), whereas intratumoral HEVs 
were (26, 45). Similarly, while extratumoral TLS density was not 
a prognostic marker in pancreatic cancer patients, intratumoral 
TLSs functioned as an independent favorable prognosticator (53). 
Furthermore, in support of the idea that the function and there-
fore prognostic significance of TLSs/HEVs differs with disease 
stage also, there is no association between extratumoral HEVs 
in advanced (Dukes’ C, or stage III) CRC tumors and prognosis 
while lymphoid aggregates in stage II CRC (with no LN involve-
ment) are associated with a favorable prognosis (31, 32). Hence, 
tumor-associated TLSs/HEVs may only function in the antitumor 
response during early disease stages, a capability that may be lost 
during cancer progression in parallel to the establishment of an 
immunosuppressive tumor microenvironment and loss of tumor 
immunogenicity. Finally, the primary tumor origin of distal 
metastases appears to significantly influence the clinical impact, 
and hence presumably the immune response, of metastasis associ-
ated TLSs: T cell and DC infiltration in TLSs of lung metastases of 
colorectal carcinomas is a predictor of longer overall survival but 
appears to correlate with poor survival in lung metastases of renal 
cell carcinoma (RCC) (36, 56). Collectively, these observations 
indicate that TLS/HEV location in relation to the tumor mass, 
disease stage, and tumor origin may all be absolutely crucial in 
dictating the resulting immune response to tumor.

These data underpin the importance of assessing the functional 
consequences of TLSs and/or HEVs in the absence of TLSs in 
different cancers prior to therapeutic intervention. It appears that 
tumor-associated lymphoid structures are capable of supporting an 
effective immune response in certain contexts. However, a word of 
caution is issued by studies demonstrating an immune evasive and 
even disease-promoting role for TLSs (Figure 3). It could be that 
robust immune system activation, for instance via Treg depletion, 
is required for the beneficial role of intratumoral lymphoid aggre-
gates and vasculature to be unmasked, and encouraging ectopic 
lymphoid-like vasculature in combination with such therapies may 
induce an effective immune response to eradicate tumor.

CONCLUDiNG ReMARKS: TOwARD 
THeRAPeUTiC TARGeTiNG OF TLS  
OR Hev NeOGeNeSiS iN CANCeR

Observed correlations between cancer-associated TLSs or HEVs 
in the absence of TLSs and favorable prognosis in several human 
malignancies have provided the rationale for therapeutically tar-
geting TLSs in an attempt to drive an effective antitumor immune 
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response. Agents directed against key signaling molecules now 
known to be involved in TLS development have already entered 
the clinical arena. For instance, clinical trials are investigating the 
efficacy of intratumoral injections of autologous DCs transduced 
to express CCL21 in stage IIIB and IV and recurrent NSCLC 
patients (NCT00601094 and NCT01574222). Although these  
trials’ primary aim is to determine safety, best dose, and side effects 
of treatment, secondary objectives are to monitor changes in the 
infiltrating immune cell populations by immunohistochemistry, 
which may provide insights into TLS neogenesis within tumors 
before and after treatment, and whether this will in turn correlate 
with improved antitumor immunity.

However, as we have learnt, many of the signaling circuitries 
are overlapping with those essential for SLO development and 
maintenance, making selective targeting challenging. One 
signaling pathway that our group and others have identified as 
playing a major role in HEV neogenesis in tumors but little role in 
canonical SLO formation is the TNFR signaling pathway (60, 95, 
97, 144, 145). There is evidence to suggest that anti-TNF therapy 
can reverse aspects of TLS neogenesis in RA patients (146), which 

could account, at least in part, for the therapeutic efficacy of this 
treatment. Therefore, this pathway represents a potentially selec-
tive targetable axis via which HEV neogenesis, and possibly TLS 
development, could be encouraged in tumors. Targeting of TNFα 
to the tumor vasculature has already been shown to upregulate 
adhesion molecule expression on the surface of endothelial cells 
and subsequently enhance CD8+ cytotoxic T  cell infiltration 
(147). It will be intriguing to determine whether targeting of 
TNFα to the tumor, or otherwise stimulating TNFR signaling at 
this site, may encourage differentiation of tumor vessels toward 
an HEV-like phenotype, and whether this will in turn enhance 
T cell infiltration further, and/or antitumor responses.

This review aims to tell a cautionary tale, however: it is becoming 
clear that lymphoid neogenesis is a highly complex process, which 
may have wide ranging implications, from antitumor immunity-
promoting to immunosuppression. Recent studies have even 
highlighted an active disease-promoting role for intratumoral 
TLSs (54). It appears that the function of tumor-associated lym-
phoid structures may be dictated by their cellular composition 
and the surrounding immune contexture. It is obvious that we 
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must learn more about the function of these ectopic structures 
in different human malignancies before we attempt to induce 
their formation in people. It could be that lymphoid structures 
within tumors may only serve to promote the antitumor immune 
response in the context of profound immune activation, a state 
that can be induced by depletion of immunosuppressive cells such 
as Tregs and MDSCs. Treg-depleting therapies such as low-dose 
cyclophosphamide, PI3Kδ inhibitors, and IDO inhibitors are 
already being used in the clinic for the treatment of human cancers 
or progressing through clinical trials (148–152) (NCT00567931 
and NCT01042535). It is of utmost importance for us to establish 
whether these treatments alone can induce HEVs or TLSs in 
tumors. It could be that combining immune-modulating agents 
with HEV/TLS-targeted therapies may represent the recipe for 
ultimate effective immune-mediated tumor control.
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