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Regulated vascular permeability is an essential feature of normal physiology and its 
dysfunction is associated with major human diseases ranging from cancer to inflam-
mation and ischemic heart diseases. Integrity of endothelial cells also play a prominent 
role in the outcome of surgical procedures and organ transplant. Endothelial barrier 
function and integrity are regulated by a plethora of highly specialized transmembrane 
receptors, including claudin family proteins, occludin, junctional adhesion molecules 
(JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) 
and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. 
On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase 
receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier 
function. While claudins and occludin regulate cell–cell junction via recruitment of zonula 
occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 
recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein inter-
acting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function 
is moderated by the function of transmembrane receptors and signaling events that act 
to defend or destabilize it. Here, I highlight recent advances that have provided new 
insights into endothelial barrier function and mechanisms involved. Further investigation 
of these mechanisms could lead to the discovery of novel therapeutic targets for human 
diseases associated with endothelial dysfunction.

Keywords: cell adhesion molecules, vascular permeability, endothelial dysfunction, vascular endothelial growth 
factor A, adherens junctions, gap junctions

iNTRODUCTiON

To live and reproduce, all vertebrate animals are evolved to have a circulatory system (i.e., heart, 
veins, and arteries) that safeguards an uninterrupted supply of blood and oxygen to all tissues, 
followed by the return of the deoxygenated blood to the lungs for re-oxygenation. In addition to 
its emissary function, the vascular system also plays an indispensable role in hemostasis, immune 
surveillance, angiogenesis, and vascular permeability (1). Although they differ in function and 
morphologies, endothelial cells are the main constituents of blood vessels. In some organs such 
as the brain, endothelial cells form a strong and highly selective blood–brain barrier, but in other 
organs such as the kidney and pancreas, endothelial cells display selective permeability by forming 
highly specialized holes on the plasma membrane called fenestrae, which allows rapid exchange of 
solute and molecules such as hormones.

To maintain the structural and functional integrity that retains the highly dynamic barrier func-
tion of blood vessels, which permits continuous leakage of solutes and small molecules but limits 
extravasation of larger molecules and cells, metazoan cells are evolved to form highly specialized 
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FigURe 1 | Mechanisms linked to endothelial dysfunction: several key mechanisms that promote endothelial dysfunction and vascular damage are shown. Also, 
shown are the major endothelial responses triggered by these factors Nitric oxide (NO).
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cell–cell junctions such as desmosomes, adherent junctions, and 
gap junctions. Not only do these junctions glue cells together, 
they also generate intracellular signaling and permit junctional 
remodeling in response to various external and internal cues (2). 
Curiously, certain viruses employ cell adhesion receptors for their 
entry into human cells. For example, hepatitis C virus (HCV) uses 
occludin and claudins to enter liver cells. Coxsackievirus and 
adenovirus use junctional adhesion molecule (JAM)/coxsackie 
and adenovirus receptor (CAR) and reoviruses uses JAM-A for 
their entry into cells [for review see Ref. (3)]. In many human 
diseases, such as cancer, diabetes, age-related macular degen-
eration, and chronic inflammatory conditions, this core barrier 
function of endothelial cells breaks down, leading to the leak-
age of larger molecules and blood with serious life-threatening 
consequences. Blood vessel leakiness also is associated with 
tumor-induced angiogenesis and represents a significant chal-
lenge for an effective delivery of anti-cancer drugs to the site of 
tumors as tumor-associated blood vessels are structurally fragile 
and hyperpermeable (4).

In addition to their pivotal roles in angiogenesis and inflam-
mation, endothelial cells also play important functions in various 
other conditions such as surgical trauma, ischemia–reperfusion, 
alloimmune responses, and chemotherapy and immunosup-
pressant treatments (5, 6). Activated endothelial cells often 
upregulate expression of various growth factors, cytokines and 
chemokines that stimulate endothelial cell pro li feration, per-
meability, and migration (7, 8). Furthermore, they upregulate 

thrombogenic molecules and specific adhesion molecules that 
promote thrombosis and immune cell activation (Figure  1). 
Endothelial cells also respond to immunosuppressant and 
chemotherapeutic drugs. Although the cardiotoxic effects of 
conventional chemotherapeutic agents are well-documented, 
the targeted therapeutic drugs such as the antiangiogenic are 
also associated with endothelial dysfunction, such as hyperten-
sion, thromboembolism, myocardial infarction, and proteinuria 
(9, 10). In organ transplantation, the host immune system is 
brought into direct contact with the endothelial cell lining of 
graft vessels, where the graft endothelial cells play a major role in 
allograft vasculopathy (i.e., allograft rejection) and in the overall 
long-term survival after any organ transplantation (11, 12).

RegULATiON OF eNDOTHeLiAL CeLL–
CeLL JUNCTiONS BY CeLL ADHeSiON 
MOLeCULeS (CAMs)

Adherens junctions, gap junctions, and desmosomes are 
principal cell–cell junctions that provide structural integrity 
and create highly polarized barriers with selective paracel-
lular permeability to solutes, macromolecules, and other cells, 
which is an essential element of homeostatic maintenance in 
endothelial and epithelial cells. Tight junctions, in particular, 
control monolayer permeability and play a significant role 
in endothelial cells that maintain rigorous barriers, whereas 
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FigURe 2 | Transmembrane receptors involved in the endothelial cell–cell junction and their key cytoplasmic-binding partners. Claudin family proteins, occludin, 
junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin an immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) are major receptors in 
endothelial cells that regulate endothelial cell–cell junctions and barrier. The core mechanism associated with the function of these receptors involves with their ability 
to recruit specific signaling proteins that signal to strength the cell–cell junctions. Zonula occludens (ZO 1–3), catenin proteins (α-catenin, β-catenin, and γ-catenin), 
polarity protein-3 and 6 (PAR3/6), afadin (AF6), bullous pemphigoid antigen 1 [BPAG1 also called dystonin and SH3 protein interacting with Nck90 (SPIN90)/WISH 
(SH3 protein interacting with Nck)] are key substrates involved with these receptors.
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adherens junctions partake in multiple roles, such as establish-
ment and maintenance of cell–cell adhesion, actin cytoskeleton 
remodeling, signal transduction, and transcriptional regulation. 
However, unlike epithelial cells, adherens and tight junctions in 
endothelial cells are highly interconnected. In addition to their 
cardinal role in the regulation of homeostatic maintenance and 
barrier function, proteins involved in the regulation of cell–cell 
junctions play major role in cellular differentiation, prolifera-
tion, migration, signal transduction, and gene expression (13, 
14). Altered cell–cell junctions are also associated with the 
pathogenesis of various diseases, including cancers, diabetic 
retinopathy, and inflammation (15, 16). A plethora of cell 
surface receptors including claudins family proteins, occludin, 
JAMs, vascular endothelial (VE)-cadherin, and the recently 
identified immunoglobulin (Ig) and proline-rich receptor-1 
(IGPR-1) are involved in cell–cell junction signaling through 
various means and mechanisms. While occludin through its 
cytoplasmic coiled-coil (CC) domain interacts ZO proteins, 
claudins family proteins and JAMs through their PDZ-binding 
motif interact with PDZ-containing proteins such as ZO. JAMs 
also interact with PAR3, PAR6 and AF6, which are also PDZ-
containing proteins. On the other hand, VE-cadherin through 
its armadillo-binding domain recruits p120, catenin proteins, 
whereas IGPR-1 through its proline-rich motif interacts with 
(BPAG1 or BP230), also called dystonin (DST) and SH3 protein 
interacting with Nck90 (SPIN90)/WISH (SH3 protein interact-
ing with Nck), also called NCK-interacting protein with SH3 
domain (NCKIPSD) (Figure 2). Regardless of their mechanisms 
of recruitment of cytoplasmic-binding partners, it is clear that 
these receptor-interacting proteins transduce signals that are 
required for cell–cell junction assembly, cell morphology, and 
barrier function. In a way, these transmembrane receptors along 
with their intracellular-binding partners are the defenders of 
endothelial integrity and barrier function.

Claudins
Claudin family proteins are four-transmembrane type proteins 
and there are at least 24 claudins present in human genome 

(17, 18), which represents the largest family of tight junction 
proteins. By forming homophilic- and heterophilic-trans/cis 
dimerization, claudins determine the barrier properties and 
cell–cell interactions (19, 20). Claudins, with the exception 
of claudin-12, contain a PDZ-binding domain at C-terminal 
tail that allows them to interact with PDZ-containing scaffold 
proteins such as zonula occludens (ZO) (19). It appears that 
unlike cadherins, claudins mediate cell–cell adhesion through 
a calcium-independent manner (20). Claudins are expressed in 
both endothelial and epithelial cells, though with some degree 
of cell type specificity. Claudin-3, claudin-5, and claudin-12 
are predominantly expressed in brain endothelial cells (21, 22), 
whereas renal endothelial cells express claudin-5 and claudin-15 
(21, 23). Some claudins such as claudin-2 and claudin-16 spe-
cifically control paracellular ionic selectivity by forming ion 
channels (24, 25), while others such as claudin-8 is proposed 
to control paracellular Na+ permeability (26). In addition to 
their canonical function, some claudins also interact with other 
proteins. For example, claudin-1 acts as a receptor for HCV (27) 
and for dengue virus (28).

Occludin
Similar to claudins, occludin is a four-transmembrane protein 
and one of the key components of tight junctions that plays a 
critical role in the regulation of trans-epithelial/endothelial 
electrical resistance (29, 30) and actin assembly (31). While the 
N-terminal extracellular domain is involved in the adhesive 
function of occludin, its C-terminal is subject to phosphorylation 
at several tyrosine and serine/threonine residues through mul-
tiple kinases and is also involved in the recruitment of SH3 and 
PDZ-containing zonula occluden (ZO) proteins, which anchor 
occludin to the actin fibril assembly (Figure 3). In endo thelial 
cells, it regulate tight junction barriers in response to IFNγ and 
vascular endothelial growth factor (VEGF) (32–34). The barrier 
function of occludin is regulated by the phosphorylation of key 
residues at the cytoplasmic domain (19, 35). For example, phos-
phorylation of Ser490 was proposed to promote ubiquitination 
of occludin, which promotes its downregulation (36), whereas 
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FigURe 3 | Regulation of occludin mediated cell–cell junction assembly and organization. Occludin via its coiled-coil domain recognizes guanylate kinase (GUK) 
domain, PDZ, and SH3 domain (43), that further recruits Cingulin and ZONAB that participate in the formation and regulation of the tight junction and paracellular 
permeability barrier. C-terminal of occludin is subject to phosphorylation at serine/threonine and tyrosine residues by multiple serine/threonine kinases and tyrosine 
kinases, which in part regulate occludin binding with ZO proteins and its tight junctional function (see the text).
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phosphorylation of occludin at different sites is associated with 
its barrier function (37–39). The key kinases involved in the 
phosphorylation of occludin are shown (Figure 3). The interac-
tion of occludin with tight junction proteins such as ZO family 
proteins is also affected by phosphorylation at its CC domain 
(40, 41). Overall, phosphorylation of the C-terminal of occlu-
din at serine/threonine and tyrosine sites by various kinases 
(Figure 3) and dimerization (not shown) of occludin appear to 
be key mechanisms that govern occludin function (42).

Junctional Adhesion Molecules
Junctional adhesion molecules are distinct and important cell 
surface proteins that are involved in the regulation of cell– 
cell adhesion and barrier. JAMs belong to the Ig superfamily 
proteins and contain two extracellular Ig-like domains, a single 
transmembrane domain and a C-terminal cytoplasmic domain 
(44). The cytoplasmic domain of JAMs contains a PDZ domain, 
which recruits PDZ-binding proteins such ZO and afadin that 
connects JAM proteins to actin assembly and regulation of epi-
thelial and endothelial barrier function (44–46). JAM-A regulates 
the barrier function of tight junctions in both endothelial and 
epithelial cells (47) and is involved in the migration of endothe-
lial cells (48). JAM-C was proposed to be involved in tumor 
angiogenesis (49). Furthermore, other JAMs such as CAR and 
endothelial cell-selective adhesion molecule are also expressed 
in endothelial cells and are involved in the regulation of perme-
ability, angiogenesis, and cell migration (50, 51).

MeCHANiSMS OF DeSTABiLiZATiON OF 
eNDOTHeLiAL BARRieR FUNCTiON

The control of the endothelial barrier function is largely medi-
ated by cell-to-cell junctions, which include adherens and tight 
junctions. CAMs are the key mediators of endothelial barrier 
function. CAMs mediate cell–cell and cell–matrix adhesion and 
transmit signals across the plasma membrane to process infor-
mation from the extracellular environment involved in tissue 
morphogenesis, angiogenesis, and tumor progression (52, 53).

Various proteins and molecules could destabilize endothelial 
barrier function and stimulate vascular permeability. Proteins 
and molecules such as Ang2, chemokines, and IL-8 (inter-
leukin-8), bradykinin, histamine, thrombin, fibrinogen, tumor 
necrosis factor-α (TNF-α), and endotoxins such LPS could desta-
bilize endothelial barrier. However, VEGF, also called vascular 
permeability factor, is perhaps the most potent factor involved 
in the disruption of endothelial barrier function and induction 
of vascular permeability in pathological conditions (16, 54–56). 
In tumorigenesis, not only does VEGF induce angiogenesis but 
also mediates disruption of the vascular barrier, resulting in the 
leaky vessels leading to an increase in tumor cell extravasation 
and reduced drug delivery to tumor site which is associated 
with the development of drug resistance and inefficacy (57). 
Similarly, VEGF causes vascular permeability and edema in 
various other diseases such as diabetic retinopathy, age-related 
macular degeneration, and inflammation (58–61). One of 
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FigURe 4 | Vascular endothelial growth factor (VEGF)-induced VEGF 
receptor-2 (VEGFR-2) activation signal transduction that leads to 
destabilization of cell–cell junctions. Stimulation of VEGFR-2 by VEGF results 
in the kinase activation of VEGFR-2 and recruitment of diverse signaling 
proteins to VEGFR-2. The key VEGFR-2 signaling proteins whose activity are 
linked to vascular permeability include Src family kinases, phosphoinositide 
3-kinase (PI3 kinase), and phospholipase Cγ1 (PLCγ1). Src kinases in turn 
can phosphorylate VE-cadherin and VE-cadherin-associated proteins such 
as β-catenin and p120 leading destabilization of VE-cadherin mediated 
endothelial barrier function. Activation of PI3 kinase and PLCγ1 can lead to 
phosphorylation of eNOS and production of nitric oxide (NO) that leads to 
interruption of endothelial junctions.
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VEGF’s receptor, VEGF receptor-2 (VEGFR-2), predominantly 
mediates VEGF-mediated destabilization of endothelial junc-
tions (16, 62). Upon activation by VEGF, VEGFR-2 undergoes 
various posttranslational modifications including phosphoryla-
tion and methylation, which stimulate its activation and recruit-
ment of signaling proteins to the receptor (63–65). Activation 
of VEGFR-2 by VEGF stimulates diverse signaling events that 
affect endothelial cell migration, proliferation, tube formation, 
and regulation of endothelial junctions. However, the activa-
tion of Src family kinases, phosphoinositide 3-kinase (66, 67), 
and phospholipase Cγ1 (PLCγ1) in particular play major roles 
in the induction of vascular permeability (16, 67) (Figure 4).  
In addition, VEGFR-2 can also stimulate permeability by directly 
targeting endothelial junctional proteins such as VE-cadherin 
and integrins (16, 62, 68, 69), providing an additional layer of 
complexity to VEGF-mediated destabilization of endothelial 
barrier function.

Vascular endothelial cadherin (VE-cadherin also called 
Cadherin-5 and CD144) is considered a main transmembrane 
component of endothelial adherens junction (70, 71). Similar 
to E-cadherin, VE-cadherin binds to members of the armadillo 
repeat family of proteins, p120-catenin, β-catenin, and plako-
globin through its cytoplasmic C-terminal (72). Inactivation 
of the VE-cadherin gene in both mouse and zebrafish clearly 
demonstrated its key role in vascular remodeling (73, 74). 
VE-cadherin plays an important role in controlling endothelial 
monolayer permeability and angiogenesis. VEGF-induced 
tyrosine phosphorylation of VE-cadherin at Y658 and Y731 by  
Src family kinases appear to play a prominent role in the desta-
bilization of adherens junction and increased permeability of 
endothelial cells (75, 76). Consistent with the regulatory role of 
phosphorylation on VE-cadherin, other factors such as TNF-α 
that stimulate permeability also target VE-cadherin through 
tyrosine phosphorylation at Y658 and Y731 through proline-
rich tyrosine kinase 2 and Rac1/Tiam1 (77). Phosphorylation of 
Y658 and Y731 disrupt VE-cadherin binding with VE-cadherin-
associated proteins such as p120-catenin and β-catenin (78). 
Underscoring the role of phosphorylation in the regulation of 
VE-cadherin function, several protein tyrosine phosphatases are 
known to associate with and dephosphorylate VE-cadherin (79, 
80). In view of the fundamental role of VEGF in angiogenesis 
and its robust action in the destabilization of endothelial barrier 
function in pathological conditions, VEGF system emerged as 
a major challenger and provocateur of the endothelial barrier 
function.

igPR-1 iS A DiSTiNCT CAM

Immunoglobulin (Ig) and proline-rich receptor-1 is expressed 
in human endothelial and epithelial cells. Unlike the classical 
cadherins and tight junction proteins such as JAMs, claudins 
family proteins, and occludin, IGPR-1 expression is restricted 
to higher mammalians as it is not present in rodents such as 
mouse or rat (81). However, its closely related protein, trans-
membrane and immunoglobulin domain1 is expressed in 
the renal epithelial cells of human and rodents (82). IGPR-1 
colocalizes with VE-cadherin in endothelial cells in cell culture 
and mediates endothelial cell–cell adhesion and its activity is 
required for angiogenesis in vitro and regulation of cell migra-
tion (81). Further studies revealed that it plays an important role 
in monolayer permeability (83). IGPR-1 is composed of three 
major domains: extracellular, transmembrane, and intracellular. 
The extracellular domain of IGPR-1 contains a single Ig domain 
followed by a single transmembrane domain and a proline-
rich intracellular domain (81). The Ig-containing extracellular 
domain is required for IGPR-1 to mediate endothelial cell–cell 
interaction and barrier function (83). IGPR-1 is typically 
present as a disulfide bound cis-dimer, which further forms a 
trans-dimer complex in a cell density-dependent manner (83) 
(Figure 5A).

Proline rich sequences (PRDs) play a major role in mediating 
protein–protein interaction in prokaryotes and eukaryotes (84). 
PRDs are highly versatile and recognize different consensus motifs 
or canonical sequences in their protein ligands. A conspicuous 
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FigURe 5 | Proposed model of immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) mediated regulation of endothelial barrier. (A) Trans-dimeric IGPR-1 
undergoes serine phosphorylation at multiple sites. IGPR-1 through its proline-rich motifs recruits SH3 containing proteins, bullous pemphigoid antigen 1 (BPAG1), 
and SH3 protein interacting with Nck90 (SPIN90)/WISH (SH3 protein interacting with Nck). Interaction of IGPR-1 with BPAG1 and SPIN90 links IGPR-1 to actin fibril 
assembly, intermediate filament formation, microtubule cytoskeleton networks, and vimentin filament assembly (see text). (B) The conventional proline-rich motifs 
and the proline-rich motifs on the cytoplasmic domain of IGPR-1 are shown.
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feature of most binding motifs identified for PDRs is the pres-
ence of one or more proline residue that interact with the ligand, 
while residues that flank the core proline residue determines the 
selectivity (85). Although various protein domains are known to 
interact with proline-rich sequences (85), Src homology domain 
3 (SH3) and WW domains are the most common domains that 
interact with PRDs (86). The PRDs of IGPR-1 interact with mul-
tiple SH3 domain-containing proteins including SPIN90/WISH 
(SH3 protein interacting with Nck) and bullous pemphigoid anti-
gen 1 (BPAG1) (81). The cytoplasmic domain of IGPR-1 contains 
at least five PRDs (Figure 5B), which are variants of canonical 
class I (R/KxxPxxP) and class II (PxxPxR/K) PRD motifs (85). 
Furthermore, SH3 domain-containing proteins can interact with 
PRDs beyond the PXXP motifs, consistent with their versatility 
in their interaction with other proteins (85, 87).

In addition to being rich in proline residues, the cytoplas-
mic domain of IGPR-1 also is heavily phosphorylated at serine 
residues. A recent liquid chromatography–tandem mass 
spectrometry analysis of IGPR-1 identified seven phosphoryl-
ated serine residues on the cytoplasmic domain of IGPR-1, 
including Ser186, Ser220, Ser238, Ser243, Ser249, Ser262, and 
Ser266, five of which are located in the proline-rich region 
(83). Although the functional importance of these phospho-
rylation sites remains to be determined, phosphorylation 

of Ser220 is regulated by homophilic trans-dimerization of 
IGPR-1 and is required for endothelial barrier function and 
angiogenesis (83).

igPR-1 SigNAL TRANSDUCTiON iN 
eNDOTHeLiAL CeLLS

Although significant work is required to fully understand the 
signal transduction events orchestrated by IGPR-1, recent stud-
ies, however, provide important new insights about signaling of 
IGPR-1 in endothelial cells (81, 83). Through the screening of 
a Src-homology3 (SH3) domain array, BPAG1 (or BP230), also 
called DST and SPIN90/WISH (SH3 protein interacting with 
Nck), also called NCKIPSD were identified as putative IGPR-1-
binding proteins (81). The binding of BPAG1 and SPIN90 with 
IGPR-1 was further confirmed by recombinant GST-SH3 domain 
of BPAG1 and SPIN90 in a GST-pull down assay (81).

Bullous Pemphigoid Antigen 1
Bullous pemphigoid antigen 1 is a member of the plakin family 
proteins, which include desmoplakin, plectin, envoplakin, and 
periplakin, is involved in cytoskeletal organization (88). BPAG1 is 
a cytoskeletal linker protein that crosslinks cytoskeletal filaments 
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FigURe 6 | Bullous pemphigoid antigen 1 (BPAG1) is a multidomain protein with various alternatively spliced variants. BPAG1 is a large protein with 7,570 amino 
acids with multiple domains including N-terminus actin-binding domain, followed by plakin domain which consists of 4–8 spectrin repeats interrupted by a 
Src-homology3 (SH3) domain. The C-terminal of BPAG1 is composed of additional plakin repeat domains and intermediate filaments binding domain. Various 
alternatively spliced variants of BPAG1 are also shown.
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to membrane-associated complexes at cell junctions in epithelial 
cells and other cell types (89, 90). BPAG1 is a gigantic protein 
with 7,570 amino acids and an approximate molecular weight 
of 834  kDa. However, it is expressed in a various isoforms by 
mechanism of mRNA alternative splicing, which results in the 
transcription and translation that generates different isoforms of 
BPAG1 with varying molecular weights (91). Based on the human 
genome sequence information, there are 35 different transcripts 
of BPAG1, many of which are untranslated1 and based on the 
available human protein sequence data2 there are at least nine 
isoforms of BPAG1 (Figure 6). BPAG1 is a multidomain protein. 
It has a conserved N-terminal actin-binding domain, followed 
by plakin domain which consists of 4–8 spectrin repeats inter-
rupted by a Src-homology3 (SH3) domain. This unique domain is 
conserved in all plakin family proteins. The C-terminal of BPAG1 
composed of additional plakin repeat domains and intermediate 
filaments binding domain (88, 92–94).

Despite extensive studies on the functional role of BPAG1 
in epithelial cells, expression and importance of BPAG1 in 
endothelial cells remains virtually unknown. However, analysis 
of publically available gene array datasets3 indicates that BPAG1 is 

1 http://www.ensembl.org.
2 http://www.uniprot.org/.
3 https://www.ncbi.nlm.nih.gov/geo/.

likely expressed in mouse and human endothelial cells. Based on 
various recently published gene array analyzes, BPAG1 appears 
to widely expressed in human vascular endothelial cells derived 
from lung (95), macrovascular umbilical vein endothelial cells 
(96), umbilical cord arterial and venous endothelial cells (97), and 
mouse neonatal retinal endothelial cells (98), suggesting a func-
tional role for BPAG1 in IGPR-1-mediated signal transduction 
in endothelial cells. Interestingly, one of the major characteristics 
of epidermolysis bullosa, a neurological condition that causes 
the skin to blister, is caused by a genetic defect in BPAG1 and 
it is associated with increased pathological angiogenesis with a 
leaky vessel (99). Nevertheless, the role of vascular component 
in epidermolysis bullosa remains unexamined. While the role 
of BPAG1 in endothelial cells and its possible role in connecting 
IGPR-1 cytoskeletal filaments remains unresolved, a recent study 
demonstrated that plectin/epiplakin 1, a closely related protein to 
BPAG1, is expressed in endothelial cells, which crosslinks vimen-
tin to the actin assembly to regulate vascular integrity (100).

SH3 Protein interacting with Nck90
SH3 protein interacting with Nck90/WISH (SH3 protein 
interacting with Nck 90, also called NCKIPSD and DIP, mDia-
interacting protein) is another cytoplasmic signaling protein 
that interacts with IGPR-1 in endothelial cells (81). SPIN90 is 
involved in actin polymerization via its interactions with Arp2/3, 
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N-WASP, and actin (101), regulates stress fiber formation (102), 
Rac-mediated membrane ruffling (103), and binds to Palladin, a 
cytoskeletal protein that is required for organization of normal 
actin cytoskeleton, which is important for cell morphology, 
motility, and cell adhesion (104). SPIN90 is highly expressed 
in endothelial cells and the siRNA-mediated downregulation 
of SPIN90 inhibited capillary tube formation, suggesting an 
important role for SPIN90 in IGPR-1-mediated signaling events 
in endothelial cells and angiogenesis (81).

Although a significant work remains, the emerging picture of 
IGPR-1-mediated signal transduction in endothelial cells indi-
cates that IGPR-1 is cross-linked to actin fibril assembly and other 
cytoskeletal filaments that contributes to endothelial cell adhe-
sion, integrity, and barrier function partly through interaction 
with SPIN90 and BPAG1. However, deciphering the molecular 
mechanisms of IGPR-1 in various cell culture systems and animal 
models other than mouse (IGPR-1 is not expressed mouse or rat) 
is an important area for future research, which may lead to the 
discovery of new therapeutic targets for various human diseases 
associated with endothelial dysfunction.

CONCLUSiON

Altered endothelial barrier function is a hallmark of many 
human disorders. Understanding the molecular mechanisms of 
vascular permeability could lead to new therapeutic strategies to 
prevent vascular leakage and improve drug delivery. Moreover, 
controlling integrity and function of endothelial cells in organ 
transplantation could reduce complications associated with 
transplantation medicine.
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