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Type | natural killer T (NKT) cells are innate-like T lymphocytes that recognize glyco-
lipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of
NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemo-
kine responses. This property of NKT cells, in conjunction with their interactions with
antigen-presenting cells, controls downstream innate and adaptive immune responses
against cancers and infectious diseases, as well as in several inflammatory disorders.
NKT cell properties are acquired during development in the thymus and by interactions
with the host microbial consortium in the gut, the nature of which can be influenced by
NKT cells. This latter property, together with the role of the host microbiota in cancer
therapy, necessitates a new perspective. Hence, this review provides an initial approach
to understanding NKT cells from an ecological evolutionary developmental biology (eco-
evo-devo) perspective.
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INTRODUCTION TO TYPE | NKT CELLS

The evolutionary appearance of the vertebrate immune system equipped complex organisms with
the ability to resist invasion by pathogenic microbes and to sense and respond to a loss of tissue
integrity due to infection, aberrant cell growth, or mechanical injury. As organisms became increas-
ingly more complex and lived beyond their fecund years, a finer ability to discriminate self from
non-self was required (1, 2). Thus, the maintenance of homeostasis in such organisms requires the
concerted action of multiple cell types that stand poised to respond to a hostile world filled with
a seemingly endless array of infectious agents, toxic chemicals, and biologics. The first respond-
ers in this elaborate defensive network have historically been classified as members of the more
archaic, multi-modular innate immune system. Should the innate defenses prove insufficient, the
evolutionarily younger, adaptive immune system—consisting of B and T lymphocytes—is recruited
to restore the homeostatic state. The quick-acting cells of the innate immune system senses an altered
homeostatic state with pattern recognition receptors to detect conserved molecular structures shared
by many pathogens alike (3, 4). By contrast, the slow-responding, adaptive immune system senses
alterations in homeostasis by using diverse, clonally distributed B cell receptors (BCR and their
secreted counterparts, antibodies), and T cell receptors (TCRs), respectively.
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Bridging the gap between innate and adaptive immune
responses are the innate-like B and T lymphocytes. These are
a group of cells that express a relatively restricted repertoire of
receptors generated through somatic recombination, yet unlike
conventional T and B cells, exhibit innate-like recognition
principles and functional responses (5). Innate-like lymphocytes
include both T cells (y8 T cells, natural killer T cells, mucosal-
associated invariant T lymphocytes, and CD8aa-expressing
intestinal intraepithelial lymphocytes) and B cells (B-1 B cells
and marginal zone B cells). The evolutionary appearance of this
group of immune cells, including natural killer T cells (NKT cells)
endowed upon vertebrates the capacity to initiate and amplify
both the innate and adaptive immune responses. By virtue of
their immunoregualtory functions, innate-like lymphocytes can
fine-tune the nature and magnitude of these immune responses
(6). Although each immune module plays a specific role, it is
the controlled integration of multiple modules that results in an
effective inflammatory response that is essential in maintaining a
stable milieu intérieur (7).

NKT cells—originally defined as cells that co-express key
natural killer (NK) cell surface markers and a conserved af
TCR repertoire—are thymus-derived, innate-like T lympho-
cytes. The functions of NKT cells are controlled by self and
non-self-lipid agonists presented by CD1d molecules (8). The
majority of NKT cells (type I, invariant NKT) express an invari-
ant TCR a-chain (Val4Jal8 in mice; Va24Jal8 in humans).
The invariant a-chain pairs predominantly with V8.2, VA7, or
VB2 in mouse NKT cells, or VP11 almost exclusively in human
NKT cells. A small NKT cell population—referred to as type II
NKT cells—expresses a more diverse TCR repertoire and recog-
nizes a distinct group of lipid antigens; these, however, are the
focus of other reviews (9-14). The recognition of lipid agonists
rapidly activates NKT cells, which respond just as quickly by
secreting a variety of cytokines and chemokines, and upregulate
costimulatory molecules. By acting promptly, NKT cells alert
and regulate the effector functions of myeloid and lymphoid
cells. In so doing, NKT cells play a critical role in controlling
microbial and tumor immunity as well as autoimmune and
inflammatory diseases (6, 15-17).

MULTIPLE MECHANISMS ACTIVATE
NKT CELL

The functions of NKT cells are controlled by CD1d molecules.
CD1d molecules bind to and present a variety of lipid ligands to
reactive T cells (18). Numerous in vitro and in vivo studies using
the synthetic lipid a-galactosylceramide (aGalCer, KRN7000)
and its analogs (Table 1 and references therein) has led to our
current understanding of NKT cell biology. aGalCer is a natural
product isolated from the marine sponge, A. mauritianus. The
gut bacterium, Bacteroides fragilis, and the fungus, Aspergillus
fumigatus, also biosynthesise aGalCers and/or related com-
pounds (Table 1 and references therein). Hence, aGalCer and
related compounds may be more prevalent in nature than previ-
ously thought and the NKT cell biology so gleaned may be highly
relevant.

aGalCer is a potent NKT cell agonist, which when presented by
CD1d molecules directly activates NKT cells in a TCR-dependent
manner without need for additional signals. This activation
mechanism is considered TCR-dominated mode of NKT cell
activation (Figure 1).

Sphingomonas spp. biosynthesises an aGalCer-related com-
pound, o-galacturonosylceramide (aGalACer). Other weak
NKT cell agonists include microbial glycosphingolipid [GSL;
e.g., aGalCer-related asparamide B (A fumigatus)], diacylglyc-
erolipids [e.g., a-galactosyl- (Borrelia burgdorferi—the agent
of Lyme disease) and a-glucosyl-diacylglycerol (Streptococcus
pneumoniae)] and cholesteryl-a-glycoside [e.g., cholesteryl-6-O-
acyl a-glucoside (Helicobacter pylori)] (Table 1 and references
therein). Being a weak agonist, NKT cell activation by these
microbial glycolipids requires a second activation signal from
inflammatory cytokines. Such inflammatory cytokines result
from dendritic cells (DCs) that are activated through their pat-
tern recognition receptors (45-47). This activation mechanism
is considered TCR- and cytokine-mediated mode of NKT cell
activation (Figure 1)—a feature that is important for NKT cell
activation by weak microbial and self-lipid agonists.

NKT cells react to CD1d molecules presenting self-lipids on
host APCs in the presence of a second signal (6, 48). The inability
to activate NKT cell hybridomas by using artificial APCs lacking
BGlcCer synthase (49) and impaired NKT cell development in
mice lacking BGlcCer synthase in their thymocytes (50), sug-
gested that a cellular, fGlcCer-derived GSL is an endogenous
mouse NKT cell agonist (49, 50). Several microbes—bacteria
(e.g., Staphylococcus aureus, Salmonella typhimurium, Listeria
monocytogenes, etc.), fungi (e.g., A. fumigatus) and viruses—
activate NKT cells but do not biosynthesise NKT cell agonists.
Such microbes induce the biosynthesis and/or presentation of
self-lipids, which are thought to be mammalian aGalCer and
perhaps iGb3 (19, 28, 35). As self-lipids are weak NKT cell
agonists, NKT cell activation is bolstered by IL-12 secreted by
DCs activated through dectin-1 DCs (31, 47) or toll-like receptor
(TLR)-4 (45, 46). This activation mechanism is a variation on the
TCR- and cytokine-mediated mode of NKT cell activation and a
feature that is important for NKT cell activation by microbes that
do not themselves biosynthesise an NKT cell agonist.

Type I interferon (IFN)—produced by DCs activated by the
TLRO ligand CpG—can serve as a second signal for NKT cell
activation in conjunction with the presentation of sialylated
cellular glycolipids by CD1d molecules (51). This finding is
significant because almost all viral infections induce type I IFN
response. Even though viruses do not biosynthesise NKT cell
agonists, or any lipid for that matter, viral infections also
activate NKT cells (52-62). Perchance, in such a circumstance,
NKT cell activation occurs via the recognition of a self-lipid(s)
presented by CD1d in the presence of inflammatory signals
relayed by type I IFNs.

NKT cells are activated by the combined actions of IL-12
and IL-18. Under such conditions, NKT cell activation does not
require the recognition of a CD1d-restricted agonist (63-65).
This latter mechanism is considered cytokine-driven NKT cell
activation (Figure 1). This mechanism is important for
immunity to cytomegalovirus (65). Summarily, these multiple
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TABLE 1 | Synthetic, microbial, and self NKT cell agonists—structures and properties.

Lipid (class) Chain Length? Structure Agonist® Reference
aGalCer (GSL) C18; C24:1 HO OH o IFN-y, IL-4 self (19
% )V\/\/\/\/\/va/\/\/\/
HO
Ho | HN
OVY\/\/\/\/\/\/\/
OH
Agel 9b (GSL) C17 (Cie-Me); HO OH Anti-tumor; Agelas (20, 21)
mauritianus

phyto C24 % Q
HO HN' OH
HO OV\‘/\/\/\/\/\/\)\

OH
KRN7000 C18-phyto; C26 HO OH o Very strong; robust IFN-y IL-4 (22)
aGalCer (GSL) o] . and other cytokines; synthetic
HO o) HN' OH analog of Agel 9b
O\/Y\/\/\/\/\/\/v
OH
aCGal-Cer C18-phyto; C26 HO OH o Weak (mo)-to-none (hu); IFN- (23)
(GSL) lo} y; synthetic
HO
Ho | HN  OH
W
OCH (GSL) C9-phyto; C24 HO ©OH o Weak (mo)-to-none (hu); IL-4 (24)
(o) - (low-to-no IFN-y); synthetic
HOA—TE HN' OH
OW\‘
OH
C20-diene C18-phyto; C20:2 HO OH Strong; IL-4 (low-to-no IFN- (25)
GSL) o O\\\/ 4); synthetic
/ T T
HO o HN'  OH
OV\‘/\/\/\/\/\/\/\/
OH
aGalCer (GSL) C17-Cs0H; C17 H OH Stimulatory and inhibitory (26, 27)
HO
ho | HN
O\/Y\/\/\/\/\/Y
OH
aGalU Cer C18-phyto; C14 0 Weak; Sphingomonas spp. (28-30)
HO OH
(GSL) (o)
O WA/\/\A
HO ) HN QH
OH
Asp B (GSL) C20:2-Cg Me; HO OH OH Weak; Aspergillus fumigatus (81)
©16-C. OH Q 3\/\/\/\/\/\/\/\/
HO
Ho | N
(6] S N
OH
aGlc-6-acyl- C14 (o) Strong; binds a small (32)

Chol o J\/\/\/\/\/\/\ NKT cell subset (mo);

Helicobacter pylori
HO 0
HO
HO -

(Continued)
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TABLE 1 | Continued

Lipid (class) Chain Length? Structure Agonist® Reference
pGalCer (GSL) C18; C24:1 o] Weak; self (33, 34)
OH /OH /\\\/\/\/\/\/\/\/z\/\/\/\/
2o M
O._~ ~
HO \/\‘/\/\/\/\/\/\/\/
HO OH
iGb3 (GSL) C18; C24 HO OH Weak (mo)-to-none (hu); self (35)
0 OHPH oH t)?
HO- ") o o . ° HN R N Y e U e S U e N
O~Ho HO%OO\/\AA/\/\/\/\/\/\/
OH
aGal-DAG sn1-C18:1; sn2-C16 HO OH o Weak (mo)-to-none (huy); (36)
(GGL) o) )\V\/\/\/\/\/\/\ Borrelia burgdorferi
HO
Ho | ©
O\/\/OW/\/\/VE/\/\/\/\
(0]
aGlc-DAG sn1-C18:1; sn2-C16 OH o Weak; Streptococcus 37)
(GaL) HO o 0 )\v\/\/\/v:\/\/\/ preumoniae
H
HO O
O\/\/O\"/\/\/\/\/\/\/v
o
Ptdino (GPL) sn1-C18:1; sn2-C18:1 w Week (mo)-to-no (hu); self (38, 39)
O HO—OH 0 o
HO ;i
HM/o\gﬂOWOWVV\:NV\A
o o)
Plasma-logen sn1-C16 vinyl-ether; HoN 60 OH Positive selection (mo); self (40)
(GPL) sn2-lyso prO O
o)
Lyso-PtdCho sn1-C16; sn2-lyso CH,4 OH Weak (hu)-to-none (mo); (41)
(GPL) HCN -~ OH, © GM-CSF (no IL-4, IFN-y); self

This table is adapted from Ref. (8, 42).

Agel, agelasphin; Asp B, asparamide B; Chol, cholesterol; DAG, diacylglycerol; GalCer, galactosylceramide; GalUCer, galacturonosylceramide; GicCer, glucosylceramide; PtdCho,
phosphatidylcholine; Ptdlno, phosphatidylinositol; sn, stereo nomenclature for glycerolipids; GGL, glycoglycerolipid; GPL, glycerophospholipid; GSL, glycosphingolipid; mo, mouse;

hu, human.

aSphingosine/phytosphingosine chain length indicated first and N-acy! chain length second.

bAgonist strength based on Ref. (43).

modes of activation suggest that NKT cells have evolved many
different mechanisms to sense an altered homeostatic state
caused by microbial infections. How activated NKT cells
steer downstream innate and adaptive immune responses is
described below.

TRANSACTIVATION OF INNATE AND
ADAPTIVE IMMUNE RESPONSES BY
ACTIVATED NKT CELLS

NKT cells form immune synapses upon recognition of lipid ago-
nists presented by CD1d molecules displayed on APCs or planar
membranes. The kinetics NKTCR/ligand interactions determine
the functional outcome (66). Positive cooperative engagement of
CD1d-lipid agonistic complexes by the NKTCR allows NKT cells
to recognize subtle changes in cellular lipid content and to actu-
ate a response (67). Upon activation, NKT cells rapidly polarize

IFN-y and lytic granules to the immune synapse to transmit an
effector response (66, 68, 69). The synaptic transmission of effec-
tor molecules controls downstream innate and adaptive immune
responses as described below.

Akin to the cells of the innate immune system (e.g., neutro-
phils, M@, DCs, and NK cells), NKT cells respond within the
first several hours of agonist recognition and secrete copious
amounts of effector cytokines and chemokines (Figure 2). The
nature of the activating NKT cell agonist controls the nature of
the cytokine response (see Table 1). For example, the synthetic
agonist aGalCer, within 30-90 min, elicits a wide variety of
cytokines (Figure 2). Nonetheless, aGalCer variants containing
different lipid chain length or unsaturation typically induce an
IL-4 cytokine response (24, 25). By contrast, other aGalCer vari-
ants that have an altered glycosidic linkage, a chemically modified
acyl-chain, or a modified sphingoid base, potently induce an IFN-
y response (Table 1 and references therein). Thus, it is possible to
steer desirable immune responses against cancers by harnessing
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FIGURE 1 | Three distinct strategies activate mouse NKT cells. Potent

NKT cell agonists—such as aGalCer—directly activate NKT cells without the
need for a second signal, in a T cell receptor (TCR)-signaling dominated
fashion (left panel). Alternatively, microbes containing toll-like receptor (TLR)
ligands such as LPS activate NKT cells by inducing IL-12 production by DCs,
which amplifies weak responses elicited upon the recognition of CD1d bound
with self-glycolipids by the NKTCR. Several endogenous lipid agonists have
been identified and characterized (see Table 1). Some microbes such as
Sphingomonas capsulata, which are a-Proteobacteria, synthesize
a-anomeric glycolipids for their cell walls. These glycolipids, when presented
by CD1d, weakly activate NKT cells directly. In the presence of a second
signal—generally a pro-inflammatory cytokine such as IL-12—such weak
agonists strongly activate NKT cells (middle panel). Intriguingly, NKT cells can
be activated solely by cytokines—mainly IL-12— in a TCR-independent
manner (right panel). This diagram rendering the different strategies to

NKT cells is an adaptation of past reviews (8, 44) and is based on works
cited in the text.

lipid agonists that induce therapeutic cytokine responses. This
feature of aGalCer variants is further accentuated by the abil-
ity of activated NKT cell responses to transactivate cells of the
innate and adaptive immune systems as narrated briefly below
(see Figure 2).

Dendritic cells, especially CD8a* DCs, which are a major
producer of IL-12 (71), play a critical role in glycolipid ago-
nist presentation and NKT cell activation (72-78). Activated
NKT cells reciprocate by activating the interacting DCs. DCs
so activated rapidly mature. Hence, they upregulate costimula-
tory molecules CD40, CD80, and CD86; several molecules
critical for protein antigen capture and peptide presentation,
such as DEC205 and MHC class II molecules (79); and induce
the production of IFN-y, tumor necrosis factor (TNF)-a, and
IL-12 (80-83). IFN-y produced by activated NKT cells coupled
with CD154 (CD40 ligand on NKT cells) and CD40 (on DCs)
mediate the NKT-DC crosstalk (81, 84). This crosstalk steers
multiple downstream immune responses: (1) the number and
phenotype of DCs after tumor induction (85). (2) IL-12 and
IL-18 resulting from NKT-DC crosstalk transactivates NK cells
to produce IFN-y (82). (3) NKT-DC crosstalk can result in
IL-4, IL-6, IL-13, and IL-21, which together can enhance B cells
responses to protein antigens by B cells (86-93). (4) NKT-DC
cross talk licenses DCs for antigen cross-presentation to CD8*
T cells (94-96), and the activation and differentiation of CD4
and CD8 T cells (79, 95-97). Through these bidirectional interac-
tions, NKT cells and DCs cooperate to amplify and direct both

IL-4, IL-13
IFL:—1O, IL-21

CDld IL-4, CSF-2
_ |cp4oL ILlftNIIJ_Yls IFN-y, TNF-g,
D;CD“O IL10, ILT7A IL-4,1L-13
" [NKTCR 1110, IL-21
IFN-y
€ (fer
“IBomrc

FIGURE 2 | The immunological effector functions of mouse NKT cells. The
interactions between the invariant natural killer T (NKT) cell receptor and its
cognate antigen, as well as interactions between costimulatory molecules
CD28 and CD40 and their cognate ligands CD80/86 (B7.1/7.2) and CD40L,
respectively, activate NKT cells. Activated NKT cells participate in crosstalk
with members of the innate and the adaptive immune systems by deploying
cytokine and chemokine messengers. Upon activation in vivo, NKT cells
rapidly secrete a variety of cytokines and chemokines, which influence the
polarization of CD4+ T cells toward T helper (Th)1 or Th2 cells as well as the
differentiation of precursor CD8* T cells to effector lymphocytes, and B cells
to antibody-secreting plasma cells. Some of these mediators facilitate the
recruitment, activation and differentiation of macrophages and dendritic cells
(DCs), which results in the production of interleukin (IL)-12 and possibly other
factors. Interleukin (IL)-12, in turn, stimulates NK cells to secrete interferon
(IFN)-y. Thus, activated NKT cells have the potential to enhance as well as
temper the immune response. This schematic rendition of NKT cell effector
functions is an adaptation of past reviews (6, 8, 44, 70) and is based on
works cited in the text.

innate and adaptive immune responses. Hence, NKT cells are an
attractive target for cancer immunotherapies (98-102).

IMPLICATIONS FOR CANCER
IMMUNOTHERAPY

NKT cells have long represented an attractive target for tumor
immunotherapy (103, 104). Numerous studies in both humans
and mice have demonstrated their ability to directly target CD1d-
expressing tumor cells (105-108), recruit and activate anti-
tumor effector cells of the innate and adaptive immune systems
(100, 109-114), and control the activity of immunosuppressive
cells in the tumor microenvironment. After in vivo administra-
tion of aGalCer, NKT-DC cross-talk-mediated NK cell activation
results in IFN-y response (82) and, potentially, the anti-tumor
effect of aGalCer (85, 115).

The potent anti-metastatic activity of aGalCer in mice
(20, 116), which is NKT cell mediated (22), prompted inves-
tigations in the role of NKT cells in natural immunity against
tumors. Such investigations include chemically induced tumors,
transplanted tumors, and tumors arising in genetically engi-
neered animals (115). The outcomes of these studies have been
promising because NKT cells exhibit natural immunity against
different cancer models. Independent studies have sometimes
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reported conflicting results as to the importance of NKT cells in
the anti-tumor response, particularly with carcinomas induced
by the topical carcinogen methylcholanthrene (117, 118). Such
conflicting results were likely due to unknown environmental
and/or genetic factors present in the mice used as controls in
similar experiments by different groups (117). Studies in mice
revealed that aGalCer variants that induce type I inflammatory
response (see Table 1) were protective against tumor metastases.
The mechanistic basis of this anti-metastatic effect remains elu-
sive. Nonetheless, the ability of NKT cells activated by aGalCer
variants to steer desirable downstream effector functions, such as
NK cells, cytotoxic T cells, Th1 and Th17 cells, y8 T cells, IFN-y,
and direct lysis of myeloid lineage cells may underlie the outcome
(100, 115). The anti-tumor activities of NKT cell agonists have
already been exploited in a variety of clinical trials. The outcomes
of these trials have also been promising (103, 104, 119-121).

Genomic Control of NKT Cell Development
NKT cells development and maturation occurs in the thymus
(122, 123). Thus, genetically altered mice in which thymocytes do
not develop beyond the double-negative (DN)2/DN3 stage also
fail to develop NK1.1* T cells (124). [Note: historically, prior to

RORyt T3
DP §f§§m} CD24'°CDA44hi
CD24M CD4neeNK1. 10
/ TCRiPos IL-7, NKT17
Nur77H! HI M2 gribe CD24'°CD44hi
pL7Flo __, PLZFM __ PLZFM _2 _ pizfH CD240CD44"
STO SsT1 T2
D24 CD24P CD24P \5 —
TCRjPs CDA44nes CD44Pi PLZFLO CD24°CDA4M
NK1.1"ee  NK1.1mg CD4*/negNK1.1P0s

NKT1

FIGURE 3 | Schematic rendition of mouse NKT cell developmental stages:
precursor STO, immature ST1 and ST2 and mature ST3 and NKT1, 2, and 17
are functional subsets. Early developmental steps are common to both

NKT cell and conventional T cell lineages as commitment to the NKT lineage
occurs at the CD4 and CD8 double-positive (DP) stage. NKT cell ontogeny
begins with rearrangement of the Va4 to Ja78 T cell receptor (TCR) a-chain
gene segments and after its interaction with the positively selecting
CD1d-self-lipid complex. Stage-specific NKT cell markers—e.g., CD24,
CD44, and NK1.1—and subset-specific differentiation signals and
transcription factors are indicated. Interleukin (IL)-7 and IL-15 are cytokines
that mediate intercellular communication. NKTCR signaling turns-on the
master transcription factor promyelocytic leukemia zinc finger (PLZF), which
controls multiple molecular events that distinguish NKT cells from all of the
other thymus-derived T lymphocytes. Additional molecular cues include Fyn
and Lck, which are Src (cellular protein homologous to the Rous sarcoma
virus oncogene) kinases (protein phosphorylation enzymes) essential for
transmitting NKTCR signals from the plasma membrane to inside of the cell.
Fyn also transmits signals relayed from SLAM (signaling lymphocyte
activation molecule) through the adapter protein SAP (SLAM-associated
protein). Protein kinase C (PKC)-0 processes NKTCR signaling and activates
the transcription factor nuclear factor-kB (NF-kB). Other transcription factors,
such as Egr-2, Ets-1, GATAS, 1d2, I1d3, MEF, Nur77, RORyt, and T-bet, some
of which are also essential for functional differentiation of NKT cell subsets
(refer to Figures 4 and 6) and act at distinct stages of NKT cell development.
This diagrammatic rendition of NKT cell development is an adaptation of a
past review (8) and is based on works cited in the text.

the development of CD1d-lipid tetramers (125, 126), NKT cells
were identified by co-expression of the NK1.1 marker and a TCR.
Hence, in pre-tetramer literature, they were referred to as NK1.1*
T cells (127).] Thymic NK1.17 NKT cells were later recognized as
aCD1d tetramer® NK1.1~ subset that precedes NK1.1* NKT cells
in development (128, 129). Current literature refers to the IFN-y-
producing, mature, stage 3 (st3) NKT cells as NK1.1* NKT cells
(Figure 3). Furthermore, NKT cells do not develop in mice har-
boring mutations in genes (e.g., Myb, that encodes the transcrip-
tion factor c-Myb, Rorc, which encodes RORyt, and Tcf12 that
codes for HEB) that impair survival of immature double-positive
(DP) thymocytes—cells that co-express both CD4 and CD8 co-
receptors— (130-133). Moreover, Va4 and Jal8 rearrangement
occurs at a late DP stage (130, 132). Consistent with this finding,
NKT cells develop in NKT cell-deficient JaI8-deficient (Jal8~)
mice that receive highly purified tetramer-negative, DP-high
thymocytes (134). These findings together support the notion
that commitment to the NKT cell lineage occurs at the DP stage
much alike conventional T cells (135). That notwithstanding,
compelling new data indicate that Va4 and Jol8 rearrangement
can occur within CD4- and CD8-negative (DN) thymocytes.
Additional data indicate that a fraction (~15%) of NKT cells
that differentiate into NKT1 cells emerge from DN thymocytes
(136). Hence, an alternative precursor can give rise to functional
NKT cells.

Positive selection of NK1.1* T cells depends on DP thymo-
cytes (122). Developing NKT cell-DP thymocyte interactions
involve both self-lipid-bound CD1d/NKTCR (22, 116, 137-139)
and signaling lymphocytic activation molecule (SLAM)-SLAM
interactions (140-142). These interactions are critical to NKT cell
maturation, which involves protein kinase CO-NF-«xB (143) and
NFAT-Egr2 (144-146) activation downstream of the NKTCR,
and SLAM-associated protein-Fyn activation downstream of
SLAM (140, 141, 147, 148). Signals so transmitted from the
cell surface are relayed through multiple signaling nodes in the
cytoplasm and integrated in the nucleus into a unique tran-
scriptional program (Figure 3). A key nuclear event involves
the activation of the zinc finger BTB domain-containing-16
(Zbtb16) gene that codes for promyelocytic leukemia zinc finger
(PLZF). The PLZF-mediated genomic control distinguishes the
unique NKT cell functions from those of the other T lympho-
cytes (149, 150). NK1.17 NKT cells undergo several rounds of
cell division, retaining some in the thymus with the remaining
emigrating and populating the peripheral lymphatic organs.
Thence, NK1.1~ NKT cells mature to become NK1.1* NKT cells,
both in the thymus and the periphery (Figure 3). A key feature
of this maturation process is the acquisition of cytokine secre-
tion function in a less well-understood mechanism (148) and
the differentiation into three functional subsets: NKT1, NKT2,
and NKT17 (discussed below). These NKT cell subsets marked
by the same subset-specific transcription factors and cell surface
markers expressed by the corresponding T helper cell subsets
(151-156).

Gene regulatory networks (GRNs) are composed of trans-
regulatory factors—generally made up of transcription factors
and regulatory RNA such as microRNAs and long non-coding
RNA—and cis-regulatory regions generally found upstream of
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FIGURE 4 | Promyelocytic leukemia zinc finger (PLZF)-driven gene regulatory
network directs innate effector function in mouse NKT cells. NKTCR
stimulation by self-glycolipid antigen activates downstream nuclear factor of
activated T cells (NF-AT), which activates Egr2 gene. Egr2 is essential for
Zbtb16 gene expression downstream of NKTCR stimulation. PLZF encoded
by Zbtb16 activates T helper (Th) lineage-specific transcription factors,
except Tbx21, which codes for the Th1 master regulator Tbet. Promyelocytic
leukemia zinc finger (PLZF) also binds to multiple cis-regulatory elements to
repress Bach2, which is a repressor of Th cytokine genes. In addition, PLZF
binds to cis-regulatory elements of a variety of cytokine and chemokine
receptor genes. NF-AT, Tcf3, Tef12, Egr2, Zbtb16, Bach2, c-Maf, Gata 3,
Runx3, Rora, Rorc, Bcl6, and Kif2 encode transcription factors. Other genes
under PLZF control encode effector proteins, mostly cytokines (e.g., //4),
cytokine receptor (I12Rb1, Ifngr, 121r), chemockine (Ccr4) or cell adhesins
[Cd44, Sell (L-selectin)]. Bach2 represses the induction of T helper (Th)
effector cytokine genes. Thick black lines, cis-regulatory elements of genes;
solid green lines, enhancer; solid red lines, repressor; dashed green lines,
indirect evidence for enhancement; dashed red lines, indirect evidence for
repression. Based on Ref. (145, 149, 150, 158).

genes whereupon transcription factors bind to control lineage-
specific gene expression. GRNs unveil the origins and evolution
of cell lineages (157). Many transcription factors have been stud-
ied in relation to NKT cell development and function. Among
these, PLZF works as a master transcription factor controlling the
development of innate-like functions within NKT cells (Figure 4)
(149,150, 158). Mice harboring a loss-of-function PLZF mutation
or lacking PLZF demonstrated poor NKT cell development, and
those NKT cells that developed were NK1.1~ and homed to lymph
nodes but not to tissues such as thymus and liver where they are
found abundantly in wild type (wt) mice (149, 150). Additional
studies indicated that PLZF binds to cis elements of effector
cytokine and homing receptor genes to direct their expression
within NKT cells (Figure 4) (158). Furthermore, forced expres-
sion of a Zbtb16 transgene in all T cells during thymic develop-
ment resulted in the acquisition of an innate-like phenotype and

function in conventional T cells (158). These findings heralded
PLZF as a lineage-specific master regulator of transcription (149,
150, 158), and has led to the unveiling of a GRN that controls
effector differentiation in developing NKT cells (Figure 4).

The induction of Zbtb16is controlled in part by acetylated Egr2
(159), which is induced downstream of NKTCR signaling (144).
A recent study demonstrated that the gene encoding the histone
acetylase GCN (general control non-derepressible) 5 acetylates a
critical lysine residue in Egr2. DP thymocyte-specific depletion
of GCN5 blocked the progression of NKT cell development from
stage 0 to stage 1 in a cell intrinsic manner. This stage 0 to stage
1 developmental block was due to transcriptional downregula-
tion of the lineage driving gene Zbtb16 and other genes such as
Runxl, Tbx21, and II2rb that are essential for proper NKT cell
development (159). GCN5 itself is an acetylated protein. Whether
its function during NKT cell development depends on acetylation
is currently unknown. In some models, the function of GCN5
depends on its deactylation (160). Should GCN5 function in
NKT cells depend on deacetylation, whether and which sirtuins
[silent mating type information regulation 2 homologs 1-7 (160)]
play this role in NKT cells remains to be established.

Even though the mouse invariant Va14i TCR a-chain has the
potential to pair with virtually all available TCR f-chains, the
peripheral NKT cell repertoire consists of Val4i paired with a
restricted set of B-chains, viz., VB8, VB7,and VP2 (161). There are
two views to the events that sculpt this semi-invariant NKTCR
repertoire: the predominant view is that such a semi-invariant
NKTCR repertoire is built exclusively by positive selection (162).
The competing hypothesis—that both positive and negative selec-
tions sculpt the semi-invariant NKTCR repertoire—is supported
by indirect evidence (163-166).

Two lines of evidence support the notion that positive selec-
tion sculpts the NKT cell repertoire. CD1d molecules have a
recycling motif in their cytoplasmic tail, which is essential for
the endo/lysosomal exchange of CD1d-bound lipids and their
subsequent presentation to NKT cells. Transgenic mice express-
ing a mutant CD1d molecule that has lost the ability to recycle do
not develop NKT cells, suggesting that positive selection requires
arecycling CD1d molecule (167). Another line of support comes
from the study of CD1d-null mice, which contain a small number
of CD1d-tetramer* thymocytes. These pre-selection thymocytes
also express only the VB8, VP7, and VB2 B-chains expressed by
the post-selection NKT cells. Such pre-selection thymocytes
expand the same NKTCR repertoire when stimulated with a
putative self-glycolipid called isogloboside-3 in vitro (35, 161).
These lines of evidence support positive selection as the sole
model for sculpting the NKT cell repertoire.

Deletion of the gene coding for NKAP (NF-kB activating
protein) in DP thymocytes specifically blocks the development of
NKT cells but not conventional T cells (168). NKAP colludes with
HDACS3 (histone deacetylase 3) to function as a transcriptional
repressor (169). Accordingly, deletion of the Hdac3 gene in DP
thymocytes completely blocks NKT cell development, while con-
ventional T cell development proceeds normally (168). Hence,
the repression of target genes at the DP thymocytes stage by the
combined action of NKAP and HDACS3 is essential for positive
selection of the NKT cell lineage.
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Three lines of evidence support a potential role for negative
selection in pruning self-reactive NKT cells for sculpting a func-
tional repertoire: first, all available TCR B-chains can pair with
the Val4i TCR a-chain and react with CD1d tetramer, yet only
VB8, VP7, and VP2 P-chains are expressed by the post-selection
NKT cells (161). This finding can be explained only by negative
selection of the majority of the p-chains and not by the failure to
survive owing to the inability to interact with CD1d or to failed
positive selection (38, 161). Second, transgenic over expression
of either mouse or human CD1d in DP thymocytes and thymic
myeloid cells results in fewer NKT cells and, those that remain,
display altered VP usage (163, 170). Furthermore, only wt 16.5-
day post-coitus mouse fetal thymic organ cultures (FTOCs), but
not FTOCs from CD1d-overexpressing transgenic animals, fos-
tered NKT cell development (163). Finally, exogenous addition
of aGalCer, to wt mouse FTOCs resulted in NKT cell depletion
(163, 164). Likewise, in vivo aGalCer injections into neonatal
mice also resulted in the intra-thymic depletion of NKT cells
(164). Together, these findings provide compelling evidence,
albeit indirect, supporting a role for negative selection in sculpt-
ing a functional NKT cell repertoire.

Agonistic ligand(s)—those that positively select in the thymus
being similar or identical to ligands that activate in the periph-
ery (19, 27, 171)—selects NKT cells, which strikingly contrast
antagonist ligand-mediated selection of conventional T cells.
Further, SLAM-SLAM interactions, which activate PKC-0 via
the SAP-FynT signaling module, mediate persistent interac-
tions between developing NKT cells and the selecting DP cells
(140, 141, 147, 172-175). NF-xB provides a survival signal to
escape death that could result from these high affinity interactions
(166, 176-182). Current evidence suggests that signals relayed

through the TCR-PKCO-CARMA1 axis are integrated by NF-kB
to prevent death of developing NKT cells (143, 166, 183). But the
signals relayed by the TCR-PKCO-CARMAL1 axis only partially
accounts for such death signals. Consistent with this conclusion
is the finding that TNF-a ligation of TNF receptor superfamily
member la (TNFR1) relays caspase 8 and caspase 9 activation
signals to mediate NKT cell death. This death signal is also obvi-
ated by NF-«B activation (183). Additional signals also mediate
NKT cell survival during development (181, 184-192). Hence,
escaping cell death from multiple signals may be a key feature of
thymic NKT cell development. Whether this cell death is the basis
for negative selection of NKT cells currently remains unknown.

NKT cells must tightly regulate NF-kB activation as mice that
lack RelA or cannot activate NF-kB poorly develop NKT cells
(143, 176, 177). On the other hand, mice that express overactive
NF-kB or lack the negative regulator of NF-kB signaling CYLD,
develop NKT cells but fail to mature and populate the lymphoid
organs and peripheral tissues (181). Hence, NF-kB may function
as a rheostat to set the threshold for peripheral NKT cell acti-
vation. Such a threshold may be critical as their selection and
function are controlled by agonistic ligand(s) so as to prevent
autoreactivity. How NF-kB functions as a rheostat in developing
NKT cells needs elucidation.

NKT Cell Subsets, Frequency Variation,
and Microbial Influences on Function: An

Ecological Perspective

Recent findings on NKT cell developmental properties may be
best understood from an ecological perspective. These proper-
ties include, (a) functional NKT cell subsets and the division of
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labor; (b) NKT cell frequency variation; (c) tissue environment-
dependent NKT cell subset frequency variation; and (d) gut
microbiota-dependent peripheral NKT cell maturation and
reciprocal NKT cell control over gut microbiota.

FUNCTIONAL NKT CELL SUBSETS AND
THE DIVISION OF LABOUR

NKT cell activation results in rapid secretion of pro-inflammatory
and regulatory cytokines and chemokines. This property in
conjunction with the capacity to transactivate a variety of innate
and adaptive immune cells—see subsection on Transactivation—
allows NKT cells to steer downstream immune responses.
NKT cells are heterogeneous, consisting of at least four distinct
subsets—NKT1, NKT2, NKT10, and NKT17. In addition, at least
one induced subset, NKTth, is also recognized. As with conven-
tional CD4" T cell subsets, NKT cell subsets are characterized by
prototypic cytokine responses and subset-specific transcription
factors (Figure 5). Each subset is represented at different propor-
tions in various mouse strains (151-155).

MOUSE NKT1 CELLS are marked by either the expression
of CD4 or the absence of CD4/CD8 co-receptors. NKT1 cell
activation results in a Th1-like cytokine response. The majority of
mouse splenic and hepatic NKT cells are NKT1 subset, especially
in the C57Bl/6 strain. NKT1 cell differentiation depends on T-bet
(Tbx21) and IL-15 but less on GATA3 (151, 152, 187, 189-191).
Unlike HDAC3 depletion in DP thymocytes, NKT cell lineage-
specific deletion of Hdac3 (derived with the use if Zbtb-Cre)
results in selective impairment in NKT1 cell development. The
selective absence of HDAC3 in NKT cells resulted from reduced
autophagy (193-195)—a cytoplasm recycling process essential to
T and NKT cell development —and decreased GLUT1, CD71,
and CD98 nutrient receptor expression (196). Moreover, the
anti-tumor effect of aGalCer (109) is potentially mediated by
IENy- and TNFa-producing NKT1 cells.

MOUSE NKT2 CELLS express the CD4 co-receptor. NKT2
cell actiation results in a Th2-like cytokine and chemokine
response. This subset is enriched in mouse lungs and the intestine
(152). IL-13 and IL-4 as well as CCL17, CCL22, CCL10/CCLSs,
and eosinophil chemotactic factor-L secreted by activated NKT2
cells may mediate airway hyperresponsiveness (151, 197-200).
This Th2-type response recruits M¢s, eosinophils, neutrophils,
and lymphocytes into the lungs to incite tissue damage (197).
Coincidently, in BALB/c mouse that is sensitive to airway hyper-
responsiveness, NKT?2 cells predominate (152).

NKT cells constitutively express Il4 and Ifng transcripts. This
constitutively expressed cytokine genes may explain the rapid
NKT cell response toagonistic stimulation in vivo (201). Epigenetic
changes in the two cytokine genes control their transcription. For
example, the conserved non-coding sequence (CNS) 2 located
downstream of the mouse I/4 locus is constitutively active in
NKT cells, which thereby constitutively transcribe the Il4 gene.
CNS 2 activity depends on NOTCH and Rbp-j (recombination
signal binding protein for immunoglobulin kappa ] region)—a
transcriptional regulator of NOTCH signaling. Hence, DP
thymocyte-specific deletion of Rbp-j abolished CNS 2 activity and
the ability to transcribe 114 (202).

A similar epigenetic control of the human Ifng locus using
CNS-30 and CNS +18-20 transcribes the Ifnglocus in NKT cells
(203, 204). Consistent with this finding, NKT cells showed
acetylated histone 4 marks upstream and downstream of the
Ifng coding region only when activated by weak (self agonists)
or strong signals (phorbolmyristate acetate + ionomycin) but
not in resting NKT cells. Furthermore, NKT cells rested after
stimulation returned the Ifng locus to an unmarked state (205).
H4 acetylation occurs at CNS +18-20, a site essential for human
Ifng transcription in NKT cells and conserved within the mouse
Ifng locus (203, 205). These findings notwithstanding, it is
unclear whether human NKT cells constitutively transcribe the
Ifng locus and how mouse NKT cells constitutively transcribe
its Ifng locus.

MOUSE NKT17 CELLS do not express CD4 or CD8 co-
receptors. They are enriched in the lungs, skin, and peripheral
lymph nodes, and are poorly represented in the spleen and
liver (206-208). These cells require IL-7, not IL-15, for survival
(151, 209). The development of NKT17 cells also requires
mTORC2 signaling and the transcription factors Runxl and
NKAP (168, 210-213). Thus, NKT cell-specific RunxI deletion
results in decreased IL-7Ra, BATF, and c-Maf expression against
the backdrop of increased Lef and Bcll1b expression (211). On
the other hand, how NKAP controls NKT17 cell development
is not understood, but appears not to require mTOR, IL-7, and
TGEF-p signaling (210).

Akin to Th17 cells, NKT17 cells constitutively express
RORyt (206), rapidly produce IL-17A in response to certain
bacterial infections, and induce airway neutrophilia when
challenged with synthetic glycolipid or LPS (37, 206, 214).
NKT17 cells may contribute to ozone-induced airway hyper-
sensitivity (215), the development of experimental autoim-
mune encephalomyelitis (214), and the pathogenesis of acute
hepatitis in mice (216).

MOUSE NKT10 CELLS, the PLZF-independent subset
(154), are found in low frequency in unchallenged mice and in
human peripheral blood mononuclear cells (PBMCs). Upon
re-activation, NKT10 cells that previously responded to aGalCer
in vivo, secrete IL-10 (155). IL-10 produced by activated NKT10 is
thought to maintain immune-privilege sites. This NKT cell subset
may also control Treg cell functions in adipose tissues (154).

Mouse NKT cells can provide cognate (lipid antigens) or
non-cognate (protein antigens) help to B cells and regulate
antibody responses (89, 90, 92, 217, 218). Upon immunization
with aGalCer a subset of NKT cells acquire a phenotype similar
to T follicular helper T cells (TrH) referred to as NKT follicular
helper (NKTFH) cells (218-220). NKTFH are characterized by the
expression of CXCR5, ICOS, PD1, Bcl6, and BTLA. Their devel-
opment is dependent on same factors that drive TrH development
(219). NKTrH cells induce rapid production of germinal centers
through IL-21 production that yields detectable levels of antigen-
specific IgG (91, 219, 220). Nonetheless, NKTrH cell-induced
antibody responses are short-lived and inferior to TrH cell-
induced responses (91, 219, 220). NKTFH cells may play a role
in antibody responses against human pathogens such as Borrelia
hermsii, Streptococcus pneumoniae, and Plasmodium falciparum
(91, 219, 220). NKTrH and TFH cells can act synergistically to
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induce robust antigen-specific antibody responses underscoring
the use of aGalCer as a vaccine adjuvant (218).

Human NKT cell responses are as diverse as those of mouse
(221), yet NKT cell subsets have not been formalized in humans.
Functional dichotomy has been reported in human CD4" and DN
NKT cell subsets: activated human CD4* NKT cells secrete IL-4. A
pathological role has been attributed to human CD4* NKT cells,
which accumulate in the lungs of chronic asthmatic patients and
produce IL-4 and IL-13 (222). Hence, human CD4* NKT cell
resembles the mouse NKT2 cell subset. On the other hand, the
activated DN NKT cells secrete IFN-y and TNF-a. Furthermore,
both CD4 and DN human NKT cell subsets upregulate perforin
in the presence of inflammatory signals. The DN NKT cells also
upregulate NKG2D expression, which together with perforin
may mediate cytotoxicity against infected cells and cancer cells
(223, 224). These functions of human NKT cells resemble those
of mouse NKT1 cells. Activated human NKT cells can also secrete
IL-17 (221), suggesting the presence of an NKT17-like subset.

In summary, mouse NKT cells divide labor into four subsets.
Global and single cell transcriptome analyzes demonstrated that
the thymic NKT1, NKT2, and NKT17 cells were distinct subsets
(156, 225). Even though not formalized, human NKT cells also
have the potential to mirror mouse NKT cell subsets, but this
requires further investigation. That the tissue environment plays
arole in the differentiation of NKT cell subsets is supported by the
finding that NKT17 differentiation required mammalian target of
rapamycin complex-2 (213) or is suppressed by Tet enzymes that
modify 5-methylcytosine in DNA by controlling the expression
of Tbet and ThPOK transcription factors (226). Another study
using somatic cell nuclear transfer to generate mice with mono-
clonal NKT cell populations demonstrated that tissue homing
pattern, and, to a lesser extent, TCR avidity governed NKT cell
subset differentiation (208). That NKT1, NKT2, and NKT17 cells
differentiated within peripheral tissues of each of the three mono-
clonal mouse lines, derived from somatic cell nuclear transfer,
suggests that the subsets are perhaps NKT cell “reaktionsnorm
[German for reaction norm or norm of reaction; Woltereck 1909
cited in Ref. (227)]” induced by the tissue-specific environment,
potentially by local cytokine/chemokine milieu in conjunction
with the host microbiota.

NKT CELL FREQUENCY VARIATION

An intriguing property of NKT cells is their frequency varia-
tion observed in lymphoid tissues of different inbred strains of
similar age: low in 129 and NOD, intermediate in C57Bl/6, and
high in BALB/c, CBA, and DBA/2 mice (152, 153, 228-230).
Likewise, NKT cells show striking frequency variation that can
range from as little as 0.001% to 5-10% within human PBMCs
(221, 231, 232).

Mice show inter-strain variation in thymic NKT cell subset
numbers (152). C57Bl/6 mice have high proportion of NKT1
cells and low frequency of NKT2 cells, whereas BALB/c have
high frequency of NKT2 and NKT17 suggesting an inverse
correlation between frequency of NKT1 cells versus NKT2 cells
and mouse strains. Curiously, mouse strains that have a high
frequency of NKT2 cells (BALB/c, CBA, and DBA/2) showed

high numbers of eomesodermin-expressing memory-like CD8*
thymocytes (152) which was attributed to the steady-state
production of IL-4 by the expanded NKT2 population in these
mice. In an effort to understand whether genetic polymor-
phisms between mouse strains controlled NKT cell frequency,
recombinant inbred and co-isogenic strains begotten from NOD
(low NKT cell frequency) X C57Bl/10 (intermediate NKT cell
frequency) crosses were analyzed. The outcomes of several such
studies indicated that NKT cell frequency segregated with the
genetic background of the mouse (153, 229, 230). Whereas this
outcome suggests that NKT cell frequency is under genetic
control, whether this control is direct or indirect remains to be
ascertained.

DEVELOPMENTAL SYMBIOSIS: GUT
MICROBIOTA-DEPENDENT PERIPHERAL
NKT CELL FREQUENCY AND NKT CELL
CONTROL OVER GUT MICROBIOTA

NKT cells surveil barrier mucosae such as that of the small
and large intestine (233, 234). The number, phenotype, and
functional maturation of NKT cells in the gut epithelium and
lamina propria are controlled by neonatal colonization of the
gut by bacterial symbionts. Thus, germ-free (GF) mice have
high numbers of NKT cells in the gut epithelium and lamina
propria that are immature and, hence, hypo-responsive to
aGalCer (233). Curiously, reconstitution of young, but not adult
mouse gut by bacteria that biosynthesise aGalCer or related
compounds reverses the hypo-responsiveness of NKT cells
found in GF intestinal mucosae (234). Similarly, GF mice also
harbor high hepatic and pulmonary, but not thymic and splenic
NKT cell frequencies (234). Additional evidence implicates the
CXCR6 ligand CXCL16, whose expression is under the control
of gut microbiota, in regulating gut NKT cell frequency and
maturation (234, 235). Furthermore, aGalCer compounds (see
Table 1) synthesized by the bacterial symbiont Bacteriodes
fragilis, exert either an inhibitory effect preventing proliferation,
or are stimulatory on developing NKT cells (26, 27). As the
gut microbiota varies between individuals of different genetic,
ethnic, and geographic backgrounds (236), the above findings in
mice suggest the intriguing possibility that the human symbionts
may impart an epistatic control over human NKT cell frequency
and maturation as well. Because the frequency and functional
status are environmentally controlled even though the genotype
of the differentiating NKT cells remains the same, NKT cell
frequency and proper maturation are potentially polyphenic
(227, 237) properties.

Early-life microbial ecology has implications for health.
Thus, GF mice are prone to severe airway hypersensitivity and
dextran sodium sulfate-induced colitis (233-235). The latter
phenotype is obviated by the interaction of NKT cells with B.
fragilis-derived glycosphingolipid(s) during early life (26). Not
surprisingly, NKT cells can, in turn, control gut microbial ecology
and gut physiology (238). Whether similar reciprocal interactions
between NKT cells and the gut microbiota occur in humans cur-
rently remains unknown.

Frontiers in Immunology | www.frontiersin.org

December 2017 | Volume 8 | Article 1858


http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive

Kumar et al. NKT Cells: An Eco-Evo-Devo Perspective
A 8 B CDID
o%éC%@ 0o K 05 CD1d
Trasier Qéy OO@Pig §8 § S 5,@ cacacsasesewawa > HUMAN -chr 1
Squirrel &S LT O & NEN N - Chimpanzee - chr 1
Marmoset - G orillc - chr 1
\ot® K I - Orang-utan - chr 1 . .
rangysfhesys S EE— - Gibbon - chr GL397275.1  Similarity
Gibbglcw7 Armadillo Y RN - Rhesus — chr 1 ~-100%
Human Microbat I IR - Olive baboon —chr 1
e 70 88 Cow T —— MormoNT 18
Human HLA-C orilla Ty - -
Shle),ep XX s > Bushbaby - chr GL873610.1 80%
Human HLA-B™.77 ka XTIy > Mouse lemur — chr KQ058270. 1
Human HLA-A o TTT————— 100 Tree shre XX MY Yo T3 > Guinea pig - scaffold_56
100 ; i SIS Y X T Y X5 MOUSE - chr 3
Zebra fish class |- Osmanian devjl X B Y XTXX> RAT-chr 2 —60%
like molecule BTy > Squirrel - chr JH393657.1
B TS RS > Rabbit - chr 13
Xenopus XNC10 Dog Human > cow —chr 3
E XX T WX Ty > sheep — chr 1 --40%
Cat lephant EXCX TN YK 15 Pig - chr 4
Rabbit Cop IO I - Microbat — chr GL429957
BT I WY Y ¥ ¥ > Ferret — chr GL897121.1
CD1b Hyrox % fa'e o = o) > Gaint Panda - chr GL194213.1  [l-20%
Hurman 5 Xy > Dog - chr 38
XS TEeY Ty Y ¥ > Horse — chr 5
e > CQ/ © ’% % OO O CDle asas  » » Armadilo — chr JH561748.1
" CDIlc 53 © OISy > Elephant - scaffold_33 0%
=2 CDIla 1

ORIOT2 genes in the syntenic map.

CDID
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human and zebra fish MHC class | and Xenopus XNC10 were retrieved from NCBI using PSI-BLAST. Sequences with E-value of <0.05 were considered mostly
similar to the human CD1D query sequence; significant bootstrap values are indicated for critical nodes. Sequences were aligned using ClustalW. Phylogenetic
analysis (pairwise deletion, bootstrap: n = 1,000) was performed to construct the optimal tree with the sum of branch length = 9.42589507. Neighbor-Joining
method (245) was used to infer evolutionary history. An optimal tree with the sum of branch length = 9.42589507 is shown. p-distance method was used to
compute evolutionary distances (246, 247). The tree is drawn to scale, with branch length units the same as those of the evolutionary distances used to infer the
phylogenetic tree. A total of 51 sequences and 210 positions were included in the final dataset. Evolutionary analyses were performed using MEGAG (248).
Mammalian species names according to Ref. (249), and the Order/Family to which they belong according to Ref. (250, 251) as well as homology to human CD1D
are as follows: northern brown bandicoot (lsoodon macrourus), Peramelemorphia/Peramelidae, 50%; Tasmanian devil (Sarcophilus harrisii), Marsupialia/
Dasyuridae, 42%; Hoffmann’s two-toed sloth (Choloepus hoffmanni), Pilosa (Xenarthra)/Megalonychidae, missing various parts of the protein; nine-banded
armadillo (Dasypus novemcinctus), Cingulata (Xenarthra)/Dasypodidae, 62%; tailless tenrec (Echinops telfairi), Afrosoricida (Insectivora)/Tenrecidae, missing N- and
C-terminal ends of the protein; western European hedgehog (Erinaceus europaeus), Erinaceomorpha (Insectivora)/Erinaceidae; Eurasian shrew (Sorex araneus),
Soricomorpha (Insectivora)/Soricidae, has only 181 aa, missing N- and C-terminal ends of the protein; northern tree Shrew (Tupaia belangeri), Scandentia/
Tupiidae, 68%, missing leader sequence; large flying fox (Pteropus vampyrus): Chiroptera/Petropodidae; little brown bat (Myotis lucifugus), Chiroptera/
Vespertilionidae 62%; dog (Canis lupus familiaris), Carnivora/Canidae, 57 %, missing initiator methionine; giant panda (Ailuropoda melanoleuca), Carnivora/Ursidae,
60%, missing initiator methionine; ferret (Mustela putorius furo), Carnivora/Mustelidae, 60%, missing leader sequence; cat (Felis catus), Carnivora/Filidae;
bottlenose dolphin (Tursiops truncatus), Cetacea/Delphinidae; African bush elephant (Loxodonta africana) Probosidea/Eliphantidae 65%; horse (Equus caballus),
Perissodactyla/Equidae, 73%; rock hyrax (Procavia capensis), Hyracoidea/Procavidae, 64%; wild boar (Sus scrofa), Artiodactyla/Suidae, 65%; alpaca—Andean
paca (Vicugna pacos), Artiodactyla/Camelidae; cow (Bos taurus), Artiodactyla/Bovidae, 65%, valine substitution of initiator methionine; squirrel (Ictidomys
tridecemiineatus), Rodentia/Sciuridae, 64%, missing last 12 aa including the recycling motif; Ord’s kangaroo rat (Dipodomys ordli): Rodentia/Heteromyidae; brown
rat (Rattus norvegicus), Rodentia/Muridae; 64%; mouse (Mus musculus domesticus), Rodentia/Muridae, 61%; guinea pig (Cavia porcellus), Rodentia/Cavidae,
65%; American pika (Ochotona princeps), Logomorpha/Ochotonidae, 64%, missing last 17 aa including the recycling motif; European rabbit (Oryctolagus
cuniculus), Logomorpha/Leporidae, 67%; gray mouse lemur (Microcebus murinus), Primates/Cheirogaleidae, 78%; small-eared galago—a bushbaby (Otolemur
garnettii), Primates/Galagidae (Loridae), 71%, missing last 31 aa including the recycling motif; Philippine tarsier (Tarsius syrichta), Primates/Tarsiidae, 71%;
white-tufted-ear marmoset (Callithrix jacchus), Primates/Callitrichidae, 83%; rhesus monkey/macaque (Macaca mulatta), Primates/Cercopithecidae, 88%; northern
white-cheeked gibbon (Nomascus leucogenys), Primates/Hylobatidae, 95%; western gorilla (Gorilla gorilla gorilla), Primates/Hominidae, 99%; Sumatran orang
utan (Pongo abelii), Primates/Hominidae, 96%; chimpanzee (Pan troglodytes), Primates/Hominidae, 98%; human (Homo sapiens), Primates/Hominidae. (B)
Syntenic map was drawn using Genomicus v89.01 Phyloview (252). Human CD1D gene was used as reference gene and species, respectively, Eutheria as the
root species. Upstream of CD1D gene are KIRREL, CD5L, FCRL1, FCRL2, and FCRL3 genes, and downstream from CD1D are CD1A, CD1C, CD1B, CD1E, and

Microbial ecology has emerged as an important determin-
istic factor in the outcome of chemotherapy, radiation therapy,
and immunotherapy against cancers (239). NKT cells have been
targeted in the clinic for immunotherapy (see Implications
for Cancer Immunotherapy), but how each of these therapies
impact NKT cells is not known. It is noteworthy that a frac-
tion of NKT cells are radiation resistant (130). This feature can
be exploited for NKT cell-targeted immunotheraphy against

lymphomas and leukemias. Clinical trials have shown that the
outcome of NKT cell-targeted immunotherapy varied between
recipients (103, 104). Hence, what roles the gut microbiota
played in the outcome is worthy of investigation. So also, con-
sidering that NKT cells can impact microbial ecology (238),
what roles NKT cells play in tumorigenesis and metastasis are
also worthy of investigation. Insights into how the microbial
community assembles and forms the host-symbiont ecosystem
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will facilitate an essential understanding of the molecular
underpinnings that govern reciprocal interactions between the
host and its internal ecosystem. These new insights can, in turn,
impact the way by which new cancer therapies are designed,
developed, and refined.

Evolution of Type | NKT Cells

... the struggle against diseases, and especially infec-
tious diseases, has been a very important evolutionary
agent and that some of its results have been unlike those
of the struggle for life ... [(240) within a collection of
papers in genetics by Haldane (241)].

Comparative vertebrate genomics, enabled by recent advances in
whole-genome sequencing, have revealed molecular signatures
of selection upon genes that control many biologic functions,
including immune responses. Hence, pathobionts can apply
immense selection pressure and play significant roles in the evolu-
tion of immune response genes and cells. As early-life symbionts
can impact health, microbial ecology may also play roles in the
evolution of the immune response genes and cells.

The NKTCR engages its ligand, CD1d-lipid co-complex, with
conserved germline-encoded residues in four-to-five of the six
complementarity-determining regions of the combined TCR
a- and P-chains (242). Hence, phylogenetic studies of genes
that encode CD1 molecules and the invariant NKTCR a-chain
can reveal the origin and evolution of NKT cells. A recent
phylogenomic analysis revealed that the CdI gene is an amniote
innovation that evolved in the Mesozoic reptiles and was retained
in the extant anapsid (green anole lizard Anolis carolinensis) and
synapsid (Siamese crocodile Crocodylus siamensis and Chinese
alligator Alligator sinensis) reptilians (243). CdI genes diversified
in mammals, wherein evolved the Cdld gene that encodes the
lipid agonist presenting molecule that controls the functions of
NKT cells in eutherians (of placental mammals; Figure 6) (244).
Curiously however, the reptilian CdI gene has no orthology with
avian or mammalian CdI genes (243), suggesting that Cd1 genes
may have emerged multiple times during amniote evolution. Or
alternatively, Cdl genes may have evolved rapidly and diverged
substantially from the reptilian form within extinct synapsid and
mammal-like reptiles prior to stabilization within eutherian spe-
cies. The latter view is supported by the finding that egg-laying
monotremes such as platypuses and echidnas do not have CdI
genes while a CDId-like gene exists in a few metatherian (of
marsupial mammals) species such as the opossum.

A phylogenetic analysis of TRAV10 (encoding the human
Voa24 gene segment) or TRAV11 (encoding the mouse Val4
gene segment) and TRAJ18 (encoding the Jal8 gene segment)
revealed that gene elements related to TRAV10/11 and TRAJ18
were found only in placental mammals (244). This finding sug-
gests that NKT cells are a eutherian innovation. As the host-gut
microbiota controls NKT cell terminal functional differentiation
and NKT cells impact gut microbial ecology, it is postulated that
placental development, sudden perinatal exposure to maternal
and environmental microbiota, and lactation may have contrib-
uted to the evolution of CD1d-restricted type I NKT cells.

A Final Analysis: Under the Spell of PLZF
and Host Microbial Ecology, a Curious

Case for a “Limbic Immune System!”

The foregoing discusses recent advances in developmental biology
of NKT cells and the environmental context in which it develops,
matures and differentiates. A final section discusses their evolu-
tionary path and how developmental biology and ecology may
have contributed to this unique developmental plan. In addition,
how the eco-evo-devo perspective on NKT cells may contribute
to cancer immunotherapy is touched upon. Finally, areas that
will benefit from further investigation are also pin pointed in
their respective sections. Summarily, such areas include, (a) what
early events specify NKT cell lineage commitment and turn on
the unique lineage-specific GRN?; (b) what signals do symbionts
relay to developing NKT cells to specify physiologic functions?;
(c) in turn, what signals do NKT cells relay to the microbial
community in the gut, and potentially to the microbionts in skin
and lungs, to ensure physiologic community assembly, structure,
and organization in early, young, and adult life?; (d) what tissue
environmental signals underlie NKT cell subset differentiation?;
(e) can radiation resistance of NKT cells be used in cancer immu-
notherapy?; and (f) what NKT cell intrinsic and environmental
signals have retained NKT cells in certain mammalian species
but not in others?

As a final note to the devo-eco-evo synthesis, we observed
that the unique behavior of a group of innate-like T lympho-
cytes and innate lymphoid cells (ILCs) are under the control
of PLZF (253-255). These include yd T cells, NKT cells,
MAIT cells, and certain ILCs. In addition, the development
(MAIT cells, and potentially yd T cells) and functional dif-
ferentiation (NKT cells, MAIT cells, and ILCs) of these cells
are determined by gut and potentially other barrier (skin and
lungs) symbionts. As these immune cells, all of lymphoid
origin, function at the edge (limbus in Latin) of the innate
and adaptive immune systems, a proposal to group them into
the “limbic immune system” is made here. Curiously, yo T,
NK, and NKT cells localize to the inter-follicular region of the
lymph nodes, straddling the cells of the innate and adaptive
immune systems (256). By virtue of their physiologic func-
tions, other tissue-restricted innate-like lymphocytes, such as
CD8aa innate-type lymphocytes (257) as well as B1 cells and
NK cells (258), can be included in the “limbic immune system”
even though their development and function may not be con-
trolled by PLZF or the microbiota. In other words, the “limbic
immune system” is anglicized Latin for the “inbetweeners”
(259) and, hence, synonymous with it.
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