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Pattern recognition receptors (PRRs) play a crucial role in the innate immune system 
and contribute to host defense against microbial infection. PRR-mediated antimicrobial 
signals provide robust type-I IFN/cytokine production and trigger inflammation, thereby 
affecting tumor progression and autoimmune diseases. Accumulating evidence 
demonstrates that among the PRRs, only the signaling pathway of endosomal toll-like 
receptor 3 (TLR3) induces no systemic inflammation and mediates cross-priming of 
antigen-specific CD8+ T  cells by dendritic cells. Treatment with a newly developed 
TLR3-specific ligand, ARNAX, along with tumor-associated antigens (TAAs), induces 
tumor-specific cytotoxic T  lymphocytes, modulates the tumor microenvironment to 
establish Th1-type antitumor immunity, and leads to tumor regression without inflam-
mation in mouse tumor models. Combination therapy using ARNAX/TAA and PD-1/
PD-L1 blockade potently enhances antitumor response and overcomes anti-PD-1/
PD-L1 resistance. In this review, we will discuss the TLR3-mediated signaling in antitu-
mor immunity and its application to cancer immunotherapy.

Keywords: adjuvant, cancer immunotherapy, checkpoint inhibitors, cross-priming, dendritic cells, double-
stranded RnA, innate immunity, toll-like receptor 3

inTRODUCTiOn

The innate immune system senses pathogen- and host-derived nucleic acids to maintain host 
homeostasis (1). Nucleic-acid-sensing innate immune receptors can be classified into two groups: (1) 
direct antiviral receptors that induce robust type-I IFN/cytokine production (2–4) and (2) dendritic 
cell (DC)-priming receptors that induce adaptive immunity (5, 6). The former consists of endosomal 
toll-like receptor (TLR) 7, 8, and 9, cytoplasmic RNA sensors retinoic acid-inducible gene-I (RIG-I), 
and melanoma differentiation-associated protein 5 (MDA5) and DNA sensors cGAS and STING, 
whose activation is closely associated with systemic IFN/cytokinemia and autoimmune diseases 
resulting from the recognition of endogenous RNA/DNA (7–9). The resultant IFN/cytokines induce 
inflammation and trans-activate antigen (Ag)-presenting DCs. On the other hand, TLR3 belongs to 
the latter group due to its restricted expression in myeloid DCs and usage of the signaling adaptor 
protein toll-IL-1 receptor-containing adaptor molecule-1 (TICAM-1) (also named TRIF) (10). The 
TLR3–TICAM-1 pathway predominantly works in professional Ag-presenting DCs to cross-prime 
CD8+ T cells as well as to induce production of Th1-type cytokines/chemokines (11, 12). However, 
polyinosinic:polycytidylic acid [poly(I:C)] that activates both TLR3 and MDA5 has been used as 
a TLR3 ligand. Studies with a recently developed TLR3-specific agonist, ARNAX, demonstrate 
that TLR3–TICAM-1 signaling primarily induces DC-priming without systemic cytokine produc-
tion (13–15). The results suggest that TLR3-specific signal is non-inflammatory and RNA-driven 
inflammation is rooted in the systemic cytoplasmic pathway (Table 1). Hence, in the context of 
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TABLe 1 | Nucleic-acid-sensing innate immune receptors.

Receptor Ligand Signaling adaptor Localization Cell Function Reference

TLR3 Viral dsRNA, virus/host 
structured ssRNA, Poly(I:C), 
ARNAX

TICAM-1 (localization: 
cytoplasm)

Endosome Myeloid DC, 
macrophage, 
fibroblast, 
epithelial cell

Antiviral, NK activation, CTL induction, IgA 
production

(5, 6, 10, 11, 
13)

TLR7 Virus/host ssRNA, 
imidazoquinoline compound

MyD88 (localization: 
cytoplasm)

Endosome Plasmacytoid 
DC, B cell

Antiviral (type-I IFN), Ab production (2, 7)

TLR8 Virus/host ssRNA, 
imidazoquinoline compound

MyD88 (localization: 
cytoplasm)

Endosome Myeloid DC, 
monocyte, 
neutrophil

Antiviral, inflammatory cytokine production (2, 7)

TLR9 CpG DNA, chromatin/DNA 
complex

MyD88 (localization: 
cytoplasm)

Endosome Plasmacytoid 
DC, B cell

Antiviral (type-I IFN), Ab production (2, 7)

RIG-I Viral 5′ppp-dsRNA MAVS (localization: 
mitochondrion)

Cytoplasm Ubiquitous Antiviral (type-I IFN) inflammatory cytokine 
production

(2, 3, 8)

MDA5 Viral long dsRNA, Poly(I:C) MAVS (localization: 
mitochondrion)

Cytoplasm Ubiquitous Antiviral (type-I IFN), inflammatory cytokine 
production, NK activation

(2, 3, 8)

cGAS dsDNA STING (localization: 
endoplasmic reticulum)

Cytoplasm Ubiquitous Antiviral (type-I IFN), inflammatory cytokine 
production, CTL induction

(4, 9)

STING Cyclic dinucleotide Endoplasmic 
reticulum

Ubiquitous Antiviral (type-I IFN), inflammatory cytokine 
production, CTL induction

(4, 9)
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DC-priming, targeting endosomal TLR3 is a promising strategy 
for induction of antitumor immunity.

Toll-like receptor 3 is expressed on endosomal membranes in 
myeloid DCs, as well as on both cell and endosomal membranes 
in macrophages, fibroblasts, and some kinds of epithelial cells 
(16). Professional Ag-presenting DCs, including mouse CD8α+ 
and CD103+ DCs as well as human CD141+ DCs, highly express 
TLR3 (17, 18). TLR3 recognizes virus-derived double-stranded 
RNA (dsRNA) and virus- or host-derived single-stranded RNA 
having incomplete stem structures (19). Upon ligand recognition 
within endosomes, TLR3 oligomerizes and recruits the adaptor 
molecule TICAM-1, which activates the transcription factors 
NF-κB, IRF3, and AP-1, leading to the production of cytokines 
(IL-6, TNF-α, IL-12) and type-I IFN (especially IFN-β) (20, 21). 
TBK-1 is critical for IRF3 activation in the TICAM-1 signalo-
some, which resides in perinuclear regions as speckles follow-
ing the dissociation from endosomal TLR3 (22). TICAM-1 is 
expressed in various cells and tissues at low levels, and TICAM-1 
activation is tightly regulated by the conformational context of 
protein–protein associations (23). Spatiotemporal regulation of 
the TLR3–TICAM-1 pathway might be important for triggering 
non-inflammation and Th1-type adaptive immune responses.

ARnAX SiGnALinG PATHwAY

ARNAX is a synthetic DNA–dsRNA hybrid molecule consisting 
of 140 bp of measles virus vaccine strain-derived dsRNA with a 5′ 
GpC-type phosphorothioated oligodeoxynucleotides (ODNs) cap 
(Figure 1A) (13, 24). DNA–RNA conjunction sites and dsRNA 
regions are relatively resistant to nucleases (25) and measles 
virus-derived dsRNA fails to induce RNA interference against 
host cell-derived RNAs, suggesting a stable and safer structure. 
The GpC ODN cap guides dsRNA to TLR3-positive cells for 

endocytosis, where the dsRNA activates TLR3 (26). dsRNA 
with a length of >90 bp is required for sufficient activation and 
signal transduction of the TLR3–TICAM-1 pathway (18). These 
ARNAX structural motifs do not stimulate cytoplasmic RNA sen-
sors, RIG-I and MDA5, or DNA sensors: they are ubiquitously 
expressed all over the body.

The viral dsRNA analogue poly(I:C)—a well-known ligand 
for TLR3—additionally activates the cytoplasmic dsRNA sensor 
MDA5 (27, 28), resulting in systemic and robust production of 
type-I IFNs/cytokines that causes undesirable inflammation. In 
contrast to poly(I:C), ARNAX induces marginal inflammatory 
cytokine/IFN-β production in a TLR3–TICAM-1-dependent 
fashion, demonstrating that the TLR3–TICAM-1 pathway con-
tributes to minimal and local cytokine release to effectively prime 
DCs. Furthermore, the Th1-type cytokine IL-12 is substantially 
induced by ARNAX, as per poly(I:C), in a TLR3-dependent man-
ner upon subcutaneous injection in mice (29). Non-inflammatory 
features of ARNAX and its Th1-skewing profile can be attributed 
to the restricted expression profile and early endosome localiza-
tion of TLR3 as well as the TICAM-1 signalosome composition.

ARNAX activates professional Ag-presenting DCs to cross-
prime CD8+ T cells. The TLR3–TICAM-1–IRF3–IFN-β signaling 
axis in DCs is indispensable for ARNAX-induced Ag-specific 
CD8+ T-cell priming (Figure 1A) (15). MAVS (signaling adaptor 
of RIG-I-like receptors), MyD88 (adaptor of all TLRs except for 
TLR3), and STING (adaptor of DNA sensors) do not contribute to 
ARNAX-induced cross-priming of CD8+ T cells (30). Importantly, 
DC-mediated local, but not systemic, IFN-β production is suf-
ficient for CD8+ T-cell cross-priming (15, 31, 32), although the 
molecular determinants that regulate cross-priming downstream 
of the IFN-α/β receptor remains undefined. Thus, ARNAX is a 
non-inflammatory DC-priming adjuvant that specifically targets 
the TLR3–TICAM-1 pathway.
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FiGURe 1 | Structure and function of ARNAX. (A) Structure and signaling pathway of ARNAX. ARNAX activates endosomal toll-like receptor 3 (TLR3), but not 
cytoplasmic MDA5/RIG-I. The TLR3–TICAM-1–IRF3–IFN-β signaling axis is indispensable in dendritic cells (DCs) for ARNAX-mediated cytotoxic T lymphocyte (CTL) 
induction. (B) ARNAX therapy enhances antitumor responses in conjunction with PD-1/PD-L1 blockade. Tumors are self-originating and essentially lack adjuvant. In 
the absence of adjuvant, DCs remain immature state (immature DC) and fail to induce tumor-associated antigen (TAA)-specific CTLs (upper left panel). ARNAX 
activates TLR3 in DCs to induce maturation and cross-priming of TAA-specific CTLs in lymphoid tissues (priming phase) (lower left panel). PD-1/PD-L1 blockade 
potentiates ARNAX-mediated CTL induction in the priming phase and reinvigorates tumor infiltrating CTLs in the effector phase (right panel).
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inDUCTiOn OF AnTiTUMOR iMMUniTY

The presence of functional tumor-specific cytotoxic T  lympho-
cytes (CTLs) in the tumor microenvironment is mandatory for 
tumor regression (33). ARNAX can induce tumor-specific CTLs 
by activating Ag-presenting DCs. In mouse implant tumor mod-
els EG7 and MO5 (OVA expressing T lymphoma and melanoma, 
respectively), injection of ARNAX along with OVA regresses 
tumor growth (15). OVA-specific CD8+ T cells proliferate in both 
lymphoid tissues and within tumors. Furthermore, CD8α+ DCs 
and CD8+ T  cells increasingly infiltrate into tumor. Numerous 
genes associated with antitumor immunity are significantly upreg-
ulated in whole EG7 tumors during the ARNAX + OVA therapy 
(15). Chemokine genes responsible for recruiting DCs and T cells 
(Ccl4, Ccl5, Ccl27) (34), NK/T-cell function-related genes (Gzmb, 
Prf1, Fasl), cell adhesion-related genes, and cytokine receptor 
genes such as IL2rb and IL12rb1 are also upregulated. ARNAX 
and TAA therapy thus fosters Th1-type antitumor immunity in 
these tumor models. Hence, vaccine immunotherapy with TLR3 
adjuvant enables to establish antitumor immunity against certain 
tumor types.

Notably, ARNAX monotherapy induces tumor growth retar-
dation (15). It is likely that DCs internalize tumor cell debris, 
which contains TAAs, and cross-prime CD8+ T cells via TLR3-
mediated activation of DCs (35). Alternatively, TLR3 signaling 
may facilitate the infiltration of preexisting tumor-reactive CTLs 
into tumor sites by inducing chemokine production. Mouse 
CD8α+ DCs and human CD141+ DCs express the C-type lectin-
like receptor CLEC9A on their cell surface, which is involved in 
phagocytosis of dead cell debris that contains TAAs (36, 37). The 
quality of TAAs and their efficient delivery to DCs are important 
factors influencing the validation of vaccine immunotherapy with 
TLR3 adjuvant.

MODULATiOn OF THe TUMOR 
MiCROenviROnMenT

The tumor microenvironment strongly affects tumor progres-
sion and antitumor immunity (38–40). Tumor-associated mac-
rophages (TAMs), granulocytic or monocytic myeloid-derived 
suppressor cells (G- or M-MDSCs), and regulatory T cells are 
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major constituents of the immunosuppressive tumor micro-
environment (41, 42). The extent and composition of immune 
cell infiltration within tumors considerably differ among tumor 
types (42, 43). Accumulating evidence suggests that modulation 
of the tumor microenvironment from immunosuppressive to 
immunosupportive is a crucial factor for the success of cancer 
immunotherapy (44–46). It has emerged from several studies 
that TLR activation changes the properties of the tumor micro-
environment (47–49). Among the TLR ligands, TLR2 ligand 
enhances the survival of M-MDSCs and their differentiation into 
macrophages, which augments the immunosuppressive activity 
of M-MDSCs toward CD8+ T  cells through iNOS expression 
from macrophages (49). In contrast, TLR3 ligand converts TAMs 
from an M2- to an M1-like phenotype (47). When activated 
with poly(I:C), TAMs robustly produced TNF-α in 3LL (mouse 
lung carcinoma cell line) tumor in mice, resulting in tumor cell 
death and growth suppression. The TLR3–TICAM-1 pathway 
is critical for poly(I:C)-induced tumor regression via stromal 
macrophages in the 3LL tumor mouse model. In addition, 
G-MDSCs act as effector but not suppressor cells upon activa-
tion with TLR3 ligand in the EL4 tumor model (48). G-MDSCs 
produce reactive oxygen species through the TLR3–TICAM-1 
pathway, leading to tumor growth inhibition (48). Furthermore, 
the proportion of G-MDSCs in EG7 tumors is greatly decreased 
by ARNAX + TAA therapy (15), which makes CTL unexhausted. 
Thus, TLR3 signaling functionally ameliorates the tumor micro-
environment to potentiate antitumor immunity.

COMBinATiOn THeRAPY OF ARnAX 
wiTH AnTi-PD-1/PD-L1 AnTiBODieS

Recent advances in cancer immunotherapy with checkpoint 
inhibitors have shown durable antitumor responses and good 
prognoses in patients with melanoma and non-small cell lung 
cancer, but only ~20% of patients with solid tumors respond to 
checkpoint blockade (50–54). The presence of preexisting tumor-
specific CD8+ T cells and their infiltration into tumor sites are 
required for responsiveness to PD-1/PD-L1 blockade therapy 
(51). Many cancer patients, however, have limited numbers of 
tumor-specific CTLs, if at all, as well as/or the presence of ther-
apy-resistant tumor microenvironments (55). The appearance 
and amount of mutation-associated neo-antigens in tumors cor-
relates with sensitivity to PD-1 blockade (56–58), which is likely 
associated with preexisting tumor-specific CTLs (59). However, 
molecular determinants of tumor cells that define CTL induction 
by the immune system are still unclear. In this setting, vaccine 
immunotherapy that potently induces tumor-specific CD8+ 
T cells through DC-priming is a feasible approach to overcome 
primary resistance to PD-1/PD-L1 blockade.

In anti-PD-L1 antibody unresponsive mouse tumors, vac-
cine immunotherapy using ARNAX and tumor Ag decreases 
tumor progression irrespective of PD-L1 levels on tumor cells 
(15). Combination therapy with anti-PD-L1 antibody and 
ARNAX + TAA induces an antitumor response more effectively 
than anti-PD-L1 antibody monotherapy, especially in tumors 

expressing high levels of PD-L1. Priming of tumor-specific CD8+ 
T cells in lymphoid tissues and the infiltration of CD8+ T cells into 
the tumor site are greatly enhanced by combination therapies. 
DCs and macrophages in lymphoid tissues express PD-L1 at low 
or intermediate levels (60, 61). It is conceivable that blockade of 
the PD-1/PD-L1 pathway augments TAA-specific CD8+ T-cell 
induction from ARNAX + TAA therapy at the priming phase, 
and infiltrated CTLs are reinvigorated at the effector phase (62, 
63) (Figure 1B). Tumor-associated DCs and CD11b+ immuno-
suppressive myeloid cells express high levels of PD-L1 within 
tumors (60), which is independent of efficacy of ARNAX + TAA 
therapy in several mouse tumor models. Although PD-L1 levels 
on tumor cells and infiltrated myeloid cells are one of the predic-
tive biomarkers for responsiveness to PD-1/PD-L1 blockade (64, 
65), tumor PD-L1 level is not always applicable for a prognostic 
biomarker to the ARNAX therapy. Potent induction of tumor-
specific CD8+ T  cells with DC-priming adjuvant and PD-1/
PD-L1 blockade is important for infiltration and reinvigoration 
of CD8+ T cells within tumors.

COnCLUSiOn

To overcome the unresponsiveness of tumors to anti-PD-1/
PD-L1 therapy, many cancer immunotherapy approaches have 
been conducted. Vaccine immunotherapy with TAA and the 
DC-priming adjuvant ARNAX generates tumor-specific CTLs 
with minimal essential cytokine production, which appears to 
avoid exacerbating adverse effects observed in certain popula-
tion of patients treated with checkpoint inhibitors, such as the 
onset of autoimmune diseases. Up until now, numerous trials 
of peptide vaccine therapies have been performed unsuccess-
fully (66). The main factor contributing to the ineffectiveness 
is thought to be the usage of inflammatory, as opposed to 
DC-priming, adjuvants in peptide vaccine therapies. On the 
other hand, several preclinical studies with vaccine immuno-
therapies using poly(I:C) as a DC-priming adjuvant have been 
approved (67–70). However, poly(I:C) triggers undesirable 
inflammation caused by cytokine toxicity (67). The introduction 
of the non-inflammatory adjuvant ARNAX to peptide vaccine 
immunotherapy and/or combination therapy with PD-1 block-
ade appears to be a promising strategy to overcome anti-PD-1 
resistance. Notably, induction of tumor cell death by radiation, 
chemotherapy, and oncolytic viruses appear to liberate TAAs 
from tumors (71–74), which may cooperate with ARNAX to 
induce polyclonal tumor-reactive CTLs and facilitate suppres-
sion of tumor growth.

In cancer immunotherapy, acquired resistance to newly 
developed therapies is a subject of intense discussion. In the 
case of TLR3 adjuvant therapy, the acquisition of resistance to 
CTL activity by tumor cells should be investigated. Evaluation 
of the quality and quantity of TAAs in individual tumors could 
be a therapeutic prerequisite for TLR3 adjuvant therapy, but this 
prediction has not been confirmed. Further studies elucidating 
the mechanism of tumor evasion from CTL cytotoxicity and the 
development of appropriate protocols for TLR3 adjuvant therapy 
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would prove useful in this field to allow for complete tumor 
regression in cancer patients.
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