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With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells 
(ILCs) represent an emerging family of cell types that express signature transcription 
factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ 
group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are 
abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the 
interface of host–environment interactions. Active research has been conducted to 
elucidate molecular mechanisms underlying the development and function of ILCs. The 
aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known 
to mediate the effects of xenobiotic environmental toxins and endogenous microbial and 
dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. 
We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune 
cells in host tissues especially in the gut. We discuss the molecular mechanisms of the 
action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, 
and the interaction between Ahr and other pathways/transcription factors in ILC devel-
opment and function with their implication in disease.
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iNTRODUCTiON

Innate lymphoid cells (ILCs) are newly identified cell populations, which mirror helper T cells, such 
as Th1, Th2, and Th17 cells, by expressing similar transcription factors and cytokines (1–3). ILCs 
are divided into group 1 ILCs (ILC1) (T-bet+), group 2 ILCs (ILC2) (GATA3+), and group 3 ILCs 
(ILC3) (RORγt+) (1). To join the group, a new type of ILC that express the transcription factor 
Id3 and exhibit regulatory function [known as regulatory ILC (ILCreg)] have also recently been 
identified (4). Notably, natural killer (NK) cells have been defined as distinct population from ILC1, 
based on eomesdermin (Eomes) expression and a distinct progenitor from other ILCs (5). ILCs are 
predominantly locate at the mucosal barriers and participate in various biological processes, such as 
control of pathogenic infection, progression of autoimmune disease, as well as development of cancer  
(2, 6, 7). Different from adaptive immune cells, ILCs lack the antigen stimulation step and respond 
quickly under certain contexts of disease (8). The aryl hydrocarbon receptor (Ahr) is a ligand-
dependent transcriptional factor, which can sense environmental and endogenous compounds 
generated by commensal, dietary, or cellular metabolism (9–11). Ahr has been studied in the devel-
opment and/or function of various immune/non-immune cells (11) and recently found to be key 
regulator of ILC3 (12–14). There are many extensive reviews on Ahr in other immune cells. In this 
review, we focus our efforts on summarizing the recent progresses on decoding Ahr physiological 
functions in the development and function of ILCs, as well as Ahr-mediated cross talk between 
ILCs and other immune/non-immune cells in host tissues, especially in the gut. We discuss the 
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TAbLe 1 | Features of innate lymphoid cell (ILC) subsets.

Nomenclature Lineage-defining 
transcription factors

Key transcription factors Stimuli effector molecules

Group 1 ILCs (ILC1) Natural killer cells T-bet, Eomes ETS1, Blimp1, KLF4, Helios, TOX, Nfil3, Id2, 
aryl hydrocarbon receptor (Ahr)

IL-12 IFNγ, TNFα, perforin, 
granzymesIL-15

ILC1 T-bet GATA3, Nfil3, Id2, Ahr IL-18 IFNγ, TNFα

Group 2 ILCs (ILC2) ILC2 GATA3 Gfi1, RORα, Bcl11b, TCF1, G9A, ETS1, Nfil3, 
Id2, Notch

IL-25 IL-4, IL-5, IL-9, IL-13, 
AregIL-33

Thymic stromal 
lymphopoietin

TNF-like ligand 1A
IL-15

Group 3 ILCs (ILC3) NCR+CCR6− ILC3 RORγt, T-bet Ahr, WASH, GATA3, Nfil3, Id2, Ikaros, Notch IL-23 IL-22, IFNγ, GM-CSF
IL-1β

NCR−CCR6+ ILC3 RORγt Ahr, GATA3, Nfil3, Id2, Ikaros IL-15 IL-22, IL-17
NCR−CCR6− ILC3 RORγt, T-bet Ahr, GATA3, Nfil3, Id2, Ikaros IL-18 IL-22, IL-17, IFNγ

Fetal lymphoid tissue 
inducer

RORγt Id2, Ikaros, GATA3, Nfil3 NA Lymphotoxin

Regulatory ILC (ILCreg) ILCreg Id3 Id3 TGFβ IL-10
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molecular regulation of Ahr expression and activity in ILCs, and 
the interaction between Ahr and other pathways/transcription 
factors in ILC development and function. We also identify areas 
that need further study, especially the role of Ahr in group 1 and 
group 2 ILCs.

DeSCRiPTiON AND FUNCTiON OF iLCs

Innate lymphoid cells share the same progenitor, common lym-
phoid progenitors (CLPs), as adaptive immune cells, including 
T and B cells (15). CLPs differentiate toward unique direction to 
α-lymphoid precursor, and then common helper innate lymphoid 
progenitor (CHILP), to become ILCs, including NK cells, ILC1, 
ILC2, ILC3, and ILCreg (5, 16). The lineage-defining transcrip-
tion factors, key regulators, stimuli, and effector molecules are 
summarized in Table 1.

Group 1 iLC
While NK cells are predominantly circulating in the blood and 
secondary lymphoid organs such as the lymph nodes and spleen, 
NK cells are also found in some non-lymphoid tissues such as 
the liver, uterus, and lung (17). Closely related in function to 
NK  cells, ILC1 are present in various non-lymphoid tissues, 
including intestine, liver, salivary glands, and the female repro-
ductive tract (18). The development and function of ILC1 depend 
on T-bet, while the requirement of T-bet by NK cells appears to 
be complicated since deletion of T-bet reduces the numbers of 
NK cells in liver, spleen, and peripheral blood (19, 20), but not in 
bone marrow and intestine (5, 19, 20). The transcription factor, 
Eomes, distinguishes NK cells from ILC1 and is indispensable 
for the development of NK cells (5). Recent studies indicate that 
NK cells and ILC1 derive from different progenitors, which fur-
ther separate NK cells from ILC1 (5). Although developmentally 
identified as two distinct populations, NK  cells and ILC1 can 

be stimulated by IL-12, IL-15, or IL-18 to produce interferon γ 
(IFNγ) and tumor necrosis factor (TNF) (18), which are critical 
for the immune response to control intracellular pathogens, 
viruses, and tumors (5, 21, 22). NK  cells have the ability to 
secrete granzyme and perforin to promote cytotoxic function, 
which imparts NK cells tumor suppression activity, distinct from 
ILC1 (23). Different from intestinal lamina proprial ILC1 that 
express T-bet but not Eomes, intraepithelial ILC1 have been 
shown to express both T-bet and Eomes, and produce granzyme 
and perforin; however, lack of the requirement of IL-15 signals 
for their maintenance distinguishes intraepithelial ILC1 from 
NK cells (24).

Group 2 iLC
Group 2 ILCs have been identified to localize in various lym-
phoid/non-lymphoid tissues, including intestine, lung, adipose 
tissue, spleen, nasal tissue, and skin, while immature ILC2 are 
also reported in bone marrow (25–27). The development and 
function of ILC2 require GATA3, RORα, Gfi1, TCF1, Bcl11b, and 
Notch signaling, of which GATA3 acts as the defining marker of 
ILC2 (26, 28–34). Upon stimulation with IL-25, IL-33, or thymic 
stromal lymphopoietin (TSLP), ILC2 can produce IL-5, IL-13, 
and IL-4, similar to Th2 cells, which contribute to the control of 
helminth infection and pathology of allergic inflammation (25, 
35–39). ILC2 can also express IL-9 to promote the epithelial cell 
maintenance in the lung (40, 41). Amphiregulin is an effector 
molecule produced by ILC2 to participate in the tissue repair 
in the gut (42). Additionally, ILC2 have been shown to promote 
the beiging of white adipose tissue to control obesity through the 
production of methionine-enkephalin peptides (43, 44).

Group 3 iLC
Group 3 ILCs are mainly found in gastrointestinal tract, 
while few ILC3 are present in other tissues (45, 46). ILC3 are 
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heterogeneous, and can be divided, based on the expression 
of the natural cytotoxicity receptor (NCR or NKp46/NKp44) 
and chemokine receptor 6 (CCR6), into three major groups: 
NCR+CCR6− ILC3, NCR−CCR6+ ILC3, and NCR−CCR6− ILC3 
(47). It should be noted that the above discussion is on ILC3 after 
birth. Fetal ILC3, also known as lymphoid tissue inducer (LTi) 
cells, which express RORγt, function in the formation of second-
ary lymphoid organs, such as lymph nodes and gut-associated 
lymphoid tissue (48–50). Postnatal CCR6+ ILC3 found in the 
gut and other lymphoid organs are known as LTi-like cells (51). 
While RORγt is the common transcription factor that is required 
for the development, maintenance, and function of all ILC3 
(52), NCR+ ILC3 also appear to depend on T-bet for develop-
ment and function (53). When stimulated, all three subsets of 
ILC3 produce IL-22, while NCR+ ILC3, relying on T-bet, can 
express IFNγ (53). In addition, ILC3 can also secret IL-17A 
and GM-CSF (51, 54). GATA3 is required for development of 
all IL-7Rα-expressing ILCs (55). Although GATA3 expression 
is high in ILC2, it is also expressed at a lower level in ILC1 and 
ILC3 and required for their maintenance (5, 56). It has been 
shown that GATA3 is important for ILC3 function to produce 
IL-22 (47). ILC3 are involved in clearance of bacterial and fungal 
infection, control of enteric virus infection, and maintenance of 
microbiota (57–62), while recent studies suggest that GM-CSF, as 
well as IL-22, expressed by ILC3 participate in ILC-driven colitis 
(63–65). After birth, ILC3 are also required for the development 
of cryptopatches and isolated lymphoid follicles (ILFs) in the gut 
through expression of lymphotoxin and CCR6 (66–69).

Regulatory iLC
In addition to ILCs discussed above, a new ILC subset, with the 
ability to suppress ILC1 and ILC3 to promote the resolution of 
intestinal inflammation, has been identified recently in mice (4). 
Although further work is needed to confirm the existence and 
function of this cell type, ILCreg, mainly populate in the gut, 
develop from CHILP in bone marrow, and require transcription 
factor Id3 for their development. The regulatory function of 
ILCreg is mediated by IL-10. TGFβ1 is required for the expansion 
of ILCreg during inflammation (4). In human, the regulatory ILC 
(ILCreg) are also reported in the context of cancer recently (70), 
to suppress the expansion of tumor-associated T cells. Different 
from the mouse ILCreg that do not express other ILC signature 
transcription factors, the human ILCreg, present in the tumor tis-
sue, express high levels of Eomes, T-bet, GATA3, RORα, and Ahr, 
suggesting an overlapping transcriptional profile of the human 
ILCreg and other ILC subsets.

Ahr STRUCTURe AND ACTivATiON

Aryl hydrocarbon receptor is a ligand-dependent transcription 
factor and belongs to Per-Arnt-Sim (PAS) superfamily (71, 72).  
Various Ahr ligands have been identified, including environ-
mental pollutants such as dioxins, and multiple physiologic 
ligands generated by microbiota, diet, and host metabolism 
(73–76). Without ligand binding, Ahr localizes in the cyto-
plasm, and this inactive status is maintained by interacting with 
90-kDa heat shock protein (HSP90) (77). Ahr also interacts 

with Ahr-interacting protein (AIP) which protects Ahr from 
degradation (78), as well as p23 (79). Upon ligand activation, 
the conformation of Ahr is changed, leading to the release of 
Ahr from the protein complex and the translocation of Ahr into 
the nucleus, where Ahr interacts with Ahr nuclear translocator 
(ARNT) through PAS-A domain and bHLH domain (80) and 
acts as a transcription factor targeting dioxin response element 
(DRE)-containing genes, which are prototypically cytochrome 
P450 family, like Cyp1a1, but also include genes involved in other 
important biological processes (13, 81). Several partners of Ahr 
have been identified, such as RORγt, sterol regulatory element 
binding transcription factor 1, LXR, NF-κB (13, 82, 83). The 
involvement of ARNT in these reported interactions remains to 
be determined.

Aryl hydrocarbon receptor was initially identified as the 
sensor for 2,3,7,8-tetracholrodibenzo-p-dioxin (TCDD) (84). 
Later, a variety of Ahr ligands were identified from different 
physiological sources, such as tryptophan (Trp) metabolism 
and microbiota. The metabolism of Trp generates Ahr ligands 
through catalysis by indoleamine-2,3-dioxygenase (IDO) and 
tryptophan-2,3-dioxygenase (TDO) to kynurenine (Kyn), which 
acts as an Ahr ligand (76, 85, 86). Independent of IDO/TDO, Trp 
can also be metabolized by the tryptamine and serotonin pathway, 
of which the metabolites can act as Ahr agonist (87, 88). Notably, 
Trp can be photo-oxidized by ultraviolet light or metabolized by 
other pathways to 6-formylindolo[3,2-b]carbazole (FICZ), which 
has been proven as a physiologically relevant Ahr agonist (89, 90). 
Of note, a higher concentration of Kyn, at micromolar concentra-
tion, compared to nanomolar of TCDD or FICZ, is required for 
Ahr activation.

In addition to cellular metabolism, commensal bacteria 
can catalyze Trp into Ahr ligands as well (74, 91). Lactobacilli 
expand when the energy source switches from sugar to Trp, and 
produce indole-3-aldehyde which acts as Ahr ligand to promote 
IL-22 production by ILC3 (74). Consequently, the Ahr-IL-22 
axis provides resistance to the fungus Candida albicans and pro-
tection from dextran sulfate sodium (DSS)-induced colitis. In 
accordance with the importance of Trp in mice, recent research 
suggests that dysregulation of commensal bacteria that use Trp 
to generate Ahr ligands may correlate with the pathogenesis 
of human inflammatory bowel disease (IBD) (92). Besides the 
Ahr ligands generated by cellular metabolism or commensal 
bacteria, bacterial pigment factors such as the phenazines from 
Pseudomonas aeruginosa and the naphthoquinone phthiocol 
from Mycobacterium tuberculosis can also act as ligands for Ahr, 
and contribute to the antibacterial response through activation 
of the Ahr pathway (93).

Ahr eXPReSSiON iN iLCs

Aryl hydrocarbon receptor is thought to be expressed ubiq-
uitously in various organs and cell types, including immune 
cells, such as Th17 cells, IL-17-producing γδ T cells, Treg cells, 
CD8αα IEL lymphocytes, B cells, Langerhans cells, monocytes, 
and splenic dendritic cells (DCs) (94–100). However, the 
expression of Ahr in ILCs, at both mRNA and protein level, 
remains to be clarified. Genome-wide transcription analysis  
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of different ILC populations, which is available at IMMGEN.
ORG, has shown that Ahr mRNA is detectable among ILCs 
(101). It has been reported that cytokine stimulation, includ-
ing IL-2, IL-12, or IL-15, can enhance Ahr expression in 
splenic NK  cells (102, 103). In addition, the transcription 
factor, Distal-Less Homeobox 3 is found to enhance Ahr 
transcription in NK  cells, while its function remains to be 
determined (104).

We and other groups have reported the expression of Ahr in 
ILC3. Differential levels of Ahr were observed in different subsets 
of ILC3 (13, 37, 41). NCR+ ILC3 express higher Ahr than the other 
two subsets of ILC3, which lack NCR on the surface (13). How 
Ahr expression is regulated in ILCs has been a subject of active 
research. Recent study has shown that in NCR+ ILC3, Wiskott-
Aldrich syndrome protein and SCAR homolog (WASH) activates 
Ahr expression by recruiting AT-Rich Interaction Domain 1A 
(Arid1a) to the Ahr promoter, and thus maintains NCR+ ILC3 
in the gut (105).

Although further investigation on Ahr expression, especially 
at the protein level, needs to be conducted, the public data at 
IMMGEN.ORG appears to show that the special microenviron-
ment of the gut correlates with the high Ahr transcriptional 
expression, since lower Ahr expression is observed in spleen 
or liver NK cells or ILC1. In a Cyp1a1 (a target gene of Ahr) 
reporter mouse, Ahr was shown mainly active in the gut in 
homeostatic conditions (106). A recent paper using a mouse 
model in which GFP was knocked into the endogenous locus 
of Ahr showed that among Tregs in various tissues, gut Treg 
cells express the highest amounts of Ahr, suggesting a tissue 
adaptation of Ahr expression (107). Identification of the gut 
specific factors, such as cytokines/metabolites and transcription 
factors that facilitate Ahr expression will provide insights into 
the regulation of Ahr expression in ILCs, and potentially be 
translated into clinical manipulation of the Ahr pathway. To get 
a molecular understanding on the regulation of Ahr expression, 
it is of importance to analyze chromatin status of the Ahr locus 
and Ahr interactions with key transcription factors in different 
ILC populations.

iNvOLveMeNT OF Ahr iN iLC FUNCTiON 
AND ReGULATiON

Ahr and NK Cells/iLC1
In tumor, Ahr promotes NK cell cytotoxicity and its production 
of IFNγ (103). During T. gondii infection, Ahr is also required 
for maximal IL-10 production by NK  cells (102). It has also 
been shown that Ahr maintains liver-resident CD49a+ cells by 
regulating cytokine-induced cell death (108). Notably, CD49a is 
considered as a marker for ILC1 in the liver, instead of NK cells 
(18). Therefore, these data may suggest that Ahr is required for 
liver ILC1 maintenance (108).

So far, the studies on Ahr in NK  cells or ILC1 have been 
predominantly focused in the liver or spleen. The function of 
Ahr in the gut ILC1 and NK cells still remains to be elucidated, 
given that the gastrointestinal tract is another site for these two 
cell populations, especially for ILC1 (5).

Ahr and iLC2
Currently, limited knowledge is available on the function of Ahr 
in ILC2. IFNγ has recently been shown to inhibit ILC2 activation 
(109, 110). In addition, IFNγ can induce Ido1 mRNA and Ido 
protein expression in some cell types (111, 112). Given that Ido1 
is able to catalyze Trp to Kyn, which acts as a ligand for Ahr, it is 
tempting to speculate that Ahr ligands, such as Kyn, might sup-
press ILC2 function but additional works are needed to test this 
hypothesis. TNF-like ligand 1A (TL1A) has been shown to pro-
mote expansion and function of ILC2 in the gut (113). RNA-seq 
data reveal that TL1A enhances Ahr expression in the presence of 
IL-33 and IL-25 in human ILC2 (114). Thus, the function of Ahr 
in ILC2 and in in vivo models of ILC2-driven pathology remains 
to be investigated.

Ahr and iLC3
Aryl hydrocarbon receptor has been relatively well studied in 
gut ILC3. Although it is dispensable for fetal LTi development, 
Ahr is essential for the maintenance and IL-22 production of 
ILC3 (12, 13, 45). Although the precise mechanisms by which 
Ahr regulates the homeostasis of ILC3 still remain to be deter-
mined, it has been described that Ahr can regulate survival and/
or proliferation of ILC3 (Figure 1). First, it is reported that Ahr 
is important for the survival of ILC3 by promoting the expres-
sion of anti-apoptotic proteins, such as Bcl-2. Ahr upregulates 
IL-7 receptor (IL-7R) in ILC3, in line with the role of IL-7/
IL-7R signaling pathway in the supporting the survival of ILC3 
(13). Second, it has been shown that Ahr-deficient ILC3 have 
reduced Ki67 expression, indicating that decreased proliferation 
may lead to the defective expansion of ILC3. Furthermore, Ahr 
can regulate the expression of Kit through binding to DRE at 
the promoter of Kit locus, suggesting direct regulation of Kit 
expression by Ahr at the transcriptional level (12). Finally, 
Ahr supports the development of ILC3 presumably through 
promoting the transcription of Notch 1 and Notch 2, although 
defects in Notch signaling have more effect on NCR-expressing 
ILC3 than NCR-negative ILC3 (45). By regulating the mainte-
nance and function of ILC3, Ahr is critical for the clearance of 
Citrobacter rodentium, a murine pathogen that models human 
enterohemorrhagic Escherichia coli and enteropathogenic E. coli 
infections in the gut (12, 13, 64), as well as for the pathology of 
anti-CD40-incuced colitis (64).

Ahr in iLC Plasticity
The plasticity of ILCs has been observed in both human and 
mouse systems under steady state or certain disease models, 
while the mechanism that drives the plasticity of ILCs is still 
not well understood. The conversion of ILC3 to ILC1 is char-
acterized by the loss of RORγt and gain of T-bet expression to 
become exILC3 (115, 116). These exILC3 stop the production 
of IL-22, and begin to secrete IFNγ. IL-15 and IL-12 can lead to 
downregulation of RORγt, and enhance IFNγ expression (116). 
In support, IL-12 has been shown to participate in the transi-
tion of ILC3 to ILC1 in humans (115, 117). There is an increase 
of ILC1 and decrease in ILC3 in the intestines of patients with 
Crohn’s disease, suggesting the ILC3-derived ILC1 might 
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FiGURe 1 | Aryl hydrocarbon receptor (Ahr)-mediated cross talk between innate lymphoid cells (ILCs) and immune/non-immune cells. Ahr ligands derived from the 
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ILC3 can produce IL-22 to control commensal/pathogenic bacteria through facilitating the production of antimicrobial peptides by epithelial cells. Ahr ligand could 
potentially regulate natural killer (NK) cells, ILC1, and group 2 ILCs (ILC2) through the Ahr pathway in the gut. NK cells and ILC1 can help the host to clear 
pathogens, like Salmonella typhimurium, by production of effector cytokine IFNγ. ILC2, through expression of MHC class II (MHC-II) and programmed death ligand 1 
(PD-L1), enhance Th2 cells. ILC2 and Th2 cells protect the host from helminth infection by secreting type 2 cytokines, including IL-5, IL-13, and IL-4. Ahr ligand 
enhances Cyp1a1 expression in gut epithelial cells, and as a feedback negative control loop, Cyp1a1 degrades Ahr ligand to prevent overt Ahr-mediated immune 
responses. Solid lines and arrows depict known regulation. Dotted lines and arrows depict to-be-determined regulation in the gut.
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contribute to the pathology of human IBD (115, 117). Human 
ILC1 can also convert to ILC3 in the presence of IL-2, IL-23, 
and IL-1β, and retinoic acid can accelerate this process which 
may depend on the receptors for retinoic acid (117). Although 
Ahr has been shown to prevent the differentiation of human 
ILC3 to NK cells (118), it is of interest to determine whether 
Ahr participates in the transition of ILC3 to ILC1. Of note, 
microbiota has been shown to maintain the RORγt expression 
by ILC3 through IL-7 signaling in the gut (116). Since com-
mensal bacteria have the ability to produce Ahr ligands, Ahr 
might receive the signals from microbiota to maintain ILC3 
through upregulating IL-7R.

The plasticity of ILC2 has recently been reported (31, 
119–121). Gfi1, a key transcription factor for ILC2 development 
and function, appears to sustain ILC2, as deletion of Gfi1 in ILC2 
leads to upregulation of RORγt and IL-17 production by these 
ILC2 (29). Similarly, Bcl11b, a recently defined transcription 
factor for ILC2, maintains the stability of ILC2 by suppressing 
RORγt and Ahr expression (31). ILC2 were found to convert to 
IFNγ-producing ILC1 in the lung by IL-12 and IL-18 (119–121). 
The conversion is dependent on T-bet expression, and enhanced 
by IL-1β through induction of the IL-12 receptor alpha (Il12rα). 
As the frequency of ILC1 shows positive correlation with disease 
severity in patients with chronic obstructive pulmonary disease 
or chronic rhinosinusitis with nasal polyps (119, 121), the plas-
ticity of ILC2 could be a therapeutic target for these respiratory 

diseases. Whether Ahr plays any role in ILC2 conversion to ILC1 
needs to be established.

Ahr-MeDiATeD MODULATiON OF THe 
CROSS TALK beTweeN iLCs AND  
OTHeR CeLLS

Cross Talk with innate immune Cells
Innate immune cells, such as dendritic cells (DCs) and mono-
nuclear phagocytes (MNPs), have been shown to interact with 
ILCs. Both CX3CR1+ MNPs and CD103+ DCs can induce IL-22 
production by ILC3, while CX3CR1+ MNPs can also recruit 
ILC3 to the gut through CXCL16–CXCR6 pathway (122–124). 
Ahr controls the differentiation and function of DCs by arresting 
the differentiation of progenitors, as well as regulating antigen 
presentation in DCs (125–128). In addition, recent work has 
shown that Ahr controls differentiation of monocyte to mono-
cyte-derived macrophages in the human system (129). Thus, it is 
possible that Ahr controls ILC3 through regulating these innate 
immune cells. On the other hand, innate immune cells can be 
attracted by ILC-secreted cytokines. IL-5 and IL-13, produced by 
ILC2, can recruit eosinophils which are essential for the clearance 
of helminth infections (25). ILC3 can secrete IL-17A, which is 
proved to attract neutrophils into the intestine (130, 131). Thus, 
lack of ILC3 in Ahr-deficient mice may account for the resistance 
of anti-CD40 colitis (64).
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Cross Talk with Adaptive immune Cells
The absence of Ahr in ILC3 leads to defects in the IL-22-
producing ability of ILC3. The impaired IL-22 production in 
the gut of Ahr-deficient mice causes a decrease in antimicrobial 
peptide production by gut epithelial cells (62, 132), leading to 
increased segmented filamentous bacteria (SFB) which has been 
established to induce Th17 cells in the gut (133, 134). However, 
recent papers also show that SFB induced IL-22 production by 
ILC3 can induce epithelial production of Serum Amyloid A, 
which in turn promotes Th17 cells (135, 136). Thus, the role of 
ILC3-derived IL-22 in regulating Th17 cells will require further 
investigation into the underlying molecular mechanisms, which 
are most likely indirect given the lack of expression IL-22R by 
immune cells. By supporting ILC3 homeostasis, Ahr controls 
cryptopatches formation, and consequently the genesis of ILFs in 
the gut (12, 137). As ILFs have been recognized as a site for the 
production of intestinal IgA responses (138), it is possible that 
Ahr contributes to B cell responses via the regulation of ILC3, in 
addition to its B cell-intrinsic roles (96, 97, 139).

Recent research showed that ILC2 are critical for memory Th2 
cell responses, as impaired Th2 cells are found in sensitized mice, 
which lack ILC2 (140). During helminth infection, ILC2 have 
been shown to express the checkpoint molecule Programmed 
Death Ligand 1, through which ILC2 support Th2 polarization, 
and effective Th2 dependent-anti-helminth response (141). 
Additionally, ILC2, through producing IL-9, can sustain the 
proliferation of ILC2 and activation of Treg cells in arthritis, 
by which promote the resolution of inflammation (142). It is of 
interest to note that, with the resistance to IL-7-induced down-
regulation of IL-7R, ILCs limit the availability of IL-7 for T cells, 
thus controlling the homeostasis of T cells (143). Given that Ahr 
deficiency leads to reduction of ILC3, it remains to be determined 
whether enhanced T cell proliferation and Th17 cell differentia-
tion observed in Ahr knockout mice are caused by increased IL-7 
that is made available to T cells.

In addition to the cross talk between ILCs and adaptive 
immune cells through cytokines, ILCs interact with T  cells 
through the expression of MHC class II (MHC-II) molecules on 
the surface. The MHC-II-mediated interaction between ILCs and 
T cells controls the activation or anergy of T cells (Figure 1). For 
example, ILC2, via MHC-II and co-stimulatory molecules, CD80 
and CD86, interact with and activate T cells (144). Different from 
ILC2, ILC3 expressing MHC-II but not the co-stimulatory mol-
ecules CD80 and CD86, induce T cell apoptosis and tolerance in 
the gut (145, 146). However, ILC3 express CD30 ligand and OX40 
ligand, which may contribute to the maintenance of CD4+ T cell 
memory (147). Although there is no direct evidence indicating 
whether Ahr regulates MHC-II or co-stimulatory molecule 
expression by ILC2 and ILC3, Ahr may mediate the cross talk 
between ILCs and T cells, at least through regulating ILC num-
bers (Figure 1). A recent study reveals that NCR-expressing ILCs, 
including ILC1 and NCR+ ILC3, support Th17 cells in inflamed 
central nervous system (148), which raises intriguing questions 
that whether similar event is evident in the gut, and how the host 
keeps the balance between the induction of Th17 cells by NCR+ 
ILCs, and the inhibition of Th17 cells by CCR6+ ILC3 through 
MHC-II expression (Figure 1).

Cross Talk with epithelial Cells
The cross talk between gut epithelial cells and ILC3 has been 
recently investigated. Over-expression of Cyp1a1, a target gene 
of Ahr, in epithelial cells consumes Ahr ligands in the gut, which 
consequently leads to the decrease of gut ILC3 (106) (Figure 1). 
These findings raise the possibility that activation of Ahr may 
not only promote gut ILC3 in a cell-intrinsic manner, but also 
maintain the ILC3 at a physiological level through controlling the 
availability of Ahr ligands in the gut. On the other hand, ILC3, via 
expression of IL-22 and lymphotoxin, regulate the fucosylation of 
epithelial cells which is critical for the host to control Salmonella 
typhimurium infection (149). In addition, ILC3, via producing 
IL-22, promote the expansion of intestinal stem cell, and conse-
quently promote the regeneration of intestinal epithelium after 
gut injury (150, 151).

Cross Talk with Commensals
Aryl hydrocarbon receptor appears to mediate the interaction of 
ILC3 and microbiota. The absence of caspase recruitment domain 
family member 9 (CARD9) results in alteration of microbiota, 
and the altered microbiota fail to metabolize Trp into Ahr ligands, 
leading to decreased ILC3 and IL-22 production, and increased 
susceptibility of the host to colitis (92). Accordingly, Ahr ligands 
are found decreased in the microbiota of IBD patients, especially in 
the individuals with IBD-associated single-nucleotide polymor-
phism within CARD9 (rs10781499), suggesting microbiota–Ahr 
ligand axis may be a therapeutic target of colitis in humans (92). 
Although the cross talk between ILCs and microbiota remains to 
be further explored, genome-wide analysis at the transcriptional 
level of ILCs has been conducted using RNA-seq by comparing 
specific pathogen-free mice to those with microbiota depletion 
(152). Marked numbers of transcripts change significantly in 
all ILCs upon antibiotics treatment, but the expression profile 
is generally maintained. Intriguingly, depletion of microbiota 
shows more effects on the gene expression of ILC1 and ILC2 
than that of ILC3. Given the important role of Ahr in ILC3 and 
Ahr could sense ligands generated by commensals, for example, 
Lactobacillus reuteri (74, 91), these findings may suggest ligands 
from other sources (e.g., diet) could activate the Ahr pathway in 
the absence of microbiota.

Regulation of iLCs by iLCreg
With the minimal Ahr expression in mouse ILCreg at least under 
the steady state (4), it remains to be determined whether Ahr 
plays a role in ILCreg. In contrast to the mouse ILCreg, human 
ILCreg in cancer that suppress T cell expansion appear to express 
high level of Ahr, indicating potential role of Ahr in this popula-
tion (70). The mouse ILCreg have been shown to regulate ILC1 
and ILC3 (4), it is unclear whether ILCreg can suppress ILC2.

iLC-Nervous System interaction
The nervous system has been shown to affect ILCs. Glial cells in 
the gut, through secreting neurotrophic factors that bind to the 
neuroregulatory receptor rearranged during transfection (RET) 
on ILC3, promote the expression of IL-22, and consequently 
decrease the susceptibility to intestinal inflammation and infec-
tion (153). Recent studies demonstrate that among various 
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hematopoietic cells, ILC2 uniquely express the neuropeptide 
neuromedin U (NMU) receptor 1 (NMUR1), which makes them 
respond to NMU (154–156). The activation of ILC2 by NMU 
leads to enhanced cell expansion and type 2 cytokine production, 
which promote the clearance of helminth in the gut. It remains 
to be determined that whether Ahr modulates ILC responses to 
neuromediators.

Cooperation of Ahr and Partners in 
Regulating iLCs
Aryl hydrocarbon receptor has been studied for decades, and 
some interacting proteins, like HSP90 and AIP, have been well 
documented. However, only a few partners of Ahr have been 
functionally implicated in ILCs. In Th17 and IL-17-producing 
γδ T  cells, Ahr regulates IL-22 expression while the molecular 
mechanism of action of Ahr is unclear (94, 95). However, Ahr 
has been shown to interact with RORγt in an overexpression 
system to promote IL-22 expression (13). RORγt is required 
for the recruitment of Ahr to the Il22 locus, as Ahr alone fails 
to bind to the Il22 locus. In contrast to the Il22 locus, Ahr is 
recruited to the Cyp1a1 locus independent of RORγt. These data 
raise a question regarding how Ahr, by cooperating with other 
transcription factors (e.g., RORγt), regulates gene expression in 
ILC3 and other lymphocytes (e.g., Th17 and γδ T cells). In addi-
tion to RORγt, the C2H2 zinc finger transcription factor Ikaros, 
a key regulator of hematopoiesis, is a binding protein of Ahr in 
ILC3 (157). Ikaros negatively regulates ILC3 through zinc finger 
4-dependent inhibition of transcriptional activity of the Ahr by 
disruption of the Ahr–ARNT complex. It will be of interest to 
investigate whether Ikaros participates in a complex of Ahr and 
RORγt to regulate RORγt activity in ILC3 development and/or 
function. Intriguingly, Ikaros but not Ahr is required for fetal 
LTi cell development, demonstrating the distinct transcriptional 
regulation of fetal and postnatal ILC3.

As ILC3 resemble Th17 cells in regards to key transcription fac-
tor and cytokines, knowledge of the function of Ahr in Th17 cells 
might be adopted into ILC3 potentially. Transcription factor 
Musculoaponeurotic Fibrosarcoma (MAF) has been shown to be 
induced by TGFβ in Th17 cells to promote IL-17 production and 
suppress IL-22 secretion (158). Although the interaction between 
Ahr and MAF has been only implicated in type 1 regulatory 
T  cells (159), the cross talk of these two proteins may provide 
insight into the molecular regulation of IL-22 expression in ILC3.

Aryl hydrocarbon receptor has been shown to interact with 
RelB, a key component of NF-κB signaling, and synergize to 
induce the transcription of certain genes, such as IL-6 and 
IL-8 in DC or macrophage (160, 161). Additionally, another 
component of NF-κB, RelA, binds to Ahr, and the interaction 
consequently promotes IL-6 transcription (162). Therefore, the 
interplay between Ahr and NF-κB pathway might be important 
for ILCs since the critical function of NF-κB has been investigated 
throughout various cell types.

Not limited to transcriptional function, Ahr has been reported 
to participate in posttranslational regulation in non-immune 
cells. It is described that Ahr acts as a component of cullin 4B 
ubiquitin ligase complex, which targets sex steroid receptors for 
degradation (163, 164). More investigation directed to confirm 

and extend this non-genomic function of Ahr in ILC and other 
cell types will be necessary to understand how Ahr is linked to 
protein degradation in different contexts.

In non-immune cells, Ahr exhibits a rhythmic expression, 
and its sensitivity to Ahr ligands is time-dependent (165). 
Reciprocally, genes associated with circadian clock and the 
behavioral responses of mice to circadian clock are regulated by 
Ahr (165). Ahr has been shown to interact with Bmal1, which 
forms a complex with Clock to facilitate the transcription of circa-
dian genes (166–168). ILC2 activation and consequent eosinophil 
recruitment is responsive to the circadian clock, suggesting a con-
served circadian mechanism in ILCs (25). Understanding of the 
synergetic function of Ahr and circadian signaling could improve 
our understanding of the basic biology of ILCs, and provide new 
targets of interest for regulation of ILCs.

TRANSLATiONAL POTeNTiAL OF  
Ahr iN iLCs

Changes in ILCs have been reported in the patients with IBD. 
IL-22-producing ILC3 decreased in the intestine of Crohn’s 
patients (115, 169, 170), in line with the protective role of IL-22 
on the integrity of gut barrier which has been implicated sev-
eral mouse models (171). Other studies also reveal that IL-22 
produced by ILC3 increased in inflammatory sites of the colons 
in both CD and UC patients (122, 172), which might be due to 
a compensatory response of the host to inflammation but also 
might reveal the pathological aspects of ILC3, especially NCR+ 
ILC3 (63, 64). The MHC-II expression on ILC3 is critical to 
induce T cell tolerance to gut commensal bacteria and avoid overt 
inflammation. It has been shown that pediatric IBD patients have 
reduced MHC-II expression on colonic ILC3, consistent with the 
model that compromised ILC3 regulatory function can lead to 
T cell-mediated inflammation (146). It has been shown that the 
expression of Ahr is reduced in the gut tissues from IBD patients 
compared to healthy controls (173). Accordingly, treatment of Ahr 
ligand ameliorated the pathology of several mouse colitis models, 
including 2,4,6-trinitrobenzenesulfonic acid (TNBS)-, DSS-, and 
T cell transfer-induced colitis, in which IL-22 is required (173, 
174). Considering the role of Ahr in the maintenance of gut ILC3 
and IL-22 production by ILC3, Ahr pathway could be potentially 
manipulated to regulate gut inflammation by increasing ILC3 in 
the gut of IBD patients. However, given the different functions 
between NCR+ ILC3 and NCR− ILC3, special considerations are 
needed while targeting the Ahr pathway in IBD.

Type 2 immunity has been considered to mediate ulcerative 
colitis in human, which has been modeled by oxazolone-induced 
colitis in mice (175). A known Ahr ligand, 3,3’-Diindolylmethane, 
has been found to alleviate oxazolone-induced colitis, probably 
through inhibition of Th2/Th17 cells and induction of Treg cells 
(176). Since ILC2 express large amounts of type 2 cytokines, this 
population could potentially play a pathogenic role in ulcerative 
colitis (177). Despite the reduced expression of Ahr in IBD, the 
role of Ahr in ILC2 and disease pathogenesis remains to be deter-
mined. In addition, it will be of interest to investigate the balance 
between ILC2 (or type 2 immunity) and ILC3 in colitis. IL-33, 
a cytokine that acts on ILC2 and Th2 to promote the cytokine 
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production, increased in IBD patients and in experimental colitis 
models of mice, including TNBS and DSS model (178). Ablation 
of IL-33-ST2 pathway relieves experimental colitis in mice. Of 
note, IL-33 and soluble ST2 have been shown increased in the 
colons of IBD patients (179), in line with the proinflammatory 
role of type 2 immunity. Thus, the functions of ILC2 and ILC3 
in colitis could be dissected into two phases as ILC2 initiate the 
pathology via IL-13 (177), while ILC3, probably through IL-22, 
facilitate the tissue repair in the later phase of disease. However, 
IL-22 could also participate in the gut inflammation, highlighting 
its “double-edged sword” nature (65, 180). A recent study reveals 
that IL-33 stimulates ILC2 to secrete amphiregulin to promote 
tissue repair in experimental colitis (42), suggesting ILC2 at 
different stage of the disease and/or some subset of ILC2 (i.e., 
amphiregulin+ ILC2) may have protective function in the resolu-
tion of colitis as well.

Allergic asthma is a chronic inflammatory disease, in which 
type 2 cytokines, IL-4, IL-5, and IL-13 are associated with the 
pathology (181). These type 2 cytokines are required for IgE 
response, recruitment of eosinophils, and mucus production. 
ILC2 have been implicated in asthma, since ILC2 produce large 
amounts of IL-5 and IL-13, as well as IL-4 under certain context, 
in response to IL-33, IL-25, and TSLP (182). Additionally, recent 
study showed that ILC2 increase in the airways of severe asthma 
patients, suggesting ILC2 may contribute to airway inflammation 
in mouse and human (183). Although the function of Ahr in 
ILC2 remains to be determined, several Ahr ligands have been 
reported to suppress allergic airway inflammation in different 
mouse models, through suppressing type 2 cytokines, IL-4 
and IL-5, production, eosinophilia, and specific IgE expression 
(184–186). Thus, study of the role of Ahr in ILC2 would provide 
another potential target for clinical intervention in airway inflam-
mation, like asthma. Although type 2 cytokines have been well 
documented in asthma, elevated IL-17 has been noticed clinically 
(187). Given that IL-25 can induce a population of lung ILC2 with 
IL-17-producing ability, the potential role of this special ILC2 
subset in the pathology of asthma in humans needs to be studied 
in the future.

Both pro- and antitumor action of Ahr has been implicated 
(188), and the potential function of Ahr in ILC-mediated tumor 
immunology remains largely unknown. Ahr has been demon-
strated to promote the antitumor activity of NK cells (103). IL-22, 
mainly produced by ILC3 under the steady state, has been shown 
to associate with increased risk in colon cancer (189). Accordingly, 
IL-22-producing ILC3 are found to promote an experimental 
cancer model in mice (190). Therefore, understanding of the 

precise function of Ahr in ILCs in cancer needs to be carefully 
studied.

CONCLUDiNG ReMARKS

The tissue microenvironment may be involved in regulating the 
differentiation, homeostasis, and function of ILCs. Thus, the 
expression and activity of Ahr in ILCs from different organs 
under the steady state need to be carefully considered when 
designing therapeutics to target Ahr. Furthermore, it will be of 
great interest to investigate whether the Ahr level/activity in ILCs 
can be changed under different contexts, like in infection, inflam-
mation, and/or cancers.

Cell-intrinsic role of Ahr in ILCs has to be determined given 
the broad expression of Ahr in other cell types. The molecular 
mechanism by which Ahr regulates the development or homeo-
stasis of ILCs remains to be explored. Mechanistic insights of Ahr 
expression and/or activity in various ILC subsets or any given 
ILCs in different tissues are important for designing targeted 
strategy to modulate the Ahr function pharmacologically. It 
is of interest to investigate whether various ILCs have different 
sensitivity to Ahr ligand, or unique machinery to uptake Ahr 
ligand. Furthermore, single cell-omics studies involving RNA-seq 
and ATAC-seq analyses, together with ChIP-seq analysis of Ahr, 
will delineate the functional pattern and role of Ahr in regulating 
transcriptional landscape of ILCs. Identification of Ahr-binding 
partners in ILCs will provide insights into the mechanism by which 
Ahr cooperates with other factors to differentially regulate gene 
expression. These molecular findings could uncover more specific 
and effective therapeutic targets on the Ahr pathway, in cell-type/
tissue-specific manner, in disease treatment and prevention.
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