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Platycodin D (PLD), an effective triterpenesaponin extracted from Platycodon gran-
diflorum, has been known to have anti-inflammatory effect. In the present study, we 
investigate the anti-inflammatory effects of PLD on LPS-induced inflammation in primary 
rat microglia cells. The results showed that PLD significantly inhibited LPS-induced 
ROS, TNF-α, IL-6, and IL-1β production in primary rat microglia cells. PLD also inhibited 
LPS-induced NF-κB activation. Furthermore, our results showed that PLD prevented 
LPS-induced TLR4 translocation into lipid rafts via disrupting the formation of lipid rafts 
by inducing cholesterol efflux. In addition, PLD could activate LXRα–ABCA1 signaling 
pathway which induces cholesterol efflux from cells. The inhibition of inflammatory 
cytokines by PLD could be reversed by SiRNA of LXRα. In conclusion, these results 
indicated that PLD prevented LPS-induced inflammation by activating LXRα–ABCA1 
signaling pathway, which disrupted lipid rafts and prevented TLR4 translocation into lipid 
rafts, thereby inhibiting LPS-induced inflammatory response.
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inTrODUcTiOn

Neuroinflammation plays a critical role in the pathogenesis of neurodegenerative diseases (1, 2). 
Neuroinflammation is induced by activated microglia (3). Microglia activation often occurs in 
response to inducers, such as bacterial pathogens (4). LPS, the outer membrane component of 
Gram-negative bacteria, is a potent stimulus for microglia activation (5). LPS leads to the activa-
tion of TLR4 signaling pathway, as well as the activation of NF-κB and inflammatory cytokines 
release in microglia (6). Overproduction of these cytokines leads to the pathogenesis of neurode-
generative diseases (7). Therefore, inhibition of these inflammatory cytokines may attenuate the 
development of neurodegenerative diseases. LXRα, a member of nuclear receptor superfamily, 
could induce the activation of ABCA1. Previous studies showed that activation of LXRα–ABCA1 
signaling pathway could disrupt the formation of lipid rafts through decreasing the levels of 
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FigUre 1 | Effects of platycodin D (PLD) on the cell viability of primary rat 
microglia cells. Cells were cultured with different concentrations of PLD  
(5, 10, 20 µM) in the absence or presence of 0.5 µg/mL LPS for 24 h. The 
cell viability was determined by MTT assay. The values presented are the 
means ± SEM of three independent experiments.

FigUre 2 | Effects of platycodin D (PLD) on LPS-induced ROS, TNF-α, IL-1β, and IL-6 production. Primary rat microglia cells were treated with PLD (5, 10, 20 µM) 
for 12 h and stimulated with LPS (0.5 µg/mL) for 24 h. The production of TNF-α, IL-1β, and IL-6 were measured by ELISA. The production of ROS was detected by 
DCFDA-cellular reactive oxygen species detection assay kit (Abcam, Cambridge, UK) and a colorimetric assay kit specific for H2O2 (Sigma, USA). The data 
presented are the means ± SD of three independent experiments and differences between mean values were assessed by one-way ANOVA with Tukey’s multiple 
comparison test. #p < 0.05 vs. control group; *p < 0.05, **p < 0.01 vs. LPS group.
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cholesterol in lipid rafts. Furthermore, disruption of lipid rafts 
could inhibit TLR4 signaling pathway through preventing TLR4 
translocation into lipid rafts.

Platycodin D (PLD), an effective triterpenesaponin isolated 
from the root of Platycodon grandiflorum, has been reported 
to have anti-inflammatory, antitumor, and antioxidative effects 
(8–10). PLD inhibited LPS-induced NO and TNF-α production 
in RAW264.7 cells (11). PLD inhibited LPS-induced acute lung 
injury in mice (12, 13). Furthermore, PLD protected alcohol-
induced liver injury in mice (14). In addition, PLD was found 
to protect alloxan-induced diabetic mice via regulation of Treg/

Th17 balance (15). PLD also had protective effects against OVA-
induced allergic asthma in mice (16). The purpose of this article 
was to investigate the effects of PLD on LPS-stimulated inflam-
mation in primary rat microglia cells in vitro. PLD significantly 
inhibited LPS-induced inflammatory response in microglia cells. 
PLD may be used as a therapeutic agent for neurodegenerative 
diseases.

MaTerials anD MeThODs

Materials
Platycodin D (purity >99%) was purchased from National 
Institutes for Food and Drug Control (Beijing, China). LPS 
(Escherichia coli O55:B5) and MTT were purchased from Sigma 
(St. Louis, MO, USA). TNF-α, IL-6, and IL-1β ELISA kits were 
purchased from Biolegend (CA, USA). Rabbit anti-human TLR4, 
NF-κB p65, IκBα, and β-actin antibodies were purchased from 
Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-
human LXRα and ABCA1 antibodies were obtained from Santa 
Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

cell culture
Primary rat microglia cells were cultured as reported elsewhere 
(17). In brief, whole brains of 1-day-old neonatal Wistar rats 
were dissociated into individual cells that were cultured for 
11 or 14 days as mixed glial cultures in DMEM with 10% fetal 
calf serum. All animal experiments were approved by the NIH 
Guide for the Care and Use of Laboratory Animals. The experi-
ments were approved by the Institutional Animal Care and Use 
Committee of Jilin University.
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FigUre 3 | Platycodin D (PLD) inhibits LPS-induced NF-κB activation. Cells were treated with PLD (5, 10, 20 µM) for 12 h and stimulated with LPS (0.5 µg/mL) for 
30 min. Protein samples were analyzed by western blotting. The antibodies used for western blotting were purchased from Cell Signaling Technology (Danvers, MA, 
USA). The values presented are the means ± SD of three independent experiments and differences between mean values were assessed by one-way ANOVA with 
Tukey’s multiple comparison test (#p < 0.05 vs. control group; *p < 0.05, **p < 0.01 vs. LPS group).
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FigUre 4 | The recruitment of TLR4 to lipid rafts was inhibited by platycodin D (PLD). Cells were pretreated with PLD or MβCD, followed by treatment with LPS. 
The cells were lysed and subjected to discontinuous sucrose density gradient centrifugation as described in Section “Materials and Methods.” The fractions were 
analyzed by using CTxB conjugated to horseradish peroxidase (GM1) or anti-TLR4 primary antibody by western blotting. Fractions 3–4 correspond to lipid rafts. 
Representative blots of three separate experiments are shown. TLR4 content of macrophage lipid rafts was calculated as a percentage of total membrane TLR4 
(lipid rafts + nonrafts). The values presented are the means ± SD of three independent experiments and differences between mean values were assessed by 
one-way ANOVA with Tukey multiple comparison test (#p < 0.05 vs. control group; *p < 0.05, **p < 0.01 vs. LPS group).
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MTT assay
Primary rat microglia cells were seeded in a 96-well plate 
(1 × 104cells/well). Then, the cells were incubated with PLD and 
stimulated by LPS for 24  h. After that, MTT (5  mg/ml, 20  μl) 
was added to each well and incubated for 4 h. Absorbance was 
determined at 540 nm.

cytokine assays
Primary rat microglia cells were incubated with PLD for 12  h 
and then stimulated by LPS for 24 h. The levels of inflammatory 
cytokines TNF-α, IL-6, and IL-1β in the culture supernatants 
were determined by ELISA kits (Biolegend, CA, USA) according 
to the manufacturer’s protocol.

rOs assay
Intracellular ROS was measured by using DCFDA-cellular 
reactive oxygen species detection assay kit (Abcam, Cambridge, 
UK) and a colorimetric assay kit specific for H2O2 (Sigma, USA) 
according to the manufacture’s protocol.

Western Blot analysis
Total proteins from primary rat microglia cells were extracted 
by M-PER Mammalian Protein Extraction Reagent (Thermo). 
The proteins were separated by 12% SDS-PAGE gel. Then the 
proteins were transferred onto PVDF membranes, blocked, 
and probed with primary antibodies for LXRα, ABCA1, TLR4, 
NF-κB p65, IκBα, and β-actin. Subsequently, the membranes 
were probed with secondary antibodies. The immunobands 
were visualized with enhanced-chemiluminescence western 
blot detection kits. The intensity was measured using Image J 
software.

isolation of lipid rafts and Quantification 
of cholesterol levels in lipid rafts
Primary rat microglia cells (1 ×  108 cells) were lysed in ice 
with 0.5% Brij in TNE buffer for 1 h. Then the lysates were 
mixed with equal amount of 80% sucrose in TNE buffer and 
overlaid with 30 and 50% sucrose in the same buffer. Samples 
were ultracentrifuged at 100,000 g at 4°C for 18 h and frac-
tionated into 12 subfractions. Cholesterol level of lipid raft 
was assayed by gas–liquid chromatography as previously 
described (18).

cholesterol replenishment experiment
Primary rat microglia cells were incubated with PLD (5, 10, 
20 µM) at 37°C for 12 h. Subsequently, the cells were incubated 
with water-soluble cholesterol (84  µg/mL) for 30  min and 
stimulated with LPS. The effects of PLD on LPS-induced cytokine 
production were detected as mentioned above.

lXr receptor gene assay
Primary rat microglia cells were cotransfected with β-galactosidase 
control vector and a luciferase reporter plasmid of LXRα using 
FuGENE HD transfection reagent (Roche Applied Science, 
Indianapolis, IN, USA). Six hours after transfection, cells were 

treated with PLD for 12 h. Luciferase activity was normalized by 
β-galactosidase activity.

lXrα sirna Transfections
Primary rat microglia cells were transfected with LXRα siRNA 
(100 nM) or control siRNA (100 nM) using using FuGENE HD 
transfection reagent (Roche, USA). 36  h later, the cells were 
treated with PLD and LPS. 24 h later, the levels of TNF-α, IL-6, 
and IL-1β were detected.

statistical analysis
All data are expressed as means ± SD. Differences between dif-
ferent groups were analyzed by one-way ANOVA followed by 
Tukey’s multiple comparison test. p < 0.05 was taken as statisti-
cally significant.

resUlTs

effects of PlD on cell Viability
The effects of PLD on the cytotoxicity of primary rat microglia 
cells by using an MTT assay. PLD at the doses of 0–20 µM did not 
affect the cell viabilities of primary rat microglia cells (Figure 1). 
Therefore, in the subsequent experiments, PLD were used at the 
doses of 5, 10, and 20 µM.

PlD inhibits rOs, TnF-α, il-1 β,  
and il-6 Production induced by lPs
We detected the effects of PLD on inflammatory mediator 
production to assess the anti-inflammatory effects of PLD. The 
results showed that LPS significantly upregulated the levels of 
ROS, TNF-α, IL-1β, and IL-6 in primary rat microglia cells. 
However, treatment of PLD inhibited LPS-induced ROS, TNF-
α, IL-1β, and IL-6 production in primary rat microglia cells 
(Figure 2).

PlD inhibits lPs-induced nF-κB 
activation
NF-κB, an important transcriptional factor, plays an important 
role in the regulation of inflammatory mediators. To clarify the 
mechanism of PLD, the effects of PLD on NF-κB activation were 
tested by western blot analysis. Treatment of PLD significantly 
inhibited LPS-induced NF-κB P65 and IκBα phosphorylation 
(Figure 3).

PlD inhibits lPs-induced Tlr4 
Translocation into lipid rafts
Activation of TLR4 leads to the activation of NF-κB. To 
investigate the mechanism of PLD, the effects of PLD on LPS-
induced TLR4 translocation into lipid rafts were detected. 
GM1 is a marker for lipid raft. In the present study, we detected  
GM1 to identify lipid rafts. LPS stimulation induces translo-
cation of TLR4 into lipid rafts. However, PLD significantly 
inhibited LPS-induced TLR4 translocation into lipid rafts 
(Figure 4).
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FigUre 5 | Effects of platycodin D (PLD) on lipid rafts cholesterol levels. 
Cells were treated with PLD (5, 10, 20 µM) for 12 h. Membrane cholesterol 
levels were measured by gas–liquid chromatography and the results were 
plotted as µg cholesterol/mg protein. The values presented are the 
means ± SD of three independent experiments and differences between 
mean values were assessed by one-way ANOVA with Tukey’s multiple 
comparison test (#p < 0.05 vs. control group; *p < 0.05, **p < 0.01 vs. 
LPS group).

FigUre 6 | Cholesterol replenishment prevents the anti-inflammatory effect of platycodin D (PLD). Cells were treated with culture medium alone or medium 
containing PLD (5, 10, 20 µM) or MβCD (10 mM) at 37°C for 60 min. Subsequently the cells were washed with PBS and incubated with medium alone or medium 
containing water-soluble cholesterol (84 µg/ml) for 30 min. Cells were treated with LPS for 24 h. Levels of TNF-α, IL-1β, and IL-6 in culture supernatants were 
measured by ELISA. Effects of LXRα inhibitor geranylgeranyl pyrophosphate (GGPP) on the anti-inflammatory effects of PLD. Cells were treated with GGPP for 2 h. 
Then, the cells were treated with PLD for 12 h and stimulated by LPS. The productions of inflammatory cytokines were detected. The values presented are the 
means ± SD of three independent experiments and differences between mean values were assessed by one-way ANOVA with Tukey’s multiple comparison test 
(#p < 0.05 vs. control group; *p < 0.05, **p < 0.01 vs. LPS group).

PlD Disrupts lipid rafts by  
Depleting cholesterol
Cholesterol is the main component of lipid rafts. To investigate 
the effects of PLD on the integrity of lipid rafts, we detected the 

effects of PLD on cholesterol level in lipid rafts. Treatment of 
PLD significantly decreased the level of cholesterol in lipid rafts 
which results in the disrupting of lipid rafts (Figure 5). These 
results suggested that PLD disrupted lipid rafts by depleting 
cholesterol.

cholesterol replenishment Prevents  
the anti-inflammatory effects of PlD
To confirm whether cholesterol was involved in the anti-
inflammatory mechanism of PLD, we used cholesterol replenish-
ment experiments to confirm it. The results showed that when 
cholesterol was added, the anti-inflammatory effects of PLD were 
abolished (Figure 6).

effects of PlD on lXrα–aBca1  
signaling Pathway
LXRα–ABCA1 signaling pathway is involved in the regula-
tion of cholesterol efflux. To investigate the mechanism that 
PLD decreased the level of cholesterol, the effects of PLD 
on LXRα–ABCA1 signaling pathway were detected. In this 
study, PLD significantly upregulated the transcriptional 
activity of LXRα by luciferase reporter gene assay (Figure 7). 
Furthermore, PLD was found to upregulate the expression of 
LXRα and ABCA1.
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induced by LPS were reversed (Figure  8). Furthermore, our 
results showed that the inhibition of PLD on TNF-α, IL-1β, and 
IL-6 production were reversed by LXRα antagonist geranylge-
ranyl pyrophosphate (Figure 6). Taken together, PLD exhibited 
anti-inflammatory effects by activating LXRα.

DiscUssiOn

Previous studies suggested that inhibition of microglia acti-
vation was useful in the treatment of neurodegenerative 
diseases (19). We found PLD inhibited microglia activation 
by suppressing ROS and inflammatory cytokines production. 
The anti-inflammatory mechanism of PLD was through acti-
vating LXRα–ABCA1 signaling pathway and inhibiting TLR4 
translocation into lipid rafts, thereby inhibiting LPS-induced 
inflammatory responses.

Microglia, the major immune cells in the central nerv-
ous system, plays an important role in host innate immune 
response (20). LPS induced the production of ROS and 
inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 
(21). These cytokines play critical roles in the pathogenesis of 
neurodegenerative diseases. In this study, PLD significantly 
inhibited microglia activation by suppressing ROS, TNF-α, 
IL-1β, and IL-6 production. NF-κB plays a critical role in the 
regulation of inflammatory cytokines production (22, 23). Our 
results showed that PLD inhibited LPS-induced inflammatory 
cytokines production by inhibiting NF-κB activation. Our 
results were consistent with previous studies (12, 24, 25). They 
suggested that PLD inhibited LPS-induced inflammation by 
inhibiting NF-κB activation.

TLR4 is the major receptor of LPS (26). Activating of TLR4 
signaling pathway leads to NF-κB activation, which subse-
quently induces the production of inflammatory cytokines 
production (27). Lipid rafts are membrane domains that are 
rich in cholesterol and sphingolipids (28). Previous studies 
showed that lipid rafts played an important role in TLR4 
signaling pathway (29). LPS-mediated TLR4 trafficking to 
lipid rafts represents an early event in signal initiation of 
immune cells (30). Studies showed that inhibition of TLR4 
trafficking to lipid rafts could inhibit LPS-induced inflamma-
tory responses (31). In this study, our results showed that PLD 
significantly inhibited LPS-induced TLR4 trafficking to lipid 
rafts. Furthermore, the effects of PLD on the level of cholesterol 
in lipid rafts were detected in this study. Our results showed 
that PLD disrupted the formation of lipid rafts by decreasing 
the level of cholesterol.

LXRα is a ligand-activated transcription factor that belongs 
to the nuclear receptor superfamily (32). LXRα is an important 
regulator of intracellular cholesterol (33). Activating of LXRα 
induces the expression of ABCA1 (34). ABCA1 is a lipid pump 
that effluxes cholesterol and phospholipid out of cells (35). In this 
study, we detected the effects of PLD on LXRα–ABCA1 signaling 
pathway. The results showed that PLD could activate LXRα and 
upregulated the expression of LXRα and ABCA1. PLD decreased 
the level of cholesterol by activating LXRα–ABCA1 signaling 
pathway. To further confirm the mechanism of PLD, LXRα 
was knockdown by siRNA. Once LXRα was knockdown, the 

FigUre 7 | Effects of platycodin D (PLD) on LXR transcriptional activity and 
LXRα, ABCG1 expression. Cells were transfected with LXRE-driven luciferase 
reporter vector (LXRE-tk-Luc) and β-galactosidase control vector (Promega). 
Six hours later, cells were treated with PLD for 12 h. Relative luciferase 
activity was determined by normalization with β-galactosidase activity 
(*p < 0.05, **p < 0.01). Effect of PLD on LXRα and ABCG1 expression. Cells 
were treated with PLD (5, 10, 20 µM) for 12 h. Protein samples were 
analyzed by western blot with specific antibodies. β-Actin was used as a 
control. The values presented are the means ± SD of three independent 
experiments and differences between mean values were assessed by 
one-way ANOVA with Tukey’s multiple comparison test (*p < 0.05, 
**p < 0.01).

The anti-inflammatory effects of PlD  
is lXrα Dependent
To further confirm the anti-inflammatory mechanism of PLD, 
LXRα was knockdown by specific siRNA. The results showed 
that once LXRα was knockdown, the effects of PLD on choles-
terol levels, the expression of cytokines TNF-α, IL-1β, and IL-6 
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FigUre 8 | Knockdown of LXRα abrogated the effects of platycodin D (PLD) on lipid rafts cholesterol levels, and LPS induces inflammatory response in primary rat 
microglia cells. Cells were transfected with a siRNA specific for LXRα, or a scrambledsiRNA (negative control) as indicated. Then, the cells were treated with PLD 
(20 µM) for 12 h. The effect of siRNA on LXRα expression was detected by western blotting. Lipid raft cholesterol levels were detected. Meanwhile, the cells were 
treated with PLD (20 µM) for 12 h and stimulated by LPS for 24 h. Levels of TNF-α, IL-1β, and IL-6 in culture supernatants were measured by ELISA. The data 
presented are the means ± SD of three independent experiments and differences between mean values were assessed by one-way ANOVA with Tukey’s multiple 
comparison test (#p < 0.05 vs. control group; *p < 0.05, **p < 0.01 vs. LPS group).

anti-inflammatory effects of PLD were reversed. PLD exhibited 
its anti-inflammatory effects by activating LXRα.

In conclusion, the results of this study showed that PLD 
inhibited LPS-induced inflammation in microglia cells by acti-
vating LXRα–ABCA1 signaling pathway, which subsequently 
disrupting lipid rafts and inhibiting TLR4 translocation into 
lipid rafts, thereby inhibiting LPS-induced inflammatory 
responses. Previous studies showed that LXRα agonist could 
enhance blood–brain barrier integrity and attenuate blood–
brain barrier disruption (36, 37). Furthermore, previous stud-
ies showed that Saikosaponin a, glycyrrhizin, and ginsenoside 
could attenuate neuroinflammation in the brain (38–40). 
Therefore, we speculated these compounds had the ability to 
penetrate blood–brain barrier. PLD has the similar chemical 
structure with these compounds and all these compounds could 
activate LXRα. Therefore, we speculated PLD might have the 
ability to penetrate blood–brain barrier. And further studies 

need to confirm this and detect the protective effects of PLD on 
neurodegenerative diseases.
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