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In recent years, chimeric antigen receptor (CAR) T-cell therapy has become popu-
lar in immunotherapy, particularly after its tremendous success in the treatment of 
 lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy 
for solid tumors has not reached its full potential because of the lack of specific tumor 
antigens and inhibitory factors in suppressive tumor microenvironment (TME) (e.g., 
programmed death ligand-1, myeloid-derived suppressor cells, and transforming 
growth factor-β). In this review, we include some limitations in CAR design, such as 
tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, 
and suppressive TME. We also summarize some new approaches to overcome these 
hurdles, including targeting neoantigens and/or multiple antigens at once and depleting 
some inhibitory factors.

Keywords: chimeric antigen receptor T-cell, immunotherapy, solid tumor, adoptive T-cell therapy, tumor 
microenvironment

iNTRODUCTiON

Chimeric antigen receptor (CAR) design is based on the signal transduction of T-cell activation (1). 
The T-cell receptor (TCR) detects antigens presented by antigen-presenting cells (APCs) in the form 
of the major histocompatibility complex (MHC)–antigen peptide complex (2). TCR binding to the 
MHC–antigen peptide complex induces a cascade of intracellular events as follows: phosphoryl-
ated TCR recruits intracellular second messengers to provide the first signal, and costimulatory 
molecules (CD28, CD27, CD134, CD137, or ICOS) at the T-cell surface bind to their corresponding 
receptors (CD80, CD86, CD137L, or ICOSL) on APCs, which further provides the second signal (3). 
Eventually, T-cells are primed and activated, which subsequently secrete perforin, granzyme, and 
cytokines, including interleukin 2 (IL-2) and interferon γ (IFN-γ), to defend infection by inducing 
the apoptosis of target cells.

However, normal T-cells do not efficiently recognize tumors because of the absence of MHC 
expression and weak immunogenicity of tumors. Investigators first developed chimeric immune 
receptors in mid-1980s. In 1993, Eshhar et al. modified the T-cell expressing CARs in melanoma 
treatments, which overcame the issue of MHC restriction and weak immunogenicity (4). Generally, 
CARs comprise three domains: an extracellular single-chain antibody fragment (scFv), which serves 
as a target moiety that redirects T-cells to tumor cells by specifically binding to tumor-associated 
antigens (TAAs); a transmembrane domain and an endodomain, which is often the signal transduc-
tion domain comprising a CD3ζ chain and costimulatory factors such as CD28 and 4-1BB (CD137) 
(5, 6). According to different intracellular domains, CARs are divided into three generations. The 
intracellular domain of the first generation contains only a CD3ζ chain; the second contains a 
CD3ζ chain and a costimulatory molecule [CD28, 4-1BB, CD134 (OX40), or ICOS]; and the third 
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TAble 1 | Summary of CAR T cell therapy for solid tumor.

CARs design Gene transfer 
vehicle

Malignancy Trial design Outcome ClinicalTrials.
gov identifier

Reference

Anti-EGFRvIII scFv-4-1BB/CD28-CD3ζ Lentivirus Glioblastoma Phase 1 Recruiting NCT02209376 (16, 17)

Anti-mesothelin scFv-4-1BB-CD3ζ mRNA electroporation Pancreatic cancers, mesotheliomas,  
ovarian cancers, lung cancers

Phase 1 Active, not 
recruiting

NCT01355965 (18)

Anti-glypican-3 scFv-CD28-4-1BB-CD3ζ Retrovirus HCC, MRT, hepatoblastoma,  
embryonal sarcoma, lung cancers

Early phase 
clinical trials

Not  
recruiting

NCT02905188 (19–21)

Anti-ErbB2 scFv-4-1BB-CD3ζ mRNA electroporation, 
lentiviral transduction

Lung cancer, ovarian cancer,  
breast cancer

Preclinical  
trails

– – (22)

Anti-PSMA scFv-CD3ζ + IL-2 Retrovirus Prostate cancer Phase 1 2/5 PR NCT01929239 (23)

Anti-HER2 scFv-CD28-CD3ζ Retrovirus Breast cancer, sarcoma Phase 1/2 13/19 PD
2/19 NE
4/19 SD

NCT00902044 (24)

Anti-EGFR scFv-CD137-CD3ζ Lentivirus Non-small-cell lung cancer Phase 1 5/11 SD
4/11 PD
2/11 PR

NCT01869166 (25–27)

Anti-MUC1 scFv-CD28-OX40-CD3ζ Retrovirus HCC, non-small lung cancer,  
triple-negative breast cancer

Preclinical  
trails

– – (28, 29)

Anti-CEA scFv-CD28-CD3ζ Retrovirus Liver metastases Phase 1 1/6 SD
5/6 PD

NCT01373047 (30, 31)

IL13Rα-4-1BB-CD3ζ Retrovirus Glioblastoma Phase 1 1/1 CR NCT02208362 (32, 33)

PD, progressive disease; PR, partial response; SD, stable disease; NE, not evaluable; CR, complete remission; CAR, chimeric antigen receptor; scFv, single-chain antibody fragment; 
PSMA, prostate-specific membrane antigen; IL-2, interleukin 2.
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contains a CD3ζ chain and two or more different costimulatory 
molecules (7, 8). Zhang et  al. compared CD28 with 4-1BB as 
a costimulant and demonstrated that 4-1BB was essential for 
expanding memory CD8+ T-cells and was superior to CD28 in 
costimulating the generation of CD8+ cytotoxic lymphocytes (9). 
Therefore, using 4-1BB as a costimulation factor in CAR designs 
may hold promise for ameliorating exhaustion and improving the 
effectiveness of CAR T-cell.

There have been an increasing number of CAR T-cell clinical 
trials for solid tumors because of their unprecedented efficacy for 
non-solid tumors, particularly anti-CD19 CAR T-cell (Table 1). 
An important reason for the success of CAR T-cell therapy in leu-
kemia is that because non-solid tumor cells circulate within the 
blood and lymphatic system, they are more likely to meet adoptive 
CAR T-cells and induce them into killing activity. However, in 
solid tumors, it is particularly difficult for CAR T-cells to migrate 
into tumor sites because of several obstacle layers, such as the 
extracellular matrix, and the lack of chemokines, which are fre-
quently mismatched with receptors in solid tumors (10). Even if 
a few CAR T-cells successfully infiltrate the tumor sites, they may 
become inactivated because of the suppressive tumor microenvi-
ronment (TME) (11–14) (Figure 1). Another important reason is 
that it is extremely difficult to find a specific TAA, such as CD19, 
in B-cell acute lymphoblastic leukemia (B-ALL) for solid tumors 
(15). Therefore, CAR T-cells require novel additional modifica-
tions for an enhanced antitumor efficiency.

TARGeT ANTiGeN SPeCiFiCiTY

Reports of clinical trials of CAR T-cell therapy for solid tumors 
have shown that most CAR T-cell therapies are stuck at the 

“on-target, off-tumor” stage (34, 35). The ideal TAAs need to be 
specifically expressed on tumor cells; however, several TAAs are 
also expressed on normal cells. For instance, mesothelin is not only 
overexpressed on mesothelioma but also expressed on peritoneal, 
pleural, and pericardial surfaces (36). Moreover, most tumor cells 
remove their immunogenic epitopes of TAAs to escape the attack 
of the host’s immune system. Therefore, identifying specific and 
immunogenic tumor antigens is necessary for the treatment of 
solid tumor.

Investigators may design CARs targeting aberrantly modifi-
cation of TAAs or tumor-specific oncogenic mutations such as 
truncated MUC1. For example, Posey et al. recently described a 
new CAR targeting aberrantly glycosylated tumor-associated cell 
membrane mucin (MUC1). In this study, they used a second-
generation CAR with 4-1BB as a costimulatory molecule, and the 
binding domain was the scFv region of the high-affinity antibody 
(5E5) targeting truncated O-glycopeptide epitopes specifically 
presented on tumor tissues. Thus, these CAR T cells normally did 
not bind to glycosylated MUC1, but they specifically recognized 
the Tn glycoform of MUC1 on tumor cells in this case. This study 
also demonstrated that MUC1–CAR T-cell exhibited no cytotox-
icity against normal human primary cells (37).

Investigators are also examining neoantigens specifically 
expressed on tumor cells (38). Neoantigens are antigens resulting 
on tumor cells from somatic mutations and are unique to each 
patient’s cancer, and these mutations may facilitate tumor growth 
and/or invasion. Using neoantigens as a target can minimize the 
risk of killing healthy tissue (39). Several investigators have pro-
posed using next-generation sequencing combined with high-
throughput immunological screening approaches to identify 
immunogenic mutations (40, 41). They separated normal cells 
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FiGURe 1 | The immunosuppressive mechanisms of tumor microenvironment (TME). ① Tumor-derived soluble factors such as prostaglandin E2 (PGE2) and 
cytokines such as transforming growth factor-β (TGF-β), IL-6, and IL-10 inhibit chimeric antigen receptor (CAR) T-cells vitality. ② The presence of immunosuppressive 
immune cells, namely myeloid-derived suppressor cells (MDSCs), Tregs, tumor-associated microphages (TAMs), or neutrophils (TANs), suppress T-cell function via 
Arg-I, ROS generation, and some soluble inhibitory factors. ③ Tumor cells can utilize the intrinsic negative regulatory mechanisms of T-cells by upregulating surface 
inhibitory receptors such as programmed death ligand-1 (PD-L1)/PD-L2. ④ The hostile TME makes it difficult for CAR T-cells to survive because of hypoxia, oxidative 
stress, acidic pH, and nutritional depletion.
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from tumor cells obtained from patients and subsequently used 
whole-exome and transcriptome sequencing to identify somatic 
mutations, which could be presented by APCs, and activate an 
immune response (42). Verdegaal et al. found that T-cell medi-
ated neoantigen immunoediting and the loss of expression of 
T-cell-recognized neoantigens may result in tumor resistance 
(43). Therefore, it is imperative to monitor the neoantigen land-
scape dynamics during adoptive T-cell therapy.

More recently, a new kind of CARs—tandem CARs—has been 
designed to express two antigen-binding domains; the tandem 
CAR T-cell is activated only when simultaneously recognizing 
two different antigens (Figure 2). CARs, engineered to simulta-
neously target two different antigens, are more specific and safe. 
For example, Hegde et al. developed a tandem CAR by joining 
an anti-human epidermal growth factor receptor-2 (HER2) scFv 
and an IL-13 receptor α2 (IL-13Rα2)-binding IL-13 mutant 
and used CD28 as a costimulatory factor and CD3ζ chain as a 
signal transduction domain. The tandem CAR T-cell showed the 
potential to bind with either HER2 or IL-13Rα2 and to protect 
against tumor cells. Compared with single CAR T-cell upon 
encountering HER2 or IL-13Rα2, the activation dynamics of 
these CAR T-cells were more sustained but not more exhaust-
ible. In a murine glioblastoma model, the tandem CAR T-cells 
mitigated antigen escape displayed enhanced antitumor efficacy 
and improved animal survival (44).

Another tandem CAR has been designed to deliver two sepa-
rate scFvs—one linked to a CD3ζ chain providing the first signal 
and another to a costimulatory molecule providing the second 

signal. The expression of target antigens alone is insufficient to 
trigger T-cell activation. Only two antigens that are simultane-
ously expressed on a target cell can activate a CAR T-cell and 
induce an antitumor function (45). For example, investigators 
presented an approach to render CAR T-cells specific for prostate 
tumors even in the absence of a truly tumor-restricted antigen. 
In their work, they used two prostate tumor antigens—prostate-
specific membrane antigen (PSMA) and prostate stem cell antigen 
(PSCA)—and demonstrated that CAR T-cell destroyed tumor 
cells expressing both PSMA and PSCA. In a murine syngeneic 
model, it was also shown that CAR T-cells were activated and 
protected against tumors simultaneously expressing PSCA and 
PSMA (46, 47). However, under the pressure of antigen-specific 
T-cells, tumor cells generate new mutations with a loss of antigen 
expression accompanied by resistance. Investigators need to 
monitor the antigen landscape dynamics to enhance CAR T-cell 
therapy.

TARGeT ANTiGeN SeNSiTiviTY

Sensitivity is another challenge of CAR T-cell therapy for the 
treatment of solid tumors. The spatial distance between T-cells 
and their target cells also plays a key role in T-cell activation 
and signal transduction. It is essential for T-cell activation that 
immune receptor tyrosine-based activation motifs were phos-
phorylated by the lymphocyte-specific kinase (Lck) of the Src 
family (48). However, Lck is originally inhibited on T-cells so 
that it does not exhibit phosphorylation activity. It is activated 
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FiGURe 2 | Tandem chimeric antigen receptor (CAR) T-cell. (A) The extracellular binding domain of CARs comprises two different tumor-associated antigen 
(TAA)-specific single-chain antibody fragments (scFvs) linked to the intracellular signaling domains derived from the CD3ζ chain and CD28 or CD137. CAR T-cell 
activated by two separate TAAs binding with TAA-specific scFv. (b) CD3ζ chain of CARs was designed with costimulatory factors. A single CAR structure contains 
two scFvs—one linked CD3ζ chain, providing the first signal, and another linked costimulatory factors, providing the second signal. Only activating double signals 
activate T-cells.
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by the protein tyrosine phosphatases CD45 and CD148, leading 
to downstream signal transduction (49, 50). Some studies have 
indicated that the distance between T-cell and APC is approxi-
mately 15 nm during the formation of an immunological syn-
apse (51). This spatial distance excludes the phosphatases CD45 
and CD148 from the immunological synapse because they have 
ectodomains that are longer than 15 nm (52, 53). Previous studies 
have demonstrated that the exclusion of CD45 from the cell–cell 
interphase is both necessary and sufficient for the formation of 
T-cell synapse (54, 55). The spatial distance between CAR T-cell 
and its target tumor cell may be equally important (Figure 3). 
However, it depends on entirely different structural elements, 
including the spatial structure of scFv, CAR position on the 
membrane, and location of the antigen on the target cell. Several 
studies have demonstrated that the identical epitope activates 
CAR T-cell with different levels of efficiency when expressed at 
different positions on the membrane. For example, Hombach 
et al. have explored the impact of a defined epitope position on 
the efficacy of CAR T-cell activation. They demonstrated that 
T-cell activation is more efficient when targeting the membrane 
proximal epitope than distal epitopes, indicating that the posi-
tion of the targeted epitope has a major impact on the efficacy 
of T-cell activation (56). Hudecek et al. have also confirmed that 
the length and composition of IgG-derived extracellular spacer 
domains influence the function of CAR T-cells and that extra-
cellular spacer domains lacking intrinsic signaling function are 
decisive in CAR design for an optimal in vivo activity (57). Thus, 
it might be an attractive strategy to enhance the sensitivity of 
CAR T-cell therapy by controlling the spatial distance in future 
research.

Previous studies have mainly focused on using exogenous 
activation elements, instead of intrinsic TCR, to remove MHC 

molecule restrictions. Recently, investigators developed a novel 
CAR T-like cell, known as bispecific T-cell engager (BiTE). This 
novel concept involves the use of a transgenic T-cell that can 
secrete T-cell-dependent bispecific antibodies, including two 
different scFv, one for tumor-specific antigens and another for 
T-cell specific antigens (often for TCR or CD3) (58). Because of 
its structure, the secreted scFv can link tumor cells with T-cells 
by acting as a bridge to activate intrinsic TCR/CD3 complex of 
BiTEs, but it is unknown whether CD4 or CD8 molecules of 
T-cells participate in this process because of the lack of MHC 
expression on tumor cells. A combination of endogenous TCR/
CD3 and secreted scFv is sufficient to deliver signal 1, while 
intrinsic costimulatory molecules deliver signal 2. Luo et  al. 
have developed BiTEs that are capable of secreting bispecific 
antibodies against CD3 and HER2, demonstrating an excellent 
antitumor effect. Interestingly, they have also highlighted that 
bispecific antibodies secreted by BiTEs affect the bystander 
T-cells not transfected with αHER2/CD3 RNA (59). However, 
the second activation signal for BiTEs, derived from intrinsic 
costimulatory agonists, has not yet been defined. Investigators 
need to administer an exogenous second activation signal to 
enhance the efficiency of BiTEs.

Another key factor influencing the sensitivity of CAR T-cell 
therapy is the T-cell intrinsic negative regulatory mechanism 
(60). For example, CAR T-cells successfully transferred into 
solid tumors often upregulated inhibitory factors, such as 
programmed death-1, cytotoxic T lymphocyte-associated anti-
gen-4, T-cell immunoglobulin domain and mucin domain-3 
(TIM3), and lymphocyte activation gene-3, that specifically 
bind to ligands on tumor cells to attenuate the antitumor efficacy. 
Combined immunotherapeutic strategy is promising for improv-
ing the sensitivity of CAR T-cell therapy (61, 62). Suarez et al. 
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FiGURe 3 | Signaling of conventional T-cell and chimeric antigen receptor (CAR) T-cell. (A) Conventional T-cell activation is initiated when T-cell receptor (TCR) 
interacts with pMHC for the formation of an immunological synapse. The spatial distance between T-cells and antigen-presenting cells (APCs) is approximately 
15 nm, which physically excludes CD45 from the synapse because of its large ectodomain. CD4/CD8 molecules bind with major histocompatibility complex 
(MHC)I/II to recruit lymphocyte-specific kinase (Lck) phosphorylated by CD45, which then activates Zap70 to provide signal 1. Costimulatory molecules such as 
CD28 bind with their ligands on APCs to deliver signal 2 for complete T-cell activation. (b) Modified CAR T-cells recognize tumor cells by their tumor-associated 
antigens (TAAs) in a non-MHC restrictive manner. The spatial distance between CAR T-cells and target tumor cells is unknown, nor it is known whether this 
distance is small enough to physically exclude phosphatase CD45 from the synapse. It is also unknown whether CARs interact with endogenous TCR/CD3ζ or 
CD4/CD8 coreceptors. (C) Bispecific T-cell engagers (BiTEs) can secrete bispecific antibodies, one of which can recognize TAAs and another ligates with the 
intrinsic TCR–CD3 complex, but it is unknown if CD4/CD8 T-cells participate because of deficient MHC expression on tumor cells. Endogenous TCR/CD3ζ 
delivered signal 1 upon BiTEs ligation with target-expressing cells by secreting bispecific antibodies, and signal 2 is delivered by an intrinsic costimulatory 
molecule on BiTEs and its receptor lies on tumor cells. The spatial distance between BiTEs and tumor cells is also uncontrollable; therefore, it is also unknown if 
CD45 is excluded from the synapse.
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employed CAR T-cells targeting carbonic anhydrase IX (CAIX) 
expressed on metastatic clear cell renal cell carcinoma (ccRCC) 
in combination with programmed death ligand-1 (PD-L1) 
antibodies (63). In their design, CAR T-cells were engineered to 
secrete PD-L1 antibodies, which confirmed that local antibody 
delivery not only prevented T-cell exhaustion but also recruited 
NK cells into tumor sites. In a humanized mice model of ccRCC, 
tumor growth diminished five times and tumor weight reduced 
50–80% compared with those in the anti-CAIX CAR T-cells 
alone. Moreover, increasing research groups have devoted their 
research into combinatorial immunotherapy besides combin-
ing with checkpoint inhibitors. For example, Junghans et  al. 
have used anti-PSMA CAR T-cell combined with IL-2 for the 
treatment of prostate cancer, and they found that the clinical 
responses to CAR T-cells were restrained by low plasma IL-2. 
Therefore, a moderate dose of administered IL-2 is necessary 
to enhance CAR T-cell efficiency. This report also presented a 
unique example of the critical impact of the pharmacodynamics 
of drug–drug interactions on the efficacy of their coapplication 
(23). Curran et  al. have established an approach to enhance 
CAR T-cells by expressing CD40 ligand (CD40L). T-cells modi-
fied to constitutively express CD40L (CD40L-modified T-cells) 
demonstrated an enhanced proliferation and secretion of 

pro-inflammatory cytokines in vitro. This research also showed 
that CD40L-modified CAR T-cells induce dendritic cell matura-
tion and secretion of the pro-inflammatory cytokine IL-12 to 
enhance antitumor effects (64). Thus, in future experimental 
designs, investigators may consider infusing CAR T-cells with 
immune checkpoint inhibitors, cytokines, or other costimula-
tory molecules.

Furthermore, Nishio and Dotti developed a special combi-
national therapy that employed CAR T-cells combined with 
oncolytic viruses (OVs) that resulted in a remarkable antitumor 
effect compared with that using CAR T-cell or OV alone. Their 
research confirmed that OV supports T-cell function by remain-
ing toxic to tumor cells without damaging or compromising 
CAR T-cell activities, even at high concentrations of OVs (65). 
They demonstrated that tumor cells infected by OVs become 
more susceptible to the lytic effects of CAR T-cells. In turn, 
the faster lysis of tumor cells facilitates the spread of the virus, 
which enhances CAR T-cells in solid tumor (66). Several stud-
ies have demonstrated that tumor-derived soluble factors and 
immunosuppressive immune cells in TME limit the sensitivity 
of CAR T-cells (67). These studies have suggested the importance 
of blocking the inhibitory factors of TME in CARs design (68). 
Within TME, various suppressive surveilling immune cells such 
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as myeloid-derived suppressor cells (MDSCs), regulatory T-cells 
(Tregs), tumor-associated microphages (TAMs), or neutrophils 
(TANs) with M2 and N2 phenotypes present a barrier against 
antitumor immunity (69, 70). MDSCs, M2 TAMs, and N2 TANs 
are also well-known producers of transforming growth factor-β 
(TGF-β), IL-10, reactive oxygen/nitrogen species, nitric oxide 
synthase (NOS), and arginase (ARG) (71, 72). TGF-β is a critical 
cytokine in embryogenesis and tissue homeostasis. TGF-β can 
induce a large and diverse set of responses, ranging from the 
induction of tissue growth and morphogenesis in the embryo to 
the activation of cellular cytostatic and death processes in epi-
thelial cells. However, in tumor tissues, increasing studies have 
confirmed that TGF-β prevents antitumor effects by inhibiting 
CD8 cytotoxic T lymphocytes and boosts tumor cell migration 
and proliferation (73). ARG and NOS are critical for l-arginine 
metabolism, which plays an important role in tumor immunity 
(74). The presence of l-arginine promotes T-cell effector func-
tion and memory T-cell differentiation. However, in several solid 
tumors, various suppressive surveilling immune cells overexpress 
one or both of these enzymes and lead to T-cell dysfunction 
because of arginine deficits within TME. Thus, the manipula-
tion of tumor-derived soluble factors and immunosuppressive 
immune cell activity in tumor sites may enhance the efficacy of 
CAR T-cell therapies.

TARGeT ANTiGeN SAFeTY

Chimeric antigen receptor T-cells attack target cells by recogniz-
ing TAAs expressed on tumor cells. However, most TAAs are 
not only highly expressed on tumor cells but also shared with 
normal cells. Thus, the risk of “on target/off tumor” toxicity is a 
major obstacle for the development of CAR T-cell therapies for 
solid tumors. Several CAR T-cell therapies have resulted in life-
threatening and fatal adverse events due to tumor lysis syndrome 
and cytokine storm. For example, Lamers et al. have evaluated 
the on-target toxicity of treatment of metastatic renal cell car-
cinoma with CAIX CAR-engineered T-cells. Common toxicity 
criteria grade 2–4 liver enzyme disturbances were observed in 4 
of 12 patients at 1–2 × 109 total cell dose, which can be prevented 
by pre-treatment with an anti-CAIX monoclonal antibody (35, 
75). Morgan et al. have reported a serious adverse event in phase 
I clinical trials of an anti-HER2 CAR. In the third-generation 
(CD28.4-1BB.ζ) anti-HER2 CAR trial, a colon cancer patient 
with lung and liver metastases was intravenously administered 
with 1 × 1010 CAR T-cells. Within 15 min, the patient developed 
acute respiratory distress and died 5 days after treatment. They 
speculated that lung epithelial cells expressing HER2 at low 
levels were recognized by the administered cells and triggered 
a cytokine storm (34).

Ultimately, safety is closely dependent on specificity. In CAR 
design, we need to choose TAAs that are highly expressed on 
tumor cells but not expressed (or expressed at low levels) on nor-
mal cells as targets. Thus far, nearly all TAAs in the treatment of 
solid tumors have been expressed on normal tissues, particularly 
in bystander regions. The antitumor efficiency is associated with 
the dose of CAR T-cells, with high doses potentially increasing 
the risk of toxicity; therefore, it is difficult to balance safety and 

efficiency. Thus, researchers are advocating that suicide gene 
systems may ameliorate these toxicity profiles.

The herpes simplex virus–thymidine kinase (HSV-TK) suicide 
gene system has been most extensively tested in cell and gene 
therapy to eliminate the potential side effects of transduced cells 
(76–78). The HSV-TK gene has been successfully transferred into 
various cell lines to confer lethal sensitivity to the anti-herpes 
drug, ganciclovir, and its efficacy has been demonstrated both 
in vitro and in vivo (79). Another alternative suicide gene system 
is the inducible caspase 9 (iCasp9) gene, often used together with 
the small-molecule, AP1903 (80). The iCasp9 gene comprises an 
intracellular domain of the human caspase9 protein and a pro-
apoptotic molecule fused to a drug-binding domain derived from 
human FK506-binding protein (81). This allows for dimerization 
and activation of apoptosis upon ligation with a dimerizer drug. 
This allows for dimerization and activation of apoptosis upon 
ligation with a dimerizer drug. The presence of AP1903 produces 
cross-linking of the drug-binding domains of the iCasp9 protein, 
which, in turn, dimerizes caspase 9 to activate the downstream 
executioner caspase 3 and results in cellular apoptosis (82). 
Diaconu et  al. generated a novel CD19-specific CAR-modified 
T-cell (CD19.CAR Ts) selectively modulated by an iCasp9-based 
suicide gene. They demonstrated that the iCasp9 suicide gene 
depletes CD19.CAR T-cells in a dose-dependent manner in cases 
of cytokine release syndrome or complete deletion on demand, 
granting normal B  cell reconstitution. In humanized mouse 
models, data also confirmed that low doses of AP1903 provide 
a specific containment for CD19.CAR T-cell expansion and 
cytokine release (83). Currently, CAR T-cells for solid tumors 
controlled by a specific safety switch are under study.

CONClUSiON

Cancer presents a real threat to human health, and the advent 
of CAR T-cell represents the dawn of anti-cancer therapies, par-
ticularly for non-solid tumors. However, CAR T-cell therapy for 
solid tumors faces some challenges. The three main hurdles in the 
application of CAR T-cell therapies to solid tumors have been the 
identification of specific TAAs, limited trafficking of CAR T-cells 
to solid tumor sites, and immunosuppressive effect of TME. Here, 
we focus on CAR design to address the third problem of enhanc-
ing the specificity, sensitivity, and safety of CAR T-cells.

Several approaches to overcome the solid TME are discussed 
in this review. Researchers may combine CAR T-cell therapy 
with checkpoint inhibitors or design CARs targeting immune 
checkpoints (84). Investigators may also design CARs targeting 
TME concluding hypoxia, nutrient starvation, metabolism, 
stroma, and cytokine networks (85–89). For example, indoleam-
ine 2,3-dioxygenase (IDO) is an intracellular enzyme expressed 
on tumor and myeloid cells, which blocks the proliferation and 
survival of CAR T-cells; therefore, it is feasible to develop a CAR 
targeting IDO or to combine CAR T-cells and IDO inhibitors 
for tumor treatment (90). Generating CARs that are capable of 
recognizing multiple antigens is also an effective alternative to 
address the hurdles of TAA identification. Researchers have also 
identified neoantigens specifically expressed on tumor cells as 
potential targets. Several groups have also demonstrated that the 
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successful use of chemokine receptors matched with tumor cell 
chemokines can attract CAR T-cells to tumor sites (91).

The remarkable success of CAR T therapy in hematological 
malignancies has propelled the development of CAR T therapy 
in solid tumors (92, 93). A better understanding of tumorigenesis 
and tumor progression will drive advances of future cancer treat-
ment and provide hope for preventing cancer.
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