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The already enormous burden caused by tuberculosis (TB) will be further aggravated 
by the association of this disease with modern epidemics, as human immunodeficiency 
virus and diabetes. Furthermore, the increasingly aging population and the wider use 
of suppressive immune therapies hold the potential to enhance the incidence of TB. 
New preventive and therapeutic strategies based on recent advances on our under-
standing of TB are thus needed. In particular, understanding the intricate network of 
events modulating inflammation in TB will help to build more effective vaccines and 
host-directed therapies to stop TB. This review integrates the impact of host, pathogen, 
and extrinsic factors on inflammation and the almost scientifically unexplored complexity 
emerging from the interactions between these three factors. We highlight the exciting 
data showing a contribution of this troika for the clinical outcome of TB and the need of 
incorporating it when developing novel strategies to rewire the immune response in TB.

Keywords: tuberculosis, genotypic diversity, immune phenotypes, severity of disease, inflammation, 
microenvironments

iNTRODUCTiON

According to current estimates, tuberculosis (TB) accounted for approximately 1.7 million 
deaths in 2016 and affected one-quarter of the world’s population in its latent form (1). TB is a 
heterogeneous disease, characterized by a continuous spectrum of infection, for which molecular 
and clinical biomarkers of progression are just starting to be unveiled. Several stages of latent TB 
infection (LTBI) exist and include subclinical forms of TB with an increased likelihood of pro-
gressing to active disease (2, 3). The clinical manifestation of the active disease is highly variable, 
with mild or extensive pulmonary involvement, extrapulmonary, or disseminated forms of TB. 

Abbreviations: CAMP, cathelicidin antimicrobial peptide; COPD, chronic obstructive pulmonary disease; DCs, dendritic cells; 
GWAS, genome-wide association studies; HDTs, host-directed therapies; HIV, human immunodeficiency virus; IFN, inter-
feron; IL, interleukin; iNOS, inducible NO synthase; IRGM, immunity-related GTPase M; LTA4H, leukotriene A4 hydrolase; 
LTBI, latent tuberculosis infection; MARCO, macrophage receptor with collagenous structure; MBL2, mannose-binding lectin 
2; MDR, multidrug resistant; MSMD, Mendelian susceptibility to mycobacterial disease; MTBC, Mycobacterium tuberculosis 
complex; NO, nitric oxide; PGE2, prostaglandin E2; SNP, single-nucleotide polymorphisms; TB, tuberculosis; Th, T helper; 
TLR, toll-like receptor; TNF, tumor necrosis factor; VDR, vitamin D receptor; XDR, extensively drug resistant.
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FigURe 1 | Impact of the inflammation level in the disease outcome in individuals infected by Mycobacterium tuberculosis complex bacteria. The spectrum of 
tuberculosis (TB) disease is strongly linked with the host immune status. The inflammation level results from the interaction of host, pathogen, and extrinsic factors. 
Very low and high inflammation levels often associated with severe active TB, while balanced immune responses associated with mild active TB, latent TB, and 
possibly TB clearance. Evidence supports that host-directed therapies (see Table 1) have the potential to successfully modulate inflammation and ameliorate 
disease outcome, by ensuring a protective immune response.
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Many known TB precipitating factors, which either increase the 
susceptibility to TB or the risk of transition from LTBI to active 
TB, are connected with immune imbalances (4, 5). However, 
the molecular mechanisms governing the transitions along the 
TB spectrum remain unknown.

The immune condition of infected hosts is shaped by genet-
ics, extrinsic factors altering the local microenvironment, 
and the heterogeneity of the infecting bacteria. This troika 
determines the threshold of the immune response generated 
during infection and possibly the disease outcome (Figure 1). 
Modulating these thresholds and uncovering the links between 
host, pathogen, and microenvironments should allow for the 
discovery of solid correlates of protection, molecular markers 
for disease prognosis, and the development of safe and effective 
host-directed therapies (HDTs) to TB. This review covers our 
current understanding of the impact of these elements on TB, 
their interactions, and how they may be further explored as a 
platform for developing new products and strategies against TB.

HOST geNeTiCS: ROLe iN 
iMMUNOMODULATiON

The association of single-gene inborn errors related to interferon 
(IFN)-γ immunity with severe childhood TB provides the clear-
est genetic basis for TB susceptibility (6, 7). These conditions, 
globally named Mendelian susceptibility to mycobacterial 
disease (MSMD) encompass a series of germline mutations in 
seven autosomal (IFNGR1, IFNGR2, IL12B, IL12RB1, STAT1, 

IRF8, and ISG15) and two X-linked (NEMO and CYBB) genes 
(6, 7). These defects are functionally and physiologically related, 
as they all result in an impairment of the CD4 T cell-mediated 
immunity and have provided decisive evidence on the critical 
protective role of the interleukin (IL)-12/IL-23/IFN-γ loop in TB 
(6, 7). This role was further confirmed in the context of secondary 
immunodeficiencies, such as in human immunodeficiency virus 
(HIV) infection, as discussed below.

Genetic association studies with adult patients showed more 
limited success than MSMD, and strikingly no consistent asso-
ciation of variants of genes from the IL-12/IFN-γ axis with TB 
susceptibility in adulthood was found. Instead, candidate-based 
studies found a number of genetic variants associated with TB 
susceptibility in humans (7–9). However, results remain incon-
sistent and have not been validated in different populations nor 
in genome-wide association studies (GWAS) (10–12). This most 
likely reflects the association of adult pulmonary TB with com-
plex genetic traits, where the role of genetic–extrinsic factors and 
gene–gene interactions (epistasis) dominate over single polymor-
phisms on their own (13, 14). The identification of genetic risk 
factors is also likely masked by the experimental design, where 
important contributors, such as extrinsic factors, or pathogen 
variability are largely neglected. Furthermore, the full spectrum 
of TB has been mostly ignored in the group definition, with all 
phenotypes being analyzed together in two main study groups: 
active TB versus healthy controls/LTBI. Finally, combining and 
integrating genetic association studies with the investigation of 
the human epigenome will certainly lead to critical insights into 
the genetic basis of infection and clinical TB.
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FigURe 2 | Extrinsic factors associated with active tuberculosis (TB). This figure depicts extrinsic factors associated with protection to active TB (green) or 
susceptibility/increased risk (red) for active TB development.
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THe MODULATiON OF THe iMMUNe 
ReSPONSe BY eXTRiNSiC FACTORS

The lack of clear association of human genotypes with TB suscep-
tibility and the fact that progression from LTBI to pulmonary TB 
in adults usually reflects an impairment of host resistance due to 
non-genetic factors, highlighting the relevance of extrinsic fac-
tors in shaping the host immunity with an impact on TB outcome 
(Figure 2).

Coinfections
A major driver of the current TB epidemics has been the HIV syn-
demic, which dramatically decreases the host protective responses 
to TB in a CD4 T cell count-dependent manner (15), leading to 
an acceleration of both diseases. Because the risk of developing 
TB is largely increased in HIV-infected individuals even before 
CD4 T cell counts decrease (16), other factors must also play a 
role. Indeed, a detrimental alternative activation of macrophages, 
accompanied by less nitric oxide (NO) synthase expression and 
poorly formed granulomas was described in HIV–TB, which in 
turn downregulated the Mycobacterium tuberculosis DosR regu-
lon (17), a set of genes known to be induced during anaerobic 
dormancy (18). Therefore, changes in the host immunity resulting 
from HIV coinfection remodel the bacterial physiology, further 
rewiring the host tissue microenvironment. Consequently, the 
pathogenesis of TB is different in HIV-coinfected individuals, 

resulting in the lack of complete cavitation and in a higher inci-
dence of disseminated disease (19, 20). Other less studied coin-
fections with impact on TB include helminths, influenza, and 
Helicobacter pylori. In TB patients coinfected with helminths, 
a more advanced form of disease was reported (21), possibly 
related with decreased T helper (Th) 1 and Th17 cell responses 
and increased secretion of IL-10 (22, 23). In the case of influenza, 
the increased susceptibility to M. tuberculosis infection is likely 
mediated by type I IFN signaling (24). Contrastingly, infection 
with the ubiquitous bacteria H. pylori may help to avoid progres-
sion to active TB in latent individuals, due to enhanced IFN-γ 
and other Th1-like cytokine responses generated in response to 
H. pylori and that restrain M. tuberculosis (25). Another example 
of coinfection cross talk in TB comes from the mouse model, 
in which prior Helicobacter hepaticus colonization impaired the 
immune control of M. tuberculosis (26). It is interesting that of 
these three infections, only influenza is also a lung disease, thus 
indicating that distant events shape the lung microenvironment.

The Host Microbiome
Different mouse models of infection depleted of commensal gut 
microbiota after antibiotic treatment showed an increased risk 
of colonization by respiratory pathogens, such as Streptococcus 
pneumoniae (27), Staphylococcus aureus (28), and Klebsiella 
pneumoniae (29). Alterations in the gut microbiota also 
alter the susceptibility to TB (30), and an increase in the lung 
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bacterial burden early post M. tuberculosis infection was 
reported in germ-free mice (31). Limited available data suggest 
that the gut microbiota of mice infected with M. tuberculosis is 
drastically reduced after initial infection (32). Gut diversity in 
M. tuberculosis-infected mice is recovered about the time that 
the adaptive immune system is onset, although significant dif-
ferences in taxa composition remain in pre- and postinfection 
samples (32). In addition, experiment removal of the gut micro-
biota with antibiotic treatment leads to higher susceptibility to  
M. tuberculosis infection in mice (30). How the intestinal micro-
biota distally affects pulmonary immunity, and eventually the 
course of infection and disease, and how the gut–lung axis may 
impact TB await further research.

We are also still far from understanding the composition and 
the impact of changes in the oral–nasal cavity and lung microbiota 
on TB. M. tuberculosis establishes infection in the lower respira-
tory tract, and as such has to initially evade microbiota-activated 
macrophages of the upper respiratory tract (33). It remains to 
be seen if the presence or absence of certain microbial species 
in the upper respiratory airway generates a more permissive 
environment for the establishment of TB infection. If this is the 
case, restoring key players of the microbiota may help to fight 
invasion or even improve immunity, therapeutic possibilities not 
yet explored in TB infection.

Non-Communicable Comorbidities
Among non-communicable comorbidities, the presence of 
diabetes remains the major risk factor for TB. Owing to the 
dimension of the diabetes epidemics, its foreseen impact on 
the global numbers of TB cases is alarming. Diabetic patients 
have a three times higher risk of developing TB than healthy 
individuals (34). Diabetes also worsens disease severity (35), is 
a risk factor for death in TB patients (36, 37), and is associated 
with increased failure of standard TB treatment (35, 38, 39). 
Previous studies suggest that the interaction of M. tuberculosis 
with macrophages and dendritic cells (DCs) is impaired in the 
context of diabetes, leading to an initial hypo-inflammatory state 
(40–43). Once the infection is established, there is evidence for 
increased inflammation in TB/diabetes patients, as an augmented 
level of pro-inflammatory cytokines in the peripheral blood is 
measured, likely due to hyperactive T cell responses (41–43). It is 
possible that many of the alterations seen and their impact on TB 
are actually interconnected to changes in the composition of the 
human gut microbiota imposed by diabetes (44).

Subjects with chronic obstructive pulmonary disease (COPD) 
present greater risks for developing active TB (45, 46) and TB 
death as compared with TB patients without this comorbidity (36, 
45). Altered immune responses likely underlie the mechanisms 
linking COPD and TB. COPD is characterized by a disruption of 
innate defense mechanisms in the airways, including decreased 
mucociliary clearance and impaired macrophage phagocytosis 
(47, 48). Furthermore, an accumulation of lung regulatory 
T cells and the increase of circulating IL-10 and TGF-β (49) were 
described in COPD patients. Thus, COPD limits the effector 
function of T cells in response to pathogens, which may explain 
the increased susceptibility to lower respiratory tract bacterial 
infections, including M. tuberculosis.

environmental Factors
Smoking exposure is an independent risk factor for M. tuber
culosis infection, progression to active disease, and for poor 
treatment outcomes (50–52). The underlying immunological 
mechanisms are just starting to be unveiled and include reduced 
production of tumor necrosis factor (TNF), IL-1β, and IFN-γ by 
in vitro infected alveolar macrophages (53), decreased number of 
DCs (54, 55), and compromised recruitment of IFN-γ-producing 
CD4 T cells to the lung, thus weakening the formation of granu-
loma (56). More recently, alveolar macrophages from smokers 
were found to exhibit lysosomal accumulations of tobacco 
smoke particulates, which impaired their migration toward  
M. tuberculosis-infected cells (57).

Malnutrition has also been associated with an increased risk 
of active TB, although it remains unclear whether the nutritional 
status is a cause or a consequence of the disease. A strong link 
between TB, malnutrition, and immune dysregulation is in place 
(58). This association is even worse in the framework of HIV 
infection (59). Nutritional status not only affects the function of 
several immune cells, including T cells, but additionally impacts 
the pharmacodynamics of the drugs (60). Less clear is the role 
of anemia, a common symptom, and prognosis marker of TB 
(36), particularly linked to iron deprivation, in facilitating or 
exacerbating TB disease. An emerging role is being recognized 
for hepcidin, a protein that regulates the homeostasis and cell 
type distribution of iron in the body and that plays a role on 
innate immune responses to mycobacterial infection (61, 62). In 
agreement, in epidemiological studies hepcidin levels have been 
positively correlated with increased risk of mortality in TB–HIV 
coinfection usually associated with more death-threatening 
manifestation of the disease, as extrapulmonary and miliary 
TB (63). Another nutrient, vitamin D, has been the focus of 
renewed attention by researchers. Historically, both vitamin D 
and exposure to sunlight, which endogenously promotes the 
conversion in the skin of 7-dehydrocholesterol into pre-vitamin 
D3, were used in the treatment of TB (64). Insufficiency of this 
molecule has been linked to higher risk of active TB (65, 66) 
and increased propensity for extrapulmonary involvement (67). 
The immunomodulatory role of vitamin D is well established 
leading to several changes in immune responses, including the 
induction of cathelicidin antimicrobial peptide, beta-defensin, 
and the promotion of authophagy and/or bacterial killing (68, 
69). However, it is important to mention that despite several 
reports on the protective role for autophagy during M. tubercu
losis infection (70), a recent study based on a genetic approach 
targeting multiple autophagy-related genes concluded that the 
cellular autophagic capacity did not correlate with the outcome of  
M. tuberculosis infection (71). Therefore, it is possible that the 
impact of autophagy during M. tuberculosis infection results 
from the use of in vitro models, thus calling for further in vivo 
studies when correlating protective mediators with induction of 
autophagy. Vitamin D levels have been shown to impact adap-
tive immune responses by influencing Th cell function and by 
promoting Tregs (72). It thus seems that vitamin D promotes the 
macrophage effector function, while at the same time keeping the 
immune response at check through its action on T cells. Several 
clinical trials have shown that supplementation of drug regimens 
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FigURe 3 | Levels of genetic diversity across the Mycobacterium tuberculosis complex (MTBC) and its epidemiological and clinical impact. There are different levels 
of diversity across the MTBC. Within a host or transmission chain, M. tuberculosis isolates typically differ in less than 25 single-nucleotide polymorphisms (SNPs). 
Diversity increases when comparing isolates within the same lineage (around 25–1,000 SNPs) or within different lineages of the MTBC (around 1,000–2,000 SNPs). 
This diversity impacts host/pathogen interactions, particularly the intensity and quality of the immune response and the clinical outcome, at the levels of drug 
acquisition, adaptation to different populations, transmissibility, or disease manifestation.
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with vitamin D does not improve TB outcomes in the general 
population (73), but it has been shown to accelerate sputum 
conversion in patients with the tt genotype of the Taql vitamin D 
receptor polymorphism (74). It remains to be seen if vitamin D 
can play a role in preventing infection or progression to active TB. 
It is possible that through the modulation of vitamin D, variations 
in sunlight may underlie some of the differences in TB incidence 
rate across the globe (65). This not only includes natural seasonal 
variations but also artificial variation due to human-associated 
activities, such as pollution.

M. tuberculosis DiveRSiTY AND 
iMMUNOMODULATiON: PARADigM 
CHANgiNg eviDeNCe

How variable is M. tuberculosis?
Tuberculosis is caused by a group of phylogenetically closely 
related bacteria, collectively known as the M. tuberculosis com-
plex (MTBC), now known to encompass seven main phylogenetic 
lineages of human-adapted bacteria (75). Within this complex, 
M. tuberculosis and Mycobacterium africanum (in West Africa) 
are responsible for the large majority of human cases of TB (76). 
The genetic diversity within the MTBC is higher than originally 
expected and can be observed at different evolutionary and 

geographical scales (Figure  3). Most of the diversity observed 
is likely due to genetic drift, i.e., stochastic variation of diversity 
due to limited population sizes, or to neutral variation with 
no impact on the fitness of the bacteria (77). Diversification of 
the initial infecting bacteria in subpopulations within a single 
patient has also been reported (78), part of it is likely due to 
antibiotic selection pressures (79, 80). Although still unclear, 
additional diversity maybe selected independently of antibiotic 
pressure (80). It is possible that some of the diversity within the 
host reflects the heterogeneous immune responses associated 
with different lung lesions (81). The complexity of the lung 
microstructure is now acknowledged, with the immune response 
being spatially separated even in single granulomas (82).

what evolutionary Forces Shape  
MTBC Diversity?
In the long-term evolution of the pathogen, the main driving 
forces shaping MTBC diversity were a balance between genetic 
drift, during the global expansion of the bacteria and host-to-
host transmission, and positive and purifying selection (77, 83). 
A long period of parallel evolution of the pathogen with different 
populations of modern humans following the out-of-Africa 
migrations (84) resulted in different bacterial lineages to prevail 
in different geographical regions of the world. Echoes of this 
type of interaction are still observed in cosmopolitan settings, 
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where the phylogeny of the infecting MTBC isolates correlates 
with the patient’s ethnic origin (85, 86). A recent study showed 
that even within one specific MTBC lineage, i.e., Lineage 4  
(or Euro-American), a phylogeographical structure can be found, 
with some sublineages being geographically restricted and others 
occurring globally (87).

Whether the immune system is also a driving force for  
M. tuberculosis diversity remains unclear. On one hand, extraor-
dinary insights can be gained, as shown by the identification of 
single nucleotide polymorphisms (SNPs) in the two-component 
regulation system PhoP/PhoR impacting Lineage 6 and 
Mycobacterium bovis strains (88). On the other hand, while most 
pathogens have evolved to evade host immunity by antigenic 
variation, M. tuberculosis seems to apply a different strategy, thus 
questioning the role of T cells in driving M. tuberculosis evolu-
tion. Genome sequencing of M. tuberculosis showed that the 
known human T cell epitopes are evolutionarily hyperconserved, 
with the large majority of individual epitopes analyzed showing 
no amino acid change at all (89). It is interesting to note that 
epitopes appear to be significantly more conserved than the mean 
of the genome, and this result is robust to the number of strains 
analyzed (89, 90). Furthermore, these hyperconserved epitopes 
fall on genes that are not biased toward particular functional 
categories, but in which the major common theme is that they 
encode peptides that are recognized by the immune system (90). 
This hypothesis still awaits functional and experimental confir-
mation, but based on in silico analyses it is tempting to speculate 
that, despite the general conservation of the M. tuberculosis 
genome as compared with other bacteria, T cell responses may 
drive selective forces toward the hyperconservation of epitopes. 
The relevance of host T cell responses for the natural history of 
M. tuberculosis infection comes from findings in HIV+ patients, 
showing that less frequent cavitation, in a CD4 T cell-dependent 
frequency, associates with lower transmissibility (as inferred 
by looking at the number of household contacts infected by an 
HIV+ patient) (15). Therefore, it is conceivable that the T cell 
response that locally tries to eliminate the bacilli, which results 
in cavitation and thus in transmission. Ensuring conservation 
of T  cell responses could thus be a mechanism explored by  
M. tuberculosis to ensure transmission. Nonetheless, outlier 
epitopes to the general rule of hyperconservation have been 
described both in previously known and newly identified anti-
genic regions (89, 91). Moreover, amino acid substitutions in 
these variable epitopes were shown to impact the host response 
with some patients responding only to the wild-type epitope vari-
ant and others only to the mutated forms (89). This is important, 
as the alteration of a single amino acid in an epitope can impact 
its affinity to a specific HLA molecule, thus influencing the T cell 
synapse and modulating the level and type of immune response 
elicited (92, 93). These variable epitopes could be potentially 
exploited as vaccine components to increase the protection 
provided by the existing TB vaccine.

impact of Bacteria genotypes on immune 
Responses and Clinical Outcomes
Mycobacterium tuberculosis complex diversity impacts the host 
immune response, as certain clinical isolates are more potent 

than others in inducing the secretion of immune mediators by 
infected monocytes (94–99) and in experimental infections 
(100–104). The impact of bacterial diversity is not only reflected 
at the level of soluble immune mediators but also in the ability 
of virulent mycobacteria to inhibit apoptosis, while triggering 
necrosis of host macrophages to promote an innate delay in the 
initiation of adaptive immunity (105). Clearly, unbalancing the 
immune response is a strategy used by M. tuberculosis to increase 
its virulence, and this strategy might be modulated differently by 
diverse strains.

The realization of the MTBC diversity in all its extent has also 
led to multiple studies exploring the impact of this variation on the 
clinical outcome of TB (Figure 3). For example, Lineage 2 strains 
(which includes the Beijing family) have been repeatedly associ-
ated with treatment failure and relapse (106–108). One in vitro 
study further demonstrated that Lineage 2 may acquire drug 
resistance more rapidly than Lineage 4 (109), in line with reports 
from clinical settings where multidrug-resistant (MDR) isolates 
were more likely to belong to the Beijing lineage than to Lineage 
4 (110, 111). High transmissibility of Beijing family Lineage 2 
strains was shown in San Francisco (112), whereas Lineage 3 was 
reported to be less transmissible than Lineages 1, 2, and 4 in TB 
patients from Montreal, Canada (113), and striking differences 
in transmissibility among sublineages of Lineage 5 in Benin 
and Nigeria were reported (114). Lineages 2 and 4 were shown 
to have a higher rate of progression to active TB as compared 
with Lineage 6 in the Gambia (115). In addition, more debilitat-
ing symptoms (such as weight loss) have been associated with 
Lineage 4 strains in Tanzania (116). The same lineage was linked 
mainly to pulmonary TB (117), while Lineages 2 (117–119) and 
3 (120) were reported to associate with extrapulmonary disease. 
Strikingly, within-host bacterial diversity also seems to contribute 
to disease manifestation. Indeed, the presence of distinct bacterial 
subpopulations is associated with poor clinical outcomes (121), 
resulting in differential resolution of granulomas (122), that may 
even contrast the overall trend of disease progression (123–125).

BACTeRiA AND HOST geNOTYPe 
iNTeRACTiONS

There is emerging evidence showing an impact of host–pathogen 
genotype interactions in host immune responses, TB transmission, 
and disease presentation (76). This is the case of the association 
observed between the presence of the T597C allele of the toll-like 
receptor (TLR) 2 gene and susceptibility to disseminated disease, 
in a Vietnamese population upon infection by MTBC Lineage 
2 (117). Three studies conducted in Ghana further support 
genotype–genotype interactions. First, the variant G57E of the 
mannose-binding Lectin (Protein C) 2 (MBL2) gene was associ-
ated with TB caused by M. africanum, but not by M. tuberculosis 
sensu stricto (126). Second, the variant 261TT of the immunity-
related GTPase M (IRGM) gene was protective against TB caused 
by Lineage 4, but not for disease caused by other MTBC lineages 
(127). Third, M. africanum was significantly more common in TB 
patients belonging to the Ewe ethnic group, an association mainly 
driven by Lineage 5 (128, 129). In a South African population 
of mixed ancestry, an association between different HLA class I 
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TABLe 1 | Evidence supporting HDTs for TB.

HDT mechanism examples of potential HDTs agents evidence on host effect Reference

Reducing excessive tissue 
damaging inflammation

Ibuprofen (NSAIDs)a Inhibits prostaglandin production by inhibiting cyclooxygenase. Reduces lung pathology  
and Mycobacterium tuberculosis burden in mouse models

Vilaplana et al. (135)

Zileuton (leukotriene synthesis inhibitors)a Inhibits lipoxygenase activity, blocking leukotriene production, and increasing PGE2 levels. 
Prevents type I IFN-driven acute mortality of M. tuberculosis-infected mice

Mayer-Barber et al. (136)

Tofacitinib (tyrosine kinases inhibitors)a JAK blocker with anti-inflammatory properties (JAK/STAT pathway is downstream the 
activation of most cytokine receptors), shortens the time required to lung sterility in a chronic 
TB mouse model

Maiga et al. (137)

Adalimumab (anti-TNFα)b Life-threatening pulmonary TB attributable to the recovery of TNF-dependent inflammation 
caused by withdrawal of adalimumab. Lung inflammation worsened despite clearance of viable 
M. tuberculosis from sputum and lung tissue by antimicrobial therapy. Clinical improvement did 
not occur until adalimumab treatment was resumed

Wallis et al. (138)

Prednisolone (glucocorticoids)d Modulate extreme immunopathological reactions and improved mortality for TB pericarditis 
and meningitis. Possible benefit in pulmonary TB. Adjunctive treatment with corticosteroids 
may improve the clinical outcome and may accelerate sputum smear conversion from HIV 
coinfected patients

Evans (139); Critchley et al. 
(140); Bilaçeroğlu et al. (141); 
Mayanja-Kizza et al. (142)

Modulating innate and adaptive 
immune responses

Simvastatin (statins)a Inhibits the 3-hydroxy-3-methylglutaryl coenzyme reductase, reducing the cholesterol levels 
within phagosomal membranes, which promotes phagosomal maturation and autophagy. 
Reduces bacterial burden in human PBMCs and MDMs. Improves histopathologic findings, 
with reduced lung M. tuberculosis burdens in experimental murine infection

Parihar et al. (143)

Carbamazepine (anticonvulsants)a Sodium-channel blocker, capable of enhancing autophagic killing of intracellular  
M. tuberculosis in macrophages through cellular myoinositol depletion. In mice infected with  
a highly virulent MDR strain, carbamazepine treatment reduced bacterial burden, improved 
lung pathology, and stimulated adaptive immunity

Schiebler et al. (144)

Metformin (biguanides, antidiabetic drugs)c Interrupts the mitochondrial respiratory chain, increases production of mitochondrial reactive 
oxygen species, and facilitates phagosome–lysosome fusion, leading to enhanced killing 
of intracellular M. tuberculosis. In the mouse model, T cell responses and the efficacy of 
conventional TB drugs are improved, with resultant reduced lung pathology. In two separate 
human cohorts, metformin associates with decreased TB severity and improved clinical 
outcome in active TB and is associated with enhanced M. tuberculosis-specific T cell  
immune response in LTBI

Singhal et al. (145)

Vitamin D3d Induces the gene expression of beta-defensin 2 and human cathelicidin LL-37 that are able  
to suppress the growth of M. tuberculosis and modulate antimicrobial responses. Adjunct 
therapy with vitamin D3 enhanced intracellular mycobacterial killing in macrophages,  
increased sputum culture conversion, and reduced clinical symptoms in TB patients

Mily et al. (146); Rahman  
et al. (147)

Immune checkpoint inhibition Nivolumab and pembrolizumab (anti-PD-1)a PD-L1 gene expression is elevated in patients with active TB disease. Human gene expression 
of PD-1 and PD-L1 in whole-blood decrease during successful TB treatment. Infections with live 
M. tuberculosis upregulated PD-L1 expression on monocytes. In vitro PD-1 blocking rescued 
M. tuberculosis-specific IFN-γ-producing T cells from undergoing apoptosis. PD-1 blockade 
potentiates the specific degranulation of CD8+ T cells

Singh et al. (148); Jurado et al. 
(149); Hassan et al. (150)

Immune activation, cytokine 
therapy

Recombinant human IFN-γb IFN-γ administration in a patient with MSMD caused by IL-12Rβ1 deficiency provided a 
noticeable clinical effect, with no additional adverse effects

Alangari et al. (151)

(Continued )

7

B
astos et al.

Interactions and Inflam
m

ation in TB

Frontiers in Im
m

unology | w
w

w
.frontiersin.org

January 2018 | Volum
e 8 | A

rticle 1948

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


H
D

T
 m

ec
ha

ni
sm

e
xa

m
p

le
s 

o
f 

p
o

te
nt

ia
l H

D
Ts

 a
g

en
ts

e
vi

d
en

ce
 o

n 
ho

st
 e

ff
ec

t
R

ef
er

en
ce

C
el

l-b
as

ed
 th

er
ap

y
A

ut
ol

og
ou

s 
B

M
-M

S
C

sd
B

M
-M

S
C

s 
ha

ve
 im

m
un

om
od

ul
at

or
y 

pr
op

er
tie

s 
th

at
 c

an
 re

du
ce

 d
am

ag
in

g 
in

fla
m

m
at

io
n,

 
in

du
ce

 ti
ss

ue
 re

ge
ne

ra
tio

n,
 a

nd
 re

st
or

e 
pr

od
uc

tiv
e 

im
m

un
e 

re
sp

on
se

s.
 S

in
gl

e-
do

se
 a

ut
ol

og
ou

s 
B

M
-M

S
C

 is
 a

 s
af

e 
ad

ju
nc

t t
he

ra
py

 fo
r 

pa
tie

nt
s 

w
ith

 M
D

R
 o

r 
XD

R
-T

B
 in

 c
om

bi
na

tio
n 

w
ith

 
st

an
da

rd
 d

ru
g 

re
gi

m
en

s 
an

d 
re

co
ns

tit
ut

ed
 a

nt
i-M

. t
ub

er
cu

lo
si

s 
T 

ce
ll 

re
sp

on
se

s 
in

 a
 p

ha
se

 1
 

tr
ia

l

S
kr

ah
in

 e
t a

l. 
(1

52
)

A
nt

im
ic

ro
bi

al
-p

ot
en

tia
tin

g 
ef

fe
ct

Ve
ra

pa
m

il 
(c

al
ci

um
-c

ha
nn

el
 b

lo
ck

er
s)

a
B

lo
ck

s 
ef

flu
x 

pu
m

p,
 re

su
lti

ng
 in

 h
ig

he
r 

in
tr

ac
el

lu
la

r 
an

tim
yc

ob
ac

te
ria

l d
ru

g 
le

ve
ls

 a
nd

 e
nh

an
ce

d 
dr

ug
 a

ct
iv

ity
. A

cc
el

er
at

es
 b

ot
h 

th
e 

ba
ct

er
ic

id
al

 a
nd

 th
e 

st
er

iliz
in

g 
ac

tiv
iti

es
 o

f t
he

 re
gi

m
en

 in
 a

 
m

ou
se

 m
od

el
. A

dj
un

ct
iv

e 
us

e 
of

 v
er

ap
am

il 
de

cr
ea

se
s 

th
e 

M
IC

 o
f b

ed
aq

ui
lin

e 
in

 th
e 

w
ild

-t
yp

e 
st

ra
in

 M
. t

ub
er

cu
lo

si
s 

H
37

R
v 

an
d 

al
so

 in
 d

ru
g-

su
sc

ep
tib

le
 a

nd
 d

ru
g-

re
si

st
an

t c
lin

ic
al

 is
ol

at
es

. 
P

ot
en

tia
te

s 
th

e 
ac

tiv
ity

 o
f b

ed
aq

ui
lin

e 
ag

ai
ns

t M
. t

ub
er

cu
lo

si
s 

in
 a

n 
in

 v
iv

o 
m

ou
se

 m
od

el
. 

P
er

m
its

 lo
w

er
 d

os
es

 o
f b

ed
aq

ui
lin

e 
an

d 
th

er
eb

y 
re

du
ce

 it
s 

do
se

-r
el

at
ed

 to
xi

ci
tie

s

G
up

ta
 e

t a
l. 

(1
53

)

B
M

-M
S

C
s,

 b
on

e 
m

ar
ro

w
-d

er
iv

ed
 m

es
en

ch
ym

al
 s

tr
om

al
 c

el
ls

; M
D

M
s,

 m
on

oc
yt

e-
de

riv
ed

 m
ac

ro
ph

ag
es

; M
D

R
, m

ul
tid

ru
g 

re
si

st
an

t; 
M

IC
, m

in
im

um
 in

hi
bi

to
ry

 c
on

ce
nt

ra
tio

n;
 P

B
M

C
s,

 p
er

ip
he

ra
l b

lo
od

 m
on

on
uc

le
ar

 c
el

ls
; N

S
A

ID
s,

 n
on

-
st

er
oi

da
l a

nt
i-i

nfl
am

m
at

or
y 

dr
ug

s;
 X

D
R

, e
xt

en
si

ve
ly

 d
ru

g 
re

si
st

an
t; 

TB
, t

ub
er

cu
lo

si
s;

 L
TB

I, 
la

te
nt

 T
B

 in
fe

ct
io

n;
 H

D
T,

 h
os

t-
di

re
ct

ed
 th

er
ap

y;
 IF

N
, i

nt
er

fe
ro

n;
 M

S
M

D
, M

en
de

lia
n 

su
sc

ep
tib

ilit
y 

to
 m

yc
ob

ac
te

ria
l d

is
ea

se
; I

L,
 in

te
rle

uk
in

; T
N

F,
 

tu
m

or
 n

ec
ro

si
s 

fa
ct

or
; P

G
E2

, p
ro

st
ag

la
nd

in
 E

2;
 H

IV
, h

um
an

 im
m

un
od

efi
ci

en
cy

 v
iru

s.
Fo

llo
w

in
g 

ar
e 

th
e 

ty
pe

s 
of

 s
tu

di
es

.
a P

re
cl

in
ic

al
.

b C
as

e 
re

po
rt

s.
c O

bs
er

va
tio

na
l s

tu
di

es
.

d R
an

do
m

iz
ed

 tr
ia

ls
.

TA
B

Le
 1

 | 
C

on
tin

ue
d

8

Bastos et al. Interactions and Inflammation in TB

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1948

types and disease caused by different MTBC strain families was 
reported (130). Polymorphisms in the macrophage receptor with 
collagenous structure (MARCO) gene, a receptor involved in 
M. tuberculosis phagocytosis (131), preferentially associated with 
Lineage 2 over Lineage 1 or 4, implying that the host MARCO 
genotypes may interact with M. tuberculosis of the Lineage 2 
genotype to increase susceptibility to TB (132). The first report 
of a M. tuberculosis lineage-based GWAS was recently published 
(133). In this study, an SNP on chromosome 1p13, near the CD53 
gene, was specifically associated with non-Beijing lineage-infected 
old age onset cases (133). Altogether, these studies demonstrate 
that interactions between bacterial and human genetic loci exist 
and jointly influence clinical phenotypes. This evidence calls for 
the need of integrating the pathogen genotype in human genetic 
association studies, as well as in the study of TB immunity.

RewiRiNg THe iMMUNe ReSPONSe iN 
TB: THe NeeD TO iNCORPORATe 
DiveRSiTY iN HOST, PATHOgeN, AND 
eNviRONMeNT

Host-directed therapies are gaining momentum in the field of TB 
treatment (Table 1). HDTs aim at modulating host inflammation 
as a way to improve the efficacy of current treatments, while 
shortening the duration of these treatments, lowering toxicity 
and decreasing rates of resistance acquisition (134). A particular 
benefit of HDTs would be their application to treat MDR- and 
extensively drug resistant-TB, where antibiotics have limited 
effectiveness and immunopathological inflammation, tissue 
damage and high fatality are observed.

Although HDTs take advantage of immunomodulatory 
mechanisms, they rarely account for the interaction between the 
diversity of the bacteria, the host, and the environment. However, 
in some clinical sites, indirect data suggest that successful 
HDTs have to be tailored toward these variables. For example, 
there is a large amount of data showing Lineage 2 strains as 
being low-cytokine inducers, but potent inducers of type I IFN  
(97, 98, 104, 154), which is at least in part mediated by the dif-
ferential activation of TLR2 and TLR4 receptors (98). In this way, 
Lineage 2 strains may subvert antituberculous host defenses by 
inhibiting the enzyme inducible NO synthase, as well as IL-1β, 
IL-18, and IL-12p40, while inducing the immunosuppressive 
mediators IL-10 and IL-1 receptor antagonist (4, 155). In addi-
tion, there are data from TB patients in Vietnam showing an 
association between individuals with a T597C allele in the TLR2 
gene and susceptibility to infection by the Lineage 2/Beijing 
genotype (117); and an association of individuals with an SNP in 
the leukotriene A4 hydrolase (LTA4H) promoter with an excess 
of inflammation and TB severity (156). How all the combinations 
of human/pathogen genotypes interact in Vietnam remains to be 
elucidated, but it will surely impact the outcome of HDTs in TB, 
as well as teaching important lessons. Furthermore, HDTs will 
need to deal with our partial understanding of what constitutes 
protective immunity to TB. For example, the role of type I IFNs 
is now being reconsidered. A recent study showed that in certain 
scenarios, namely, in the absence of IFN-γ, the induction of type 

http://www.frontiersin.org/Immunology/
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I IFN is actually protective to the host, as it allows the control 
of the switch of M1 (effector) to M2 (detrimental) macrophages 
(157). The fact that type I IFN plays dynamic roles during infec-
tion (157, 158) may have implications in the use of eicosanoid 
modulators to enhance prostaglandin E2 levels and decrease the 
unfavorable type I IFN response (136). So, HDTs designed to 
modulate excessive type I IFN response, like the one associated 
with Lineage 2 strains, will need to consider host-specific char-
acteristics, such as a high or low ability of differentiating IFN-γ 
responses, as well as the time of intervention.

CONCLUSiON

The host immune status is tightly linked to the spectrum of TB 
infection and disease. However, the molecular determinants 
bridging inflammatory thresholds and TB outcomes remain 
elusive. Likely, this is due to the fact that what finally dictates 
disease outcomes and transmission is not a single factor, but the 
interacting (antagonistically or synergistically) action of multiple 
factors. Diversity in host, pathogen, and extrinsic factors needs 
to be studied in concert rather than individually, so that the full 
extent of the biological interplay underlying the immune response 
can be captured and modeled. In the long term, these models will 
lead the discovery of solid correlates of protection, biomarkers 
of prognosis, therapeutic targets, and more accurate epidemiol-
ogy models. The great challenge is now to integrate this troika 
of interactions in the development of HDTs, at a personalized 
level, to develop sterilizing therapies. Most likely, we will be soon 
talking about personalized medicine to treat TB, by rewiring the 
immune response through host–pathogen–environment directed 
therapies. Only then will we be able to translate the many years of 

research devoted to the study of the protective immune response 
into real clinical applications, i.e., better vaccines, therapeutics 
and novel biomarkers of prognosis.
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