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Interleukin (IL)-23 is a member of the IL-12 family of cytokines that, as the other members 
of this family, is secreted by monocytes, macrophages, and dendritic cells (DC) upon 
recognition of bacterial, viral, and fungal components. IL-23 is critical during immunity 
against acute infections, and it is also involved in the development of autoimmune dis-
eases. Although immunoregulatory effects of IL-23 on mouse natural killer (NK) cells have 
been described, the effect of IL-23 on human NK cells remains ill-defined. In this study, 
we observed that monocytes stimulated with LPS secreted IL-23 and that blockade of 
this cytokine during monocyte and NK cell coculture led to a diminished production of 
IFN-γ by NK cells. Accordingly, rIL-23-induced NK cell activation and stimulated IFN-γ 
production by CD56bright NK cells. This effect involved MEK1/MEK2, JNK, PI3K, mamma-
lian target of rapamycin, and NF-κB, but not STAT-1, STAT-3, nor p38 MAPK pathways. 
Moreover, while NK cell-mediated cytotoxicity remained unaltered, antibody-dependent 
cellular cytotoxicity (ADCC) was enhanced after IL-23 stimulation. In addition, IL-23 dis-
played a synergistic effect with IL-18 for IFN-γ production by both CD56bright and CD56dim 
NK cells, and this effect was due to a priming effect of IL-23 for IL-18 responsiveness. 
Furthermore, NK cells pre-stimulated with IL-18 promoted an increase in CD86 expres-
sion and IL-12 secretion by DC treated with LPS, and IL-23 potentiated these effects. 
Moreover, IL-23-driven enhancement of NK  cell “helper” function was dependent on 
NK  cell-derived IFN-γ. Therefore, our results suggest that IL-23 may trigger NK  cell- 
mediated “helper” effects on adaptive immunity, shaping T cell responses during different 
pathological situations through the regulation of DC maturation.

Keywords: natural killer cells, interleukin-23, interleukin-18, iFn-γ, dendritic cells

inTrODUcTiOn

Natural killer (NK) cells constitute a subgroup of type 1 innate lymphoid cells that are key players 
during immunity against intracellular pathogens and tumors due to their cytotoxicity and the secre-
tion of IFN-γ and other pro-inflammatory cytokines (1–3). In humans, they are subdivided into two 
subpopulations based on the relative expression of CD56 and CD16 (4). Almost 90% of peripheral 
blood NK  cells are CD56dimCD16+ (CD56dim), and although they can produce cytokines upon 
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activation (5, 6), their principal effector function is the cytotoxic 
activity displayed against susceptible target cells (7, 8). The rest of 
NK cells in blood are CD56brightCD16dim/− (CD56bright), which are 
mainly producers of cytokines (4, 8) and are more abundant in 
secondary lymphoid organs where they exert immunoregulatory 
functions (9). NK cells become activated after direct recognition 
of infected or tumor cells through a vast array of activating 
receptors (10) and by cytokines such as interleukin (IL)-12, 
IL-15, and IL-18 (11, 12) or their combination with PAMPs (13). 
Monocytes, macrophages, and dendritic cells (DC) are the major 
producers of these cytokines during their crosstalk with NK cells 
(14–16). As a result of this bidirectional crosstalk, in some 
circumstances, activated NK  cells kill immature DC, favoring 
the selection of immunogenic DC necessary for an appropriate 
immune response (17, 18). In addition, DC stimulate NK  cell 
activation while NK  cells enhance macrophage activation and 
promote DC maturation, and NKp30 and cytokines have been 
involved in both events (19, 20). Therefore, NK  cells skew the 
adaptive immune response toward a T helper (Th) 1 and cyto-
toxic T lymphocyte (CTL) profiles, both essential for an effective 
antitumor and antiviral immune response (21–24). Also, the 
crosstalk between DC and NK  cells has been involved in the 
promotion and protection of autoimmune conditions (25–27).

Interleukin-12 plays a major role in NK  cell activation in 
response to pathogens and tumors (28, 29). It belongs to an 
extended family of cytokines that share cytokine and receptor 
subunits and display overlapping functions (30, 31). Recently, 
we demonstrated that IL-27, another member of IL-12 family, 
induces human NK cell-mediated cytotoxicity, IFN-γ produc-
tion, and potentiates antibody-dependent NK  cell-mediated 
cytotoxicity (ADCC) (32). In addition, IL-27 synergizes with 
IL-18 for the stimulation of NK cell effector functions (32–34). 
IL-23 is another member of the IL-12 family composed by 
the IL-12p40 and p19 subunits that signals through a heter-
odimeric receptor composed by the IL-12Rβ1 and the IL-23R 
chains (35, 36). Similarly to IL-12 and IL-27, IL-23 is secreted 
by monocytes, macrophages, and DC in response to bacterial, 
viral, and fungal components (37, 38). IL-23 increases IFN-
γ production by human CD4+ T  cells (35, 39), and it is also 
involved in survival, expansion, and activation of Th17  cells 
(31). Data obtained in mice indicate that IL-23 can both inhibit 
(40) and activate (41, 42) NK  cell responses. However, IL-23 
effects on human NK cells remain ill-defined. Therefore, in this 
work, we explored the role of IL-23 on human NK cell effector 
functions and demonstrated that it stimulated IFN-γ secretion 
by CD56bright, but not CD56dim cells, primed NK cells for IL-18-
driven IFN-γ production, and that NK cells co-stimulated with 
IL-23 and IL-18 enhanced IL-12 secretion and CD86 expression 
on DC in an IFN-γ-dependent manner.

MaTerials anD MeThODs

antibodies and reagents
Human rIL-2 and rIL-15 (PeproTech), rIL-18 (MBL 
International), rIL-23 (eBioscience), rGM-CSF (Sigma), and 
rIL-4 (R&D) were used. Cells were incubated with fluorochrome-
coupled mAb against the following human molecules: CD25 

(BC96), CD1a (HI149), NKp46 (9E2), NKp30 (P30-15), NKp44 
(P44-8), NKp80 (5D12), IFN-γ (4S.B3), T-bet (4B10), CD178 
(FasL, NOK-1), CD14 (HCD14), CD83 (HB15e), CD16 (3G8), 
unlabeled anti-IFN-γ (NIB42), fluorochrome-labeled, and unla-
beled isotype-matched controls (IC) from Biolegend; CD226 
(DNAM-1, DX11), CD69 (FN50) and CD154 (CD40L, TRAP1) 
from BD Pharmingen; CD56 (N901) from Beckman Coulter; 
NKG2C (134591), TRAIL (71908), TIGIT (741182), CD85j 
(ILT2, 292305), IL-18Rα (H44), IL-18Rβ (132029), and IL-23R 
(218213) from R&D; CD3 (UCHT-1), HLA-DR (L243), and 
CD86 (IT2.2) from Tonbo; Eomes (WD1928) from eBioscience; 
unlabeled anti-IL-23p19 (B-Z23) from Abcam. The following rea-
gents were used at the indicated concentrations: the inhibitor of 
c-Jun N-terminal kinase (JNK) SP600125 (20 µM, Calbiochem); 
the Janus kinase 2 (Jak2) inhibitor AG490 (25 µM, Calbiochem); 
the p38 MAP kinase inhibitor SB202190 (10 µM, Calbiochem); 
the inhibitor of phosphoinositide 3-kinase (PI3K) Ly294002 
(2 µM, Sigma); the inhibitor of MEK1/MEK2 kinases (MAPKs) 
U0126 (5 µM, Sigma); the inhibitor of cytokine-induced IκBα 
phosphorylation BAY11-7082 (1  µM, Sigma); the inhibitor of 
the mammalian target of rapamycin (mTOR) rapamycin (5 nM, 
Sigma); the inhibitor of STAT1 Fludarabine (0.1 µg/ml, Fludara® 
Schering). LPS (E. coli 0111:B4 strain, Sigma) was used at 0.1 or 
1 µg/ml. The dose of each pharmacological inhibitor used in the 
experiments was established in previous work (13, 32) and did 
not affect NK cell viability. Rituximab (RTX, Roche) and normal 
human polyclonal IgG (IgG2500, Purissimus, Argentina) were 
used at 10 µg/ml.

Monocytes, Dc, and nK cells
Buffy coats from healthy volunteers were provided by the Blood 
Bank of the “Carlos Durand” Hospital or by the “Complejo 
Médico Churruca-Visca” (Buenos Aires, Argentina). Monocytes 
(CD14+ cells) were isolated by MACS (Miltenyi); NK cells were 
isolated using RosetteSep (StemCell) and Ficoll-Paque™ Plus (GE 
Life Sciences) centrifugation. Purity of isolated cells was always 
above 90%, as assessed by flow cytometry (FC; CD14+ cells or 
CD3−CD56+). Monocytes (1 × 105) were incubated for 24 h with 
LPS (1 µg/ml), then, NK cells (1 × 105) were added for another 
24 h in the presence of an IC mAb or a neutralizing anti-IL-23p19 
mAb (10 µg/ml) and IFN-γ was evaluated in the supernatants. 
Also, cell culture supernatants of monocytes incubated for 48 h 
with LPS were used for analysis of IL-23 production. Monocytes 
were cultured for 6  days with GM-CSF and IL-4 to obtain 
immature DC (iDC) characterized as CD1a+MHC-IIlowCD83−/low 
CD86−/low. DCs (1 × 105) were cultured for 18 h with previously 
stimulated and washed NK cells (1 × 105) plus LPS (0.1 µg/ml) 
in the absence or in the presence of an IC mAb or a neutralizing 
anti-IFN-γ mAb (10 µg/ml). Cells were cultured in RPMI 1640 
(Gibco) supplemented with 10% inactivated fetal bovine serum 
(Gibco), sodium pyruvate, glutamine, and gentamicin (Sigma). 
Cell culture supernatants were collected and used for analysis of 
IL-12 production and cells were used to assess CD86 expression. 
Also, NK cells (1 × 106/ml) were cultured for 24 h or 5 days in the 
presence of IL-15 (4 ng/ml) and in the absence or in the presence 
of IL-18 (10 ng/ml), IL-23 (10 ng/ml), or their combination. In 
some experiments, NK cells stimulated with IL-23 were thereafter 
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stimulated with IL-2 (8 ng/ml) for 24 h. For dose–response experi-
ments, IL-23 was also used at 1 ng/ml. Cells were used for pheno-
typic analysis, cytokine production, proliferation, and cell death 
evaluation. For cytotoxicity assessment and NK  cell “helper” 
function evaluation, NK cells (2 × 106/ml) were incubated over-
night. To investigate the signaling pathways involved in the IFN-γ 
response, NK cells were incubated with pharmacologic inhibitors 
for 45–60 min and then stimulated with the different cytokines 
for another 23 h. For priming experiments, NK cells (1 ×  106/
ml) were cultured overnight in the absence or in the presence of 
IL-18 or IL-23, extensively washed and further cultured (1 × 106/
ml) for 24 h in the absence or in the presence of IL-23 or IL-18, 
as indicated in the figure. Studies have been approved by the insti-
tutional review committee and informed consent of participating 
subjects was obtained.

nK cell Proliferation
Natural killer cells cultured for 5 days as described, were pulsed 
with 1 μCi/well of methyl-3H-thymidine (3H-Thy; New England 
Nuclear Life Science) during the last 18  h of cell culture, har-
vested on glass-fiber filters, and incorporated radioactivity was 
measured in a liquid scintillation counter. Results are expressed 
as mean counts per minute (cpm) of triplicate wells ± SEM.

Flow cytometry and cell sorting
Expression of cell surface receptors on NK cells or DC was ana-
lyzed by FC as previously described (43). Expression of IFN-γ, 
Eomes and T-bet was analyzed by intracellular FC using Cytofix/
Cytoperm (BD). For assessment of IFN-γ production, cells were 
cultured in the presence of Golgi-Plug® and Golgi-Stop® reagents 
during the last 4 h. For CD40L analysis, cells were cultured in 
the presence of the specific mAb and Golgi-Stop® during the last 
6 h, as described (44) with slight modifications. Human CD40L-
transfected fibroblasts were used as positive controls. Samples 
were acquired in a FACSCanto II-plus flow cytometer (BD) or 
MACSQuant Analyzer 10 (Miltenyi Biotec). Data were analyzed 
using FlowJo software (Tree Star). Results were expressed as 
percentage of positive cells or MFI. For cell sorting, NK cells were 
isolated using RosetteSep (StemCell), stained with mAb against 
CD56 and CD16 and then CD56bright (CD56highCD16−/low) and 
CD56dim (CD56dimCD16high) NK cells were sorted in a FACSAria 
II-plus cell sorter (BD Biosciences).

elisa
Secretion of IFN-γ (Biolegend), IL-12 (ELISA MAX Standard kit, 
Biolegend), and IL-23 (DuoSet, R&D) was analyzed by ELISA as 
described (13).

cytokine Bead array
Secretion of IL-4, IL-10, IL-17, IL-6, TNF, and IFN-γ by cytokine-
stimulated NK cells was analyzed by the CBA (BD) as indicated 
by the manufacturer.

nK cell-Mediated cytotoxicity
Natural killer cells were cultured overnight with IL-15 in the 
absence or in the presence of IL-18, IL-23, or the combination 
of both, washed, and co-cultured for 5 h with CFSE-labeled Raji 

(Burkitt’s lymphoma, ATCC) at different E:T ratios. Cells were 
thereafter labeled with 7-AAD and analyzed by FC. Percentage of 
cytotoxicity was calculated as 100 × percentage of CFSE+7-AAD+ 
cells/percentage of CFSE+ cells. Percentage of spontaneous dead 
cells (without effector NK cells) was always below 5%. For ADCC, 
CFSE-labeled Raji cells previously incubated with RTX or normal 
human IgG for 2 h were used as target at a 1:1 E:T ratio.

statistical analysis
Paired t-test or Wilcoxon matched paired test (when data did 
not pass the normality test) were used when two experimental 
groups were compared. A one-way ANOVA test with Bonferroni 
post hoc test was used when three or more experimental groups 
were compared. A one-way ANOVA test with Dunnett’s post hoc 
test was used in pharmacologic inhibition experiments. When 
data did not pass normality test, Friedman test with Dunn’s 
post hoc test was used instead. A two-way ANOVA with repeated 
measures and Bonferroni post hoc test was used for IFN-γ pro-
duction by sorted NK cells and by IL-23 plus IL-18-stimulated 
NK cells, for cytotoxicity and for DC-NK cell co-cultures in the 
presence of neutralizing mAb experiments. The interaction effect 
in the 2 × 2 factorial ANOVA was performed for the definition 
of synergism, and P values for it were reported in the legends of 
the figures (45). Data were analyzed using GraphPad Prism 6.0 
software.

resUlTs

Monocytes Produce il-23 That stimulates 
nK cell iFn-γ Production
To assess whether IL-23 participates in the crosstalk between 
monocytes and NK  cells, we first evaluated the capacity of 
monocytes to produce this cytokine. Accordingly, we observed 
that they secreted IL-23 upon stimulation with LPS (Figure 1A). 
Moreover, IL-23 blockade led to a significant reduction in the 
amounts of IFN-γ secreted by NK  cells during their coculture 
with LPS-stimulated monocytes (Figure 1B). Next, we stimulated 
isolated NK cells with recombinant human IL-23 and confirmed 
that this cytokine-induced IFN-γ production not only by resting 
(Figure 1C) but also by NK cells previously activated with a com-
bination of IL-12, IL-15, and IL-18 (data not shown). Conversely, 
IL-23 did not promote the secretion of IL-4, IL-10, IL-17, IL-6, 
and TNF by NK cells, assessed by Cytokine Bead Array (CBA) 
and FC (data not shown). Pharmacologic inhibition revealed that 
MEK1/MEK2, JNK, PI3K, mTOR, and NF-κB but not p38 MAPK, 
Jak2 (Figure 1D), or STAT1 (data not shown) were involved in 
the IL-23-driven IFN-γ response. Besides, IL-23 did not affect 
NK  cell-mediated cytotoxicity (Figure  1E). Accordingly, this 
cytokine did not affect the expression of the activating receptors 
CD335 (NKp46), CD336 (NKp44), CD337 (NKp30), NKp80 
(KLRF1), CD226 (DNAM-1), NKG2C nor the expression of 
TRAIL and CD178/FasL (data not shown). Therapeutic efficacy 
of humanized monoclonal antibodies directed against tumor 
cell surface-expressed molecules relies partially on ADCC. We 
observed that RTX-coated Raji cells were susceptible to NK cell-
mediated cytotoxicity and that IL-23 further increased such 
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FigUre 1 | Monocyte-derived interleukin (IL)-23 promotes IFN-γ secretion by human natural killer (NK) cells while cytotoxicity remains unaltered after rIL-23 
stimulation. (a) IL-23 secretion by monocytes cultured for 48 h in the absence (−) or in the presence of LPS; n = 8. (B) IFN-γ secretion by NK cells upon coculture 
for 24 h with monocytes pre-stimulated for 24 h with LPS, in the presence of an IC mAb (IC) or a blocking mAb against IL-23 (α-IL-23); n = 9. (c) IFN-γ secretion by 
resting NK cells cultured for 24 h in the absence (−) or in the presence of 10 ng/ml of IL-23; n = 23. (D) IFN-γ secretion by NK cells stimulated for 24 h with 10 ng/
ml of IL-23 in the absence (−) or in the presence of U0126, SP600125 (SP), SB202190 (SB), AG490, Ly294002 (Ly), BAY11-7082 (BAY), or rapamycin (RAPA); 
n = 6. (e) Cytotoxic activity of NK cells previously cultured overnight in the absence (○) or in the presence (●) of IL-23 against Raji cells at different E:T ratios; n ≥ 6. 
(F) ADCC of NK cells previously cultured in the absence (−) or in the presence of IL-23 against Raji cells incubated with an IC mAb (white bars) or against 
RTX-coated Raji cells (black bars) at 1:1 E:T ratio; n = 6. Mean ± SEM are shown. ns, not significant; * p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; paired 
t-test (a), Wilcoxon test (B,c), one-way ANOVA with Dunnett’s post hoc test (D), and two-way ANOVA with Bonferroni’s post hoc test (e,F).
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susceptibility in a statistically significant manner (Figure 1F). Of 
note, IL-23 did not alter the expression levels of CD16 on NK cells 
(data not shown).

In addition, IL-23 induced a higher percentage of CD69+ 
(Figures 2A,B) and CD25+ (Figures 2C,D) NK cells indicating 
that this cytokine promoted NK  cell activation. Furthermore, 
NK cells first incubated with IL-23 secreted higher amounts of 
IFN-γ than non-stimulated NK cells when they were re-stimulated 
with IL-2, suggesting that the effect of IL-23 on CD25 expression 
had functional consequences (Figure 2E).

Next, we analyzed intracellular IFN-γ production by CD56bright 
and CD56dim NK cells in response to IL-23. Although we did not 
detect differences in the percentage of IFN-γ+ NK cells in these 
subpopulations, we observed higher amounts of IFN-γ expression 
in CD56bright but not in CD56dim NK cells stimulated with IL-23 
compared to unstimulated cells (data not shown). To confirm 
this result, we FACS-sorted CD56bright and CD56dim NK cells and 
observed a statistically significant increase in IFN-γ secretion 
by CD56bright but not CD56dim NK cells upon IL-23 stimulation 
(Figure  3A). Accordingly, CD56bright NK  cells expressed higher 
amounts of IL-23 receptor (IL-23R) than CD56dim NK  cells 
(Figure 3B).

il-23 Primes nK cells for il-18-induced 
iFn-γ Production
Previous reports demonstrated that IL-12 (46) and IL-27 (32) 
display a cooperative effect with IL-18 on the activation of 
NK  cell effector functions. Therefore, we investigated whether 
IL-23 cooperates with IL-18 for NK  cell stimulation. First, we 
performed a dose–response curve and observed a statistically 
significant increase in the secretion of IFN-γ when NK cells were 
stimulated with two different concentrations of IL-23 plus IL-18 
in comparison with IL-18 alone (Figure 4A). We confirmed the 
existence of a cooperative effect with a larger number of donors 
and using resting (Figure 4B) and activated NK cells (data not 
shown). Statistical analysis based on testing the interaction effect 
in a two-way ANOVA (45) demonstrated the existence of a syn-
ergistic effect between IL-23 and IL-18. Moreover, in opposition 
to the effect of IL-23 alone, we detected that this synergistic effect 
was noticeable both on CD56bright (Figures 4C,D) and on CD56dim 
(Figures 4E,F) NK cells. As IL-23 only exerted an effect on IFN-γ 
production by CD56dim NK cells when combined with IL-18, we 
explored whether such combination also affected NK cell-mediated  
cytotoxicity. However, even in combination with IL-18, IL-23 did 
not regulate NK cell-mediated cytotoxic activity (Figure 4G).
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FigUre 2 | Interleukin (IL)-23 activates natural killer (NK) cells. (a–D) Percentage of NK cells expressing CD69 (a,B) or CD25 (c,D) after 5 days of culture in the 
absence (−) or in the presence of 10 ng/ml of IL-23; n = 9 (a) and n = 10 (c). Representative histograms are shown in (B,D). Gray: IC. Thin line: unstimulated 
NK cells. Thick line: NK cells stimulated with IL-23. Numbers within histograms: percentage of positive cells for each marker in each condition. (e) IFN-γ secretion by 
NK cells cultured for 5 days in the absence (−) or in the presence of 10 ng/ml of IL-23 and thereafter re-stimulated 24 h with 8 ng/ml of IL-2; n = 7. Mean ± SEM are 
shown in (e). ns, not significant; *p < 0.05; **p < 0.01; paired t-test (a,c,e).

FigUre 3 | CD56bright natural killer (NK) cells secrete IFN-γ in response to 
interleukin (IL)-23 and express higher amounts of IL-23R than CD56dim 
NK cells. (a) IFN-γ secretion by FACS-sorted CD56bright and CD56dim NK cells 
cultured for 24 h in the absence (○) or in the presence (●) of IL-23; n = 5.  
(B) IL-23 receptor (IL-23R) expression on CD56bright and CD56dim NK cells; 
n = 5. ns, not significant; **p < 0.01; ***p < 0.001; two-way ANOVA with 
Bonferroni’s post hoc test (a) and paired t-test (B).
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pre-stimulation of NK  cells with IL-18 and subsequent 
stimulation with IL-23 induced a minor increase in IFN-γ 
secretion. Conversely, pre-stimulation of NK cells with IL-23 
and subsequent stimulation with IL-18 induced a significant 
increased IFN-γ secretion compared to NK  cells not pre-
treated with IL-23 (Figure  5A). Therefore, the synergistic 
effect was due to a priming of NK  cells by IL-23 for IL-18  
responsiveness.

To explore the mechanisms involved in the priming effect, we 
addressed the expression of T-bet, Eomes, IL-18Rα, and IL-18Rβ 
in NK  cells stimulated with IL-23. While T-bet and IL-18Rβ 
expression remain unchanged, IL-23 induced a decrease in 
Eomes expression (data not shown) and a statistically significant 
upregulation of the expression of IL-18Rα in CD56bright but not 
CD56dim NK cells (Figure 5B). Therefore, upregulated expression 
of IL-18Rα induced by IL-23 may explain the increased respon-
siveness of NK cells to IL-18.

As IL-23 promotes the proliferation of memory T  cells and 
the increased levels of IFN-γ observed could also be a result of an 
increase in the total number of NK cells, we investigated the effect 
of IL-23 on NK cells proliferation. Surprisingly, IL-23 exerted a 
statistically significant inhibition of NK  cell proliferation trig-
gered by IL-15 and IL-15 plus IL-18 (Figure 5C) without affecting 
NK cell viability (data not shown).

To further interrogate the cause of the synergistic effect 
induced by IL-23 and IL-18 on IFN-γ production by NK cells, 
we performed sequential stimulations. We observed that 
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FigUre 4 | Interleukin (IL)-23 synergizes with IL-18 for IFN-γ production but not for cytotoxicity. (a) IFN-γ secretion by natural killer (NK) cells cultured for 24 h with 
IL-18 in the absence (−) or in the presence of 1 or 10 ng/ml of IL-23; n = 14. (B) IFN-γ secretion by NK cells cultured for 24 h in the absence (−) or in the presence 
of IL-23, IL-18, or IL-23 and IL-18 (IL-18 + IL-23), all at 10 ng/ml; n = 17. (c–F) Percentage of IFN-γ producing CD56bright (c,D) and CD56dim (e,F) NK cells after 
culture in the absence (−) or in the presence of IL-23, IL-18, or IL-23 and IL-18 for 24 h; n = 12. Representative zebra plots are shown in (D,F). (g) Cytotoxic activity 
of NK cells previously cultured overnight in the absence (−) or in the presence of IL-23, IL-18, or IL-23 and IL-18 against Raji cells at different E:T ratios; n ≥ 6. 
Mean ± SEM are shown. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; one-way ANOVA with repeated measures and Bonferroni’s 
post hoc test (a) and two-way ANOVA with repeated measures and Bonferroni’s post hoc test (B,c,e,g). The interaction p values (synergism) were: p = 0.0038  
(B), p = 0.0053 (c), and p = 0.0110 (e). (g) *NK cells stimulated with IL-18 + IL-23 vs IL-23; ns: IL-18 + IL-23 vs IL-18.
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il-23 cooperates with il-18 in the 
Promotion of Dc activation
As NK cell–DC crosstalk shapes adaptive immunity, we examined 
whether NK cells co-stimulated with IL-23 and IL-18 affect DC 
maturation. NK cells were stimulated overnight in the absence 
or in the presence of IL-23, IL-18, or both, and then cocultured 
with DC pulsed with LPS. We observed a statistically significant 
increase in CD86 expression (Figures 6A,B) but not in CD83 or 
HLA-DR expression (data not shown) on DC when NK cells were 
pre-stimulated with IL-23 and IL-18 compared to DC cocultured 

with NK  cells stimulated with each cytokine alone. Moreover, 
we observed an increased secretion of IL-12 (Figure 6C) by DC 
when NK cells were pre-stimulated with both cytokines. To inves-
tigate the underlying mechanisms, we stimulated NK cells with 
IL-23, IL-18, or IL-23 and IL-18, and we evaluated the expression 
of CD40L, DNAM-1, NKG2D, NKG2C, NKp30, NKp46, TIGIT, 
and ILT2 on NK cells. However, we did not observe differences 
that could suggest the involvement of any of these receptors in the 
potentiation of DC activation when they were cocultured with 
NK cells pre-stimulated with IL-23 and IL-18 (data not shown). 
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FigUre 5 | Interleukin (IL)-23 primes natural killer (NK) cells for IL-18-driven 
IFN-γ secretion upregulating IL-18Rα and inhibits NK cell proliferation.  
(a) IFN-γ secretion by NK cells cultured overnight in the absence (−) or in the 
presence of IL-23 or IL-18 (“first stimulus”), washed, and thereafter incubated 
for 24 h in the absence (−) or in the presence of IL-23 or IL-18 (“second 
stimulus”); n = 7. (B) IL-18Rα expression on sorted CD56bright and CD56dim 
NK cells cultured overnight in the absence (−) or in the presence of IL-23; 
n = 5. (c) Proliferation of NK cells incubated for 5 days with 1 ng/ml of IL-15 
and the indicated doses of IL-23 in the absence (white bars) or in the 
presence of 10 ng/ml of IL-18 (black bars); n = 6. Mean ± SEM are shown. 
ns, not significant; *p < 0.05; **p < 0.01; one-way ANOVA with repeated 
measures and Bonferroni’s post hoc test.
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DiscUssiOn

Interleukin-23 has been involved in immunity against tumors 
(29, 47) and acute infections (30, 31) but also contributes to 
tumor promotion and growth (40, 48) and the development of 
autoimmune diseases, mainly through the induction of a Th17 
response (30, 49). These opposing functions may depend on the 
context and/or on the immune cells on which IL-23 exerts its 
effects. In mice, IL-23 triggers pro- (40) and antitumoral (41, 42) 
effects on NK cells. However, little is known about its effect on 
human NK cells (50). In this study, we demonstrated that mono-
cytes incubated with LPS secrete IL-23 that stimulates IFN-γ 
secretion mostly by CD56bright NK cells, which could be due to 
the observation that CD56bright NK cells express higher amounts 
of IL-23R than CD56dim NK cells. Of note, we used low doses of 
IL-15 as survival factor and to prime NK cells as it has been shown 
that resting NK cells require at least two signals for efficient IFN-γ 
secretion (9, 12, 21, 51, 52). Also, as the secretion of cytokines is 
usually restricted to the synaptic cleft between DC and NK cells 
(53, 54), the concentration of cytokines in sera might be quite dif-
ferent from the concentration that NK cells sense. Nevertheless, 
the concentration of IL-23 used in our experiments is within 
the range of values detected in sera from patients with different 
physiopathological conditions (55, 56). Besides, they are similar 
to the concentration of IL-23 detected in supernatants from 
monocyte-derived DCs of multiple sclerosis patients stimulated 
with LPS (57) or produced by macrophages and DC stimulated 
with pathogens or TLR ligands (37, 58, 59).

In addition, in this study, we observed that IL-23-driven 
IFN-γ production requires functional MEK1/MEK2, JNK, PI3K, 
mTOR, and NF-κB, but not STAT-1, STAT-3 (a downstream 
mediator of Jak2), nor p38 MAPK. All these signaling pathways 
have previously been implicated in NK cell effector functions (13, 
32, 60, 61).

Interleukin-4, IL-10, IL-17, and TNF were shown to be 
secreted by NK  cells under certain conditions and different 
immune cells stimulated with IL-23 produce IL-17, IL-6, and TNF  
(30, 62–65). However, IL-23 did not affect their secretion by 
NK cells. Nevertheless, we observed a raise in the percentage of 
CD69+ and CD25+ NK cells upon stimulation with IL-23, confirm-
ing that this cytokine activates NK cells. Moreover, IL-23 potenti-
ated ADCC (mediated through CD16) but not NK cell-mediated 
cytotoxicity through other NK cell activating receptors, suggesting 
that this cytokine may act as a co-stimulus not only for IFN-γ 
production but also for CD16-mediated cytotoxicity. Interestingly, 
potentiation of ADCC is a biological effect that IL-23 shares with 
IL-12 and IL-27 (32, 60), which suggests that these cytokines of the 
IL-12 family of cytokines might be suitable candidates as adjuvant 
therapy during immunotherapy with humanized mAb.

Myeloid cells can produce IL-18 upon recognition of tumors 
and pathogens, which in combination with other stimuli such 
as IL-12 or IL-27 activates NK cells (32, 34, 46). Here, we dem-
onstrated that IL-23, like the other members of the same family 
of cytokines, displays a synergistic effect with IL-18 for NK cell-
mediated IFN-γ production by both CD56bright and CD56dim 
cells. Interestingly, this effect is due to a priming of IL-23 for 

Conversely, neutralization of IFN-γ during the cocultures of DC 
and NK cells pre-stimulated with the combination of the cytokines 
abrogated both effects, CD86 expression (Figures  6D,E), and 
IL-12 secretion (Figure  6F). Therefore, IL-23 in concert with 
IL-18 promotes NK  cell activation that drives DC maturation 
mainly by IFN-γ produced by NK cells.
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FigUre 6 | Interleukin (IL)-23 cooperates with IL-18 for natural killer (NK)-driven dendritic cells (DC) activation. (a–c) CD86 expression on DC (a,B) and IL-12 
secretion by DC (c) after incubation with LPS and NK cells pre-cultured in the absence (−) or in the presence of IL-23, IL-18, or IL-23 and IL-18 (IL-18 + IL-23); 
n = 11. Representative histograms of CD86 expression on DC cultured with NK cells pre-stimulated with IL-18 or IL-18 and IL-23 (IL-18 + IL-23) are shown in (B). 
(D–F) CD86 expression on DC (D,e) and IL-12 secretion by DC (F) after incubation with LPS and NK cells pre-cultured in the absence (−) or in the presence of 
IL-23, IL-18, or IL-23 and IL-18, in the presence of an IC mAb (black bars) or an anti-IFN-γ neutralizing mAb (white bars); n = 9. Representative histograms of CD86 
expression on DC cultured with NK cells pre-stimulated with IL-18 and IL-23, in the presence of an IC mAb or an anti-IFN-γ neutralizing mAb are shown in (e). 
Numbers within histograms represent the MFI of CD86 in each condition. Data are shown as mean ± SEM in panels (a,c,D,F). ns, no significant; *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001; two-way ANOVA with repeated measures matched by both factors and Bonferroni’s post hoc test (a,c,D,F). The 
interaction p-values (synergism) were: p = 0.0287 (a) and p = 0.0028 (c).
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IL-18-responsiveness and not to a proliferative effect on NK cells 
or to changes in their viability. On the contrary, we observed an 
IL-23-driven inhibition of NK cell proliferation similar to what 
we have already seen for another member of the IL-12 family of 
cytokines, IL-27 (32). The upregulation of IL-18Rα expression on 
CD56bright NK cells observed in our experiments might be respon-
sible for the priming effect that led to an increased responsiveness 
of NK cells to IL-18 for IFN-γ production.

Remarkably, CD56dim NK  cells only produced IFN-γ in 
response to the simultaneous stimulation with both cytokines 
but not in response to IL-23 alone, as did CD56bright NK  cells. 
However, NK cell-mediated cytotoxicity was not affected when 
NK  cells were stimulated with IL-23 or with IL-23 and IL-18. 
Therefore, IL-23 might display a predominant immunoregula-
tory but not a cytotoxicity-inducing effect on NK cells, which is 
in contrast with the effect of other members of the same family 
of cytokines such as IL-12 and IL-27 (28, 29, 32). These results 
further support the notion that both effector functions are dif-
ferentially regulated in NK cells (13, 66). Also, the lack of effect 
of IL-23 on NK  cell cytotoxicity could be due to the fact that 
CD56dim NK  cells express less IL-23R than CD56bright NK  cells. 

Nonetheless, IL-23 induced IFN-γ secretion by CD56dim NK  cells  
in combination with IL-18 and enhanced ADCC, which indicates 
that it may act as co-stimulatory cytokine when acting in concert 
with another primary stimulus for NK cells.

Immature DC are mainly localized in peripheral tissues 
and migrate to secondary lymphoid organs upon maturation 
induced by PAMP or tumors to induce an adaptive immune 
response. NK cells activated upon target cell recognition or by 
cytokines such as IL-2 or IL-12 induce CD86 expression and 
IL-12 production by DCs (15, 21, 24, 67). Therefore, we hypoth-
esized that IL-23 and IL-18 secreted by myeloid cells during the 
onset of an immune response may activate NK cells that in turn 
might affect maturation of DC that already sensed PAMP, which 
in turn may affect T cell priming. To mimic this situation in vitro 
with human cells, we used LPS during DC–NK cell cocultures 
to activate DC. We observed that NK cells pre-stimulated with 
IL-18 induced heightened secretion of IL-12 and increased 
expression of CD86 on DC activated with LPS, and that this 
effect is further potentiated by IL-23. This effect could be 
related to the “helper” function acquired by NK cells exposed to 
IL-18 that leads to the stimulation of IL-12 production by DC 
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