
January 2018 | Volume 8 | Article 19701

Review
published: 15 January 2018

doi: 10.3389/fimmu.2017.01970

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Ji Ming Wang,  

National Cancer Institute  
at Frederick, United States

Reviewed by: 
Giovanni Bernardini,  

Sapienza Università di  
Roma, Italy  

Robert J. B. Nibbs,  
University of Glasgow,  

United Kingdom

*Correspondence:
Paul Proost  

paul.proost@kuleuven.be

Specialty section: 
This article was submitted  
to Cytokines and Soluble  

Mediators in Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 18 August 2017
Accepted: 20 December 2017

Published: 15 January 2018

Citation: 
Metzemaekers M, Vanheule V, 

Janssens R, Struyf S and Proost P 
(2018) Overview of the Mechanisms 

that May Contribute to the 
Non-Redundant Activities  

of Interferon-Inducible CXC 
Chemokine Receptor 3 Ligands.  

Front. Immunol. 8:1970.  
doi: 10.3389/fimmu.2017.01970

Overview of the Mechanisms that 
May Contribute to the Non-
Redundant Activities of interferon-
inducible CXC Chemokine Receptor 
3 Ligands
Mieke Metzemaekers, Vincent Vanheule, Rik Janssens, Sofie Struyf and Paul Proost*

Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, 
Belgium

The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced 
by interferon (IFN)-γ and share an exclusive chemokine receptor named CXC chemokine 
receptor 3 (CXCR3). With a prototype function of directing temporal and spatial migration 
of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these 
CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation 
and autoimmunity, as well as in cancer. Intense former research efforts led to recent and 
ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific 
evidence has claimed mutual redundancy, ligand dominance, collaboration or even 
antagonism, depending on the (patho)physiological context. Most research on their 
in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute 
to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. 
When looking into detail, one can unravel a multistep machinery behind final CXCR3 
ligand functions. Not only can specific cell types secrete individual CXCR3 interacting 
chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan 
interactions, major associated intracellular pathways and susceptibility to processing 
by particular enzymes, among others, seem ligand-specific. Here, we overview major 
aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 
ligands, and propose that their in vivo non-redundancy is a reflection of the unprece-
dented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine 
system.

Keywords: chemokine, CXCR3, G protein-coupled receptor, interferon-γ, leukocyte migration, glycosaminoglycan, 
inflammation, posttranslational modification

Abbreviations: ACKR, atypical chemokine receptor; cAMP, cyclic adenosine monophosphate; CP-, carboxy peptidase; DC, 
dendritic cell; DPP, dipeptidyl peptidase; GATA3, GATA-binding protein 3; GPCR, G protein-coupled receptor; HUMECs, 
human microvascular endothelial cells; IFN, interferon; IP-9, IFN-γ-inducible protein-9; IP-10, IFN-γ-inducible protein of 
10 kDa; IRSE, interferon response element; I-TAC, IFN-inducible T cell α chemoattractant; IL-, interleukin; NK, natural killer; 
LPS, lipopolysaccharide; Mig, monokine induced by IFN-γ; MMP, matrix metalloprotease; NF-κB, nuclear factor kappa B; 
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acid-related orphan receptor γT; STAT, signal transducer and activator; TNF, tumor necrosis factor; γIRE, γ-interferon response 
element.
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FiGuRe 1 | General structure of CXC chemokines. Chemokines contain 
three antiparallel β strands (pink) and a COOH-terminal α-helix (orange), 
mutually connected by 30s, 40s, and 50s loops. The flexible NH2-terminal 
domain is followed by an N loop and 310 helix, respectively. The 3D structure 
of the mature secreted protein is stabilized by two disulfide bridges which are 
formed by four conserved Cys residues (blue).
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GeNeRAL iNTRODuCTiON TO THe 
CHeMOKiNe NeTwORK

Chemotactic cytokines or chemokines are low molecular mass 
proteins (±  8–12  kDa) with a hallmark function of directing 
leukocyte migration in a time- and site-dependent manner 
(1–6). Obviously, controlled chemotaxis of specific leukocyte 
subtypes is essential not only in homeostatic processes including 
immune cell homing, embryogenesis, and angiogenesis, but also 
in pathophysiological environments such as cancer, inflammation 
and autoimmunity (7–12). As such, chemokines are key players 
in innate and adaptive immune events, during health and disease. 
The conventional receptors through which they exert their 
biological functions are specific G protein-coupled receptors 
(GPCRs) that mainly activate the inhibitory type of G alpha (Gαi) 
proteins, subsequently eliciting inhibition of adenylate cyclase, 
thereby reducing concentrations of intracellular cyclic adenosine 
monophosphate ([cAMP]i) (2, 10). However, also G protein-
independent signaling may be activated, among which β-arrestin-
associated pathways are probably most intensely studied (13). In 
addition to interaction with specific GPCRs, chemokine avail-
ability, activity and receptor preference is modulated at multiple 
levels including chemokine interactions with glycosaminoglycans 
(GAGs), atypical chemokine receptors (ACKRs), gene transcrip-
tion, mRNA stability, alternative gene splicing, mutual synergism 
or antagonism, and posttranslational modifications (14–17). Thus, 
the final chemokine functioning in vivo is the complex outcome 
of numerous regulatory mechanisms, emphasizing that an appar-
ently important degree of specificity rather than redundancy may 
be inherent to the chemokine system.

With respect to major biological functions, it was originally 
proposed that the chemokine family can be subdivided into homeo-
static and inflammatory proteins that are, respectively, constitutively 
expressed or require prior induction by endogenous (e.g., cytokines) 
or exogenous (e.g., microbial products) stimuli (18–21). However, 
meanwhile it became clear that this subdivision is non-absolute 
since many chemokines, such as CXCL12, serve both homeostatic 
and inflammatory roles. Based on the number and positioning of 
conserved Cys residues present in the NH2-terminal sequence of 
the mature secreted protein, chemokines are structurally classified 
as CXC, CC, C, or CX3C ligands (5, 10, 22). CC chemokines contain 
two adjacent NH2-terminal Cys and form one of the two largest 
chemokine subfamilies. The other major subfamily is constituted 
by CXC chemokines that contain one random (“X”) amino acid in 
between their NH2-terminal Cys residues (Figure 1). Classification 
of chemokine receptors is complementary to their predominantly 
recognized chemokine subfamily, with CC chemokine receptors 
(CCRs) binding CC chemokines, CXC chemokine receptors 
(CXCRs) interacting with CXC chemokines, etcetera (10). A spe-
cific chemokine may recognize one or multiple receptors of its 
complementary subclass, and vice  versa, thereby conferring an 
outstanding promiscuity to the chemokine network. To add even 
more complexity, over the past few years it has been evidenced that 
a chemokine receptor may preferentially activate one out of several 
intracellular signaling pathways (13). This phenomenon is known 
as biased signaling and likely depends not only on the receptor and 
ligand involved, but also on the cell type or tissue studied.

Seven of the human CXC chemokines, i.e., CXCL1–3 and 
CXCL5–8, contain a conserved Glu-Leu-Arg (“ELR”) amino 
acid motif (5, 10, 22). Human CXCL6 and CXCL8 signal 
through CXCR1 and all seven ELR+ CXC chemokines activate 
CXCR2 and activation of these receptors results in neutrophil 
chemotaxis. In addition, CXCR2 ligands and CXCL12, the 
unique ligand for CXCR4, have been reported to stimulate 
angiogenesis (9, 23). Most CXC chemokines that lack the 
ELR motif interact with CXCR3 (5). Regarding these CXCR3 
ligands, one may discriminate between platelet-related agonists 
CXCL4 and CXCL4L1 on the one hand, and CXCL9, CXCL10, 
and CXCL11 that share interferon (IFN)-γ as a major inducer, 
on the other hand (24). Although they share a unique receptor 
and major inducer, emerging evidence points toward non- 
redundant roles for the three IFN-induced CXCR3 ligands 
in vivo (25). Specifically, it was proposed that, during the course 
of immune responses, differential stimuli induce CXCL9, CXCL10, 
and CXCL11 expression by specific cell types, contributing 
to unique temporal and spatial expression of IFN-inducible 
CXCR3 ligands. Additionally, their non-redundant biological 
roles in vivo are probably a consequence of multidimensional 
regulation of the specific activity of IFN-induced CXCR3 ago-
nists as indicated by, for example, ligand-specific receptor- and 
GAG-binding features, major associated intracellular signaling 
pathways and differential susceptibility to enzymatic processing. 
In the present review, we overview the IFN-inducible CXCR3 
chemokine system and focus on aspects that may contribute to 
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FiGuRe 2 | Overview of the mechanisms that may contribute to the exclusivity of CXCR3 ligands. CXCL9, CXCL10, and CXCL11 are structurally related 
chemokines that share CXCR3 as common receptor and IFN-γ as predominant inducer. Despite structural and functional similarities, emerging evidence points 
toward non-redundant roles for CXCL9, CXCL10, and CXCL11 in vivo. The exclusivity of individual IFN-inducible CXCR3 ligands may be rooted at multiple levels 
including secretion of specific IFN-inducible CXCR3 ligands by specific cell types in response to specific inducers (A,B), specific CXCR3 interaction features and  
the existence of different CXCR3 isoforms (C), major associated signaling cascades (D), effects on T cell polarization (e), CCR antagonism (F), ACKR interactions 
(G), posttranslational processing (H), and GAG binding characteristics (i). ACKR, atypical chemokine receptor; CCR, CC chemokine receptor; CXCR, CXC 
chemokine receptor; GAG, glycosaminoglycan; GRK, G protein-coupled receptor kinases; HUMEC, human microvascular endothelial cell; IFN, interferon; LPS, 
lipopolysaccharide; PAD, peptidylarginine deiminase; PBMC, peripheral blood mononuclear cell; PG, peptidoglycan; STAT, signal transducer and activator; TNF, 
tumor necrosis factor.
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the non-redundant activities of individual IFN-induced CXCR3 
chemokines in vivo (Figure 2).

DiSCOveRY AND eXPReSSiON OF  
iFN-iNDuCiBLe CXCR3 CHeMOKiNeS

In 1985, a study aiming to detangle the IFN-γ-mediated inflam-
matory response noticed a gene encoding a protein with high 
homology to platelet-derived proteins (26). The molecular mass 
of the protein was approximately 10  kDa and it was named 
“IFN-γ-inducible protein of 10  kDa” (IP-10). Five years later, 
in 1990, an mRNA encoding another platelet factor-4-like 
protein selectively induced by IFN-γ and no other macrophage 
activators, including IFN-α, IFN-β, and lipopolysaccharide 
(LPS), was described (27). The authors proposed that the 
molecule should be named “monokine induced by IFN-γ” 
(Mig). It became clear that IP-10 and Mig were highly similar 
proteins, with their corresponding genes located on the q21.1 
region of chromosome 4 in a head-to-tail orientation, and their 
start codons separated by not more than 16 kb (28). Ensuing 
studies revealed that IP-10 and Mig are chemotactic cytokines 

or chemokines that lack a conserved ELR amino acid motif and 
contain two conserved Cys residues separated by one random 
residue (“X”) in their NH2-terminal sequences. They both act on 
CXCR3, which was originally reported as a selective receptor for 
these two chemokines (29). Subsequently, two research groups 
identified a third ELR negative, IFN-inducible CXC chemokine 
in stimulated astrocytes and keratinocytes (30, 31). This protein 
was strongly related to IP-10 and Mig and displayed an even 
higher affinity for CXCR3. This third IFN-associated CXCR3 
ligand was named “IFNγ-inducible protein-9 (IP-9)” or “IFN-
inducible T cell α chemoattractant” (I-TAC) in the first publica-
tions and the corresponding gene was found in the same 4q21.1 
chromosomal mini cluster (30, 32). In the now established 
systematic chemokine nomenclature Mig, IP-10, and I-TAC/
IP-9 were renamed CXCL9, CXCL10, and CXCL11, respectively 
(22), and are commonly referred to as IFN-inducible CXCR3 
ligands.

The IFN-inducible CXCR3 chemokines show circa 40% 
homology in their amino acid sequences and are produced by a 
variety of cells including human microvascular endothelial cells 
(HUMEC), keratinocytes and fibroblasts (Table  1; Figure  2)  
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TABLe 1 | Major sources of natural IFN-inducible CXCR3 ligands.

Cell type Species Stimulation Produced CXCR3 ligand Reference

Macrophage cell line RAW264 Murine IFN-γ CXCL9 (27)

Astrocytes Human IFN-γ + TNF-α + IL-1β CXCL11 (30)

Keratinocytes Human IFN-γ CXCL10, CXCL11 (31, 37)
Purified protein derivative of tuberculin CXCL10 (37)

Endothelial cells Human IFN-γ alone or synergistically with LPS, PG or dsRNA CXCL9, CXCL10, (33, 37)
IFN-γ alone or synergistically with dsRNA CXCL11 (33)
Purified protein derivative of tuberculin CXCL10 (37)
IL-1β or TNF-α plus IFN-α, IFN-β, or IFN-γ CXCL10 (46)

Fibroblasts Human Purified protein derivative of tuberculin,
IFN-γ alone or synergistically with LPS, PG or dsRNA

CXCL9, CXCL10, CXCL11 (35, 37)

IL-1β or TNF-α plus IFN-α, IFN-β, or IFN-γ CXCL10 (46)

PBMCs Human IFN-γ or dsRNA, inhibited by PG CXCL9, CXCL11 (35, 47)

Monocytes Human IFN-γ or dsRNA, inhibited by PG CXCL10 (34, 48)

T cells Human PHA with or without PMA CXCL10 (36)

Dermal macrophages Human Purified protein derivative of tuberculin, IFN-γ CXCL10 (37)

dsRNA; double-stranded RNA; IFN, interferon; LPS, lipopolysaccharide; PBMCs, peripheral blood mononuclear cells; PG, peptidoglycan; PMA, phorbol 12-myristate 13-acetate; 
PHA, phytohemagglutinin; TNF-, tumor necrosis factor.
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(30, 31, 33–35). Additionally, CXCL9 and CXCL11 are commonly 
secreted by peripheral blood mononuclear cells (PBMCs) and 
more specifically by macrophages (CXCL9) (27) and astrocytes 
(CXCL11) (30). Leukocytes that predominantly produce CXCL10 are 
T cells, and monocytes (34, 36, 37). In addition to differential major 
cellular origins, unique promotors control the expression of indi-
vidual IFN-inducible CXCR3 interacting chemokines (Figure 2). 
The Cxcl9 promotor holds a γ-interferon response element (γIRE) 
and a nuclear factor kappa B2 (NF-κB2) site, and CXCL9 protein 
expression truly depends on IFN-γ (38–40). The Cxcl10 and Cxcl11 
promotors show a certain degree of similarity as they both are 
induced by IFN-γ, contain an interferon response element (IRSE) 
and an NF-κB1 site (38, 41–43). The IRSE in the Cxcl10 promotor 
mediates responsivity of the gene to IFN-α and IFN-β. Thus, both 
Type I and Type II IFNs are potent inducers of CXCL10 expression. 
Moreover, various innate stimuli recognized by innate immune sen-
sors can induce IFN-α production by immune cells and therefore 
may indirectly promote CXCL10 production (44). Remarkably, 
CXCL11 is induced by IFN-β and IFN-γ, but not by IFN-α (45). 
Additionally, tumor necrosis factor (TNF)-α alone weakly induces 
CXCL10. For the three IFN-inducible CXCR3 ligands, gene tran-
scription induced by the respective IFNs is strongly enhanced in 
the presence of TNF-α and IL-1β in fibroblasts and endothelial cells 
(46). Surprisingly, although bacterial LPS and peptidoglycans also 
synergistically induced the three CXCR3 ligands in fibroblasts and 
endothelial cells, they inhibited IFN-induced production of the 
CXCR3 ligands by leukocytes (33–35). In addition, at a single cell 
level, endothelial cells were clearly better producers of the CXCR3 
ligands than fibroblasts and leukocytes (33–35).

CXCR3

identification and expression of CXCR3
The human chemokine receptor CXCR3 was described for the 
first time in 1996 (29). The receptor was originally labeled “the 

first lymphocyte chemokine receptor that was not coexpressed 
by monocytes or granulocytes” (29). The corresponding gene was 
found two years later and, strikingly, is located on chromosome X, 
at the q13.1 region (Figure 3) (49). The gene encodes a multi-pass 
membrane molecule of 368 amino acids with a molecular mass 
of nearly 41 kDa (29). CXCR3 is a class A GPCR encompassing 
seven transmembrane helices. The receptor is predominantly 
expressed on activated T  cells. Meanwhile, CXCR3 has been 
detected on regulatory T  cells, CD4 positive and CD8 effector 
and memory T cells, with higher levels detected on T helper (Th)1 
cells compared to Th2 cells (29, 49–62). Dendritic cell (DC)-
mediated T  cell activation efficiently induces CXCR3 on naive 
T lymphocytes, which are initially CXCR3 negative. Also in cell 
cultures, interleukin (IL)-2 with or without phytohemagglutinin 
(PHA) can upregulate CXCR3 on naive cells with high efficiency, 
resulting in approximately 95% CXCR3 positivity of the total 
culture (49). Other subtypes of leukocytes, e.g., innate lymphoid 
cells (ILCs), γδT cells, natural killer (NK) cells, NKT cells, specific 
B lymphocytes and DCs themselves, may also express functional 
CXCR3 (63–68). Furthermore, expression of CXCR3 was evi-
denced on various cells that are not related to the immune system. 
These include fibroblasts, endothelial and epithelial cells, but 
also astrocytes and smooth muscle cells (63, 69). More recently, 
CXCR3 was found on eosinophils and neutrophils in an inflamed 
environment (70–72). Thus, implying that the dogma stating that 
CXCR3 is not present on granulocytes requires adjustment.

Discovery of CXCR3 variants Generated 
by Alternative Splicing
Meanwhile, the originally described CXCR3 protein of 368 
amino acids has been renamed CXCR3A and two other CXCR3 
isoforms, resulting from alternative splicing of the Cxcr3 gene, 
were discovered (Figure 3). Several studies claimed that unique 
downstream signaling cascades, functions and expression patterns 
can be attributed to individual CXCR3 variants (73, 74). Indeed, 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGuRe 3 | Overview of the Cxcr3 gene structure. Cxcr3 is located at the q13.1 region on chromosome X and contains three exons and one intron. Alternative 
splicing generates three mRNAs encoding three structurally and functionally different CXC chemokine receptor 3 (CXCR3) proteins. The canonical CXCR3A contains 
368 amino acids. The four most NH2-terminal residues are encoded by exon I of Cxcr3 and all remaining amino acids are encoded by exon III. CXCR3B (415 amino 
acids) contains a unique NH2-terminal tail of 51 amino acids encoded by exon II. Both CXCR3A and CXCR3B contain seven transmembrane domains. The 
significantly shortened CXCR3-alt (267 amino acids) results from posttranscriptional exon skipping and contains only four or five transmembrane domains.
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evidence exists that independent on the presence of ligands, 
CXCR3 variants may be differentially expressed in specific cell 
types and activate partially different signal transduction pathways, 
suggesting that alternative gene splicing may play a role in fine-
tuning the context-specific role of CXCR3 and its ligands in vivo 
(23, 73–76). CXCR3A, the most abundant form, interacts with 
CXCL9, CXCL10, and CXCL11 to induce chemotaxis and calcium 
mobilization. CXCL11 and CXCL10 induce activation of the 
inhibitory type of Gα proteins (Gαi), β arrestin-1 and β arrestin-2 

recruitment, and ERK1/2 phosphorylation (74, 77). Although the 
response upon treatment of CXCR3A with CXCL9 is in general 
weaker than with CXCL10 and CXCL11, in HEK293T  cell 
transfectants all three ligands efficiently induced receptor inter-
nalization (74). Coupling to Gαi proteins implies that activation 
of CXCR3A provokes inhibition of adenylyl cyclase activity and 
a subsequent decrease of endogenous [cAMP]i concentrations. 
This downstream signaling ultimately elicits an increase of the 
intracellular calcium concentrations ([Ca2+]i), cell proliferation 
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and initiation of migration-related cellular responses (29, 49). 
Alternative splicing at the 5′ end of exon 2 of Cxcr3 generates 
the less commonly expressed CXCR3B of 415 amino acids. This 
second CXCR3 variant contains a unique NH2-terminal tail of 51 
amino acids that replaces the four most NH2-terminal residues of 
CXCR3A. At the mRNA level, CXCR3A and CXCR3B were found 
in heart, kidney, liver, and skeletal muscle tissues, while CXCR3A 
was also present in placenta (73). Although immune cells mainly 
express CXCR3A, they usually coexpress low levels of CXCR3B 
(24). Moreover, endothelial cells may selectively express CXCR3B. 
The two platelet-derived chemokines CXCL4 and CXCL4L1, in 
addition to the three IFN-inducible CXCR3 chemokine ligands, 
also bind to CXCR3A and CXCR3B (73, 78). Lastly, CXCR3-alt 
results from posttranscriptional exon skipping and contains only 
four or five transmembrane regions and 267 amino acids (75). This 
significantly shortened CXCR3 isoform was originally reported 
to bind solely CXCL11 with low affinity, resulting in a moderate 
increase of the [Ca2+]i and chemotaxis (75, 76).

Among the IFN-inducible CXCR3 agonists, CXCL10 exhibits 
the highest binding affinity for CXCR3B (73). All IFN-inducible 
CXCR3 ligands display a higher affinity for the canonical CXCR3A 
than CXCR3B. Moreover, chemokine signaling through CXCR3B 
is not associated with a calcium flux. Compared to CXCR3A 
transfectants, p21 mRNA levels were ten times higher in cells 
transfected with CXCR3B (73). The cyclin-dependent kinase 
inhibitor p21 has an essential role in linking DNA damage to cell 
cycle arrest (79, 80) and induction of its expression is proposed to 
be part of the machinery involved in the antiproliferative response 
resulting from stimulatory G alpha (Gαs) protein signaling and 
the subsequent increase of the [cAMP]i (81). Consequently, it was 
suggested that, in contrast to most conventional chemokine recep-
tors and CXCR3A, CXCR3B may couple to Gαs proteins upon 
ligand-interaction on microvascular endothelial cells, explaining 
the [cAMP]i increase originally claimed to this CXCR3 variant. 
Moreover, the authors proposed that these differences in Gα 
protein coupling explained the contradictory cellular responses 
induced via CXCR3A and CXCR3B (73). Evidence favoring this 
hypothesis was provided by the observation that CXCR3B activa-
tion initiates an antiproliferative response and negatively affects 
cell migration. Also, CXCR3B was believed to be the receptor 
responsible for the antiangiogenic effects of CXCR3 ligands (73). 
However, no Gαs stimulation could be observed in CXCR3B 
transfected HEK293T cells and in mice no CXCR3B form exists 
whereas the CXCR3 ligands and in particular CXCL4L1 retains 
potent antiangiogenic activity in these animals (74, 78, 82).

Potential Significance of Splice variants 
for the In Vivo Function of CXCR3
Meanwhile, somewhat controversial results regarding CXCR3B 
and CXCR3-alt agonists and signaling were published, under-
scoring the current need to examine the physiological relevance 
of CXCR3 variants resulting from alternative gene splicing in an 
in vivo context. Furthermore, it cannot be excluded that contrasting 
results may be obtained in individual studies focusing on CXCR3 
variants, depending on the experimental model used. Indeed, a cell-
dependent rather than CXCR3 splice variant-dependent mechanism 
may be decisive for the major subtype of Gα protein (Gαi or Gαs)  

activated upon ligand stimulation. Moreover, this would at least 
partially explain why also murine CXCR3, which exists in only 
one isoform and was originally considered a classical Gαi-coupled 
chemokine receptor, mediates angiostatic effects (78). Considering 
CXCR3/Gαi-signaling in mice, interestingly, the critical Gαi protein 
is Gαi2, while Gαi3 exerts an inhibitory effect in this animal model 
(83). The fact that alternative splicing is claimed for human Cxcr3 
but not for the corresponding gene in mice, is one of numerous 
examples underscoring the potential major differences between the 
human chemokine network and its murine counterpart.

Due to the limited number of studies with isoform-specific 
antibodies, the precise contribution of CXCR3 splice variants to 
the general IFN-related CXCR3 chemokine network in health 
and disease remains largely unknown. In an inflamed cellular 
environment, usually a specific chemokine receptor and its ligands 
are present, and may even be coexpressed by individual cells. This 
phenomenon adds a second layer of complexity when aiming to 
detangle the specific in vivo contributions of receptor splice variants 
to CXCR3–chemokine communications. Lasagni et al. reported in 
the article that originally described CXCR3B that CXCR3A and 
CXCR3B are both expressed on T cells (73). However, CXCR3B, in 
contrast to CXCR3A, was expressed on HUMECs and they showed 
that the CXCR3 ligands inhibit the growth of these microvascular 
endothelial cells through CXCR3B. In contrast, human mesan-
gial cells primarily expressed CXCR3A and not CXCR3B (73). 
Differential expression of the three CXCR3 spliced variants was also 
reported in patients with ovarian carcinoma. Ovarian cancer tissue 
revealed the highest CXCR3-alt expression (CXCR3-alt expression 
in cancer  >  endometriosis  >  normal tissue) (84). The highest 
CXCR3B expression was seen in normal tissue (CXCR3B expres-
sion in normal > endometriosis > cancer tissue) and CXCR3A was 
higher in endometriosis and cancer tissue than in normal tissue. 
Moreover, the CXCR3-alt-high cancer tissue was characterized 
by low CXCL4 and high CXCL11 expression (84). Also, reduced 
mRNA levels of canonical CXCR3A, but increased mRNA levels of 
CXCR3-alt, were found in CD3 positive lymphocytes in peripheral 
blood from patients with Crohn’s disease (85). Although further 
research is required, these findings suggest that CXCR3-alt may 
be a potential biomarker for Crohn’s disease and point toward 
IFN-inducible CXCR3 ligands (which are strongly produced by the 
colonic epithelium of these patients) as crucial players in the under-
lying disease mechanisms. Additionally, enhanced mRNA levels of 
CXCR3A and decreased mRNA levels of CXCR3B were found in 
prostate cancer samples (86). Moreover, the authors demonstrated 
that these altered expression levels were translated into an altered 
migration and invasion behavior of cancer cells, and proposed that 
the final outcome of CXCR3A upregulation and CXCR3B down-
regulation favors tumor progression and metastasis.

ReCePTOR iNTeRACTiONS OF  
iFN-iNDuCiBLe CXCR3 LiGANDS

General Aspects of CXCR3–Chemokine 
interactions
In general, chemokines first bind to their receptors with high 
affinity, followed by ligand-induced receptor activation. Thus, 
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the chemokine–receptor interaction is considered a two-step 
mechanism (21, 87, 88). The N loop located in the chemokine 
core domain plays a crucial role in the initial binding to the 
NH2-terminal domain of the receptor (Figure  1). The subse-
quent receptor activation is mediated by interaction between 
the NH2-terminal chemokine domain and various receptor 
regions. Regarding the interaction between CXCR3 and its IFN-
inducible agonists CXCL9, CXCL10, and CXCL11, it was found 
that charged amino acids in the extracellular regions of CXCR3 
are important in ligand binding (89). The second extracellular 
loop, specifically an Arg residue at position 216, is responsible 
for receptor activation, but not ligand-binding and receptor 
internalization (90). Sulfation of Tyr27 and Tyr29 residues in 
its NH2-terminal tail is required for CXCR3 activation by the 
three IFN-inducible ligands. Two additional Tyr residues are 
present in the NH2-terminal extension of CXCR3B at positions 
6 and 40. N-glycosylation of CXCR3 expressed on fibroblast-like 
synoviocytes was confirmed at residues Asn22 and Asn32, with 
deglycosylation of Asn22 resulting in reduced CXCL10 binding 
while leaving the CXCR3 expression and stability unaffected (91).

Ligand-Specific Features of  
CXCR3–Chemokine interactions
The receptor interaction modes of individual IFN-inducible 
CXCR3 agonists also display certain ligand-specific features. 
Binding of CXCL10 and CXCL11, but not CXCL9, requires the 
first sixteen NH2-terminal residues of CXCR3 (90). CXCL11 
possesses the strongest CXCR3-binding affinity, hierarchically 
followed by CXCL10 and CXCL9 (29, 30). For CXCL10, two 
hydrophobic clefts, formed by its N loop and 40s region, and by its 
NH2-terminal domain and 30s loop, respectively, were proposed 
to be the major regions for CXCR3 interaction (Figure 1) (92). 
Also for CXCL11, the N loop face of the chemokine is critically 
involved in CXCR3 binding, and displays an even higher degree 
of hydrophobicity compared to CXCL10 (93). This increased 
hydrophobicity, but also the observation that the CXCR3 binding 
face of CXCL11 exhibits more flexible structural elements, may 
explain its higher affinity for CXCR3. Despite the different recep-
tor affinities of IFN-inducible CXCR3 ligands, mutual competi-
tion for CXCR3 binding seems incomplete, and it was therefore 
suggested that they partially act as allotropic agonists, at least 
when considering the receptor in its G protein-coupled state (94). 
In addition, upon uncoupling CXCR3 from G protein-dependent 
signaling, a phenomenon believed to reflect a situation of relative 
deficiency of the appropriate G protein, CXCL10/CXCR3 bind-
ing is completely abrogated while interaction between CXCL11 
and the receptor is only reduced. These observations suggest 
that these two IFN-inducible CXCR3 ligands bind differential 
CXCR3 states and may at least partially explain the finding that 
the maximal saturation value of CXCL11, i.e., maximum amount 
of chemokine which can bind specifically to CXCR3 in a certain 
experimental setup, is probably 7–13 times higher compared to 
CXCL10 (94). Furthermore, their receptor affinities directly cor-
relate with the potencies of the IFN-inducible CXCR3 agonists. 
Thus, the high-affinity CXCR3 ligand CXCL11 also induces 
chemotaxis and [Ca2+]i mobilization most potently (30). For 
human CXCR3, chemotaxis and [Ca2+]i mobilization induced 

by all IFN-inducible ligands relies on the COOH-terminal 
receptor region and conserved DRY motif located in its third 
transmembrane domain (95). Although the optimal chemokine 
concentrations for induction of chemotaxis are usually rather 
low, exposure to high ligand concentrations or prolonged stimu-
lation may result in internalization of the receptor. The three 
IFN-inducible CXCR3 ligands not only differ in their potency to 
induce receptor internalization, but also in their mode of action. 
Whereas CXCL9- or CXCL10-provoked CXCR3 internalization 
relies on Ser and Thr residues in the COOH-terminal receptor 
tail and the adaptor protein β-arrestin 1, CXCL11-mediated 
internalization of the receptor involves its third intracellular loop 
with no absolute requirement for β-arrestins 1 or 2 (95–97).

Chemokine-induced G Protein and  
β-Arrestin Signaling through  
Differential CXCR3 variants
Using HEK 293T cells transfected with individual CXCR3 iso-
forms, a recent study aimed to provide new insights into the con-
sequences of alternative Cxcr3 gene splicing at the signaling level 
(74). However, when comparing receptor isoforms on transfected 
cells, one has to keep in mind that observed differences may be a 
result of the technical insufficiency to succeed in equal expression 
of each isoform instead of being a true biological phenomenon. 
Remarkably, although CXCL9 induces chemotaxis of CXCR3 
positive cells, it is much weaker than CXCL10 and CXCL11 in 
inducing substantial Gαi-activation through CXCR3A. Unlike for 
CXCR3A, chemokine-induced CXCR3B-signaling was originally 
associated with a cAMP increase implying that this receptor 
variant couples to Gαs proteins in microvascular endothelial cells  
(73, 98). In contrast to these initial findings, it was reported that 
high concentrations of CXCL11, but no other CXCR3 agonists, 
may activate Gαi-signaling via CXCR3B in HEK293T cell trans-
fectants (74). It remains to be elucidated whether cotranslational 
sulfation of its additional Tyr residues, which are potential sulfa-
tion sites, may affect the potency of the CXCR3B variant to signal 
in a Gαi-dependent manner (74). In the same study, no evidence 
was found for CXCR3B-signaling through Gαs upon stimulation 
of HEK293T cell transfectants with any of its chemokine ligands. 
In addition to differential Gα protein interactions, scientific 
evidence suggests that CXCR3 isoforms also differ regarding 
their potencies to recruit β-arrestin adaptor proteins. β-arrestins 
are probably best known for their role in uncoupling GPCRs, 
including chemokine receptors, from conventional G protein-
dependent pathways, thereby promoting receptor desensitization 
and internalization. Emerging evidence, however, has pointed 
toward a more complex role for β-arrestins in chemokine-
induced signaling (99, 100). Specifically, β-arrestins are believed 
to function as scaffolding molecules at the leading edge that 
may fulfill complex roles in modulating numerous intracellular 
signaling cascades (101–104). For CXCR3, a crucial in vivo role 
for β-arrestin 2 in lymphocyte chemotaxis was demonstrated 
in mice (105), while multiple studies reported that internaliza-
tion of CXCR3A involves β-arrestin-independent mechanisms  
(74, 96, 97, 106). CXCR3A associates with β-arrestins 1 and 2 even 
without prior chemokine stimulation but CXCR3B preferentially 
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recruits β-arrestin 2 in the absence of chemokines (74). CXCL10 
and CXCL11 further enhance recruitment of both β-arrestins to 
CXCR3A, but stimulation with CXCL9 only slightly increases 
association between β-arrestin 2 and the receptor. Regarding 
CXCR3B/β-arrestin interactions, CXCL11 seems to be the only 
chemokine with a stimulating effect (97, 106). CXCR3-alt was 
unable to signal through either Gαi or β-arrestins. In addition 
to differential, ligand-specific potencies of the IFN-inducible 
CXCR3 agonists to induce β-arrestin recruitment, also β-arrestins’ 
intracellular redistribution seems to occur in a ligand-dependent 
manner (106). β-arrestin puncta at the membrane were found 
upon stimulation with CXCL9 and CXCL10, whereas CXCL11 
rather induces colocalization of CXCR3 and β-arrestins into 
endosomes (97, 106). While in the early phase (after a few 
minutes) CXCR3A-mediated ERK phosphorylation was medi-
ated through G protein-dependent signaling and occurred with 
all three ligands, CXCR3B-mediated ERK phosphorylation was 
dependent on β-arrestins (97). In addition, CXCR3A activation 
also resulted in a late phospho-ERK signal which was not detected 
upon treatment of CXCR3B transfected cells.

Chemokine-induced CXCR3 
internalization
CXC chemokine receptor 3 displays constitutive internalization 
which can be further enhanced in the presence of its chemokine 
agonists (96). CXCL11 was found the predominant IFN-inducible 
CXCR3 ligand responsible for induction of CXCR3 internaliza-
tion following contact between T cells and stimulated endothelial 
cells (107). In addition, also in a study using CXCR3 transfected 
HEK cells, CXCL11 was claimed to be the major chemokine pro-
moting CXCR3 internalization (106). These data could imply that 
CXCL11, by acting as an outstanding inducer of CXCR3 internali-
zation, reduces the availability of the receptor for the two other 
IFN-inducible CXCR3 ligands and the platelet-derived CXCR3 
agonists CXCL4 and CXCL4L1. Moreover, the authors claimed 
that CXCL9 and CXCL11 are biased ligands tending toward 
initiation of β-arrestin recruitment and receptor internalization, 
respectively. Contrastingly, when discriminating internalization 
properties of specific CXCR3 splice variants on transfected 
HEK cells, CXCL11 only modestly provoked internalization of 
CXCR3A and CXCR3B (74). CXCL11-induced internalization of 
CXCR3B was independent of β-arrestin signaling (97) CXCL10 
induced CXCR3A internalization by 40% within 10 min, while 
CXCL9-induced CXCR3A internalization manifested three times 
slower (74). The conflicting results obtained in the two studies 
regarding the potencies of IFN-inducible CXCR3 ligands to 
induce CXCR3 internalization may result from the fact that the 
authors of the first study did not discriminate between CXCR3 
splice variants and only took β-arrestin-dependent CXCR3 
internalization into account, while others demonstrated that 
internalization of the receptor may rely also on a β-arrestin-
independent machinery (74, 96, 97, 106). Regarding CXCR3B, 
stimulation with either CXCL9 or CXCL10 induced moderate 
receptor internalization (74, 97). Remarkably, CXCL9 and 
CXCL11, but not CXCL10, seem to provoke rapid internalization 
of CXCR3-alt on transfected cells (74). In summary, the different 
results from various studies suggest that CXCR3 internalization 

properties probably depend on the experimental set-up used. Also 
internalization manifests differently for alternative CXCR3 splice 
variants. However, one has to keep in mind that the physiological 
relevance of CXCR3 isoforms in vivo remains largely unknown at 
the moment. Although former studies support the idea that these 
different receptor variants may fulfill unique roles, transfecting 
cells with CXCR3 isoforms is artificial and not necessarily reca-
pitulates the in vivo situation, implying a need for studies with 
highly specific antibodies able to discriminate between all three 
endogenously expressed CXCR3 variants.

Chemokine-induced T Cell Polarization 
through CXCR3
The IFN-inducible CXCR3 interacting chemokines are not only 
implicated in directed migration of CXCR3 expressing cells, but 
may also modulate their phenotype (Figure 2). On CD4 positive 
T  cells, stimulation of CXCR3 with CXCL9 or CXCL10 results 
in downstream phosphorylation of transcription factors “signal 
transducer and activator” (STAT) 1, STAT4 and STAT5, and 
subsequent activation of the T-box transcription factor T-bet and 
the retinoic acid-related orphan receptor γT (RORγT) (77). This 
suggests that CXCL9 and CXCL10 polarize CD4 positive T cells 
toward effector cells belonging to the Th1 and Th17 lineages. 
Contrastingly, CXCL11-induced CXCR3-activation promotes 
STAT3 and STAT6 phosphorylation and GATA-binding protein 3 
(GATA3) activation, thereby driving CD4 positive cells toward the 
Th2 or Tr1 regulatory phenotype (77). The phenomenon that dif-
ferent ligands may initiate different signaling cascades via the same 
receptor is known as ligand bias. Biased signaling, i.e., the concept 
that a specific receptor preferentially activates one out of multiple 
signaling cascades, has become an evidenced phenomenon in the 
GPCR and chemokine field (13). Moreover, ligand bias, receptor 
bias and tissue- or cell-specific bias have been described.

interaction of iFN-inducible CXCR3 
Ligands with ACKRs and CCRs
In addition to their CXCR3 agonism, at high chemokine 
concentrations, the IFN-inducible CXCR3 ligands act as full 
antagonists on CCR3 (Figure  2). They exert this inhibitory 
effect by competing with the CCR3 ligand CCL11 for receptor 
binding (108). Evidence exists that CXCL11, which is the most 
potent CCR3 antagonist, also hinders communication between 
the chemokines CCL3 and CCL4 and their receptor CCR5 in an 
antagonistic manner (109). Moreover, CXCL11, is a high-affinity 
ligand for ACKR1 whereas the two other IFN-inducible CXCR3 
ligands bind to ACKR1 only weakly (10, 110, 111). Additionally, 
CXCL11 but not CXCL9 nor CXCL10 interacts with ACKR3  
(10, 112) (Figure  2). In contrast to conventional chemokine 
receptors, ACKRs have a modified DRYLAIV consensus motif 
and do not couple to G proteins (10). ACKR1 is a so-called broad 
spectrum receptor that recognizes CC and CXC chemokines, 
almost exclusively the ones with an inflammatory nature (17). 
Experimental evidence suggests that ACKR1 on endothelial cells 
mainly acts as chemokine transporter and –presenter, thereby 
shaping the chemotactic gradient. The narrow-spectrum ACKR3 
solely interacts with CXCL11 and CXCL12 (17). Activation of 
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ACKR3 does not result in chemotaxis or [Ca2+]i mobilization, 
but offers the cell a survival advantage and impacts cell adhesion 
and tumor development (112). Indeed, under suboptimal cultur-
ing conditions, ACKR3 expression is associated with increased 
numbers of living cells (112). Moreover, ACKR3 was linked to 
enhanced expression of vascular adhesion molecules, matrix met-
alloproteinases (MMPs) and angiogenic factors (113). The recep-
tor mediates antiapoptotic effects, STAT3 signaling and regulates 
macrophage colony-stimulating factor-induced signaling, thereby 
promoting tumor development, invasiveness and metastasis 
(113, 114). Lastly, CXCL10, but not the two other IFN-inducible 
CXCR3 ligands, has been suggested to display high affinity (Kd 
of 1–6 nM) for a functional receptor, different from CXCR3 and 
GAG, on certain non-hematopoietic cells such as epithelial and 
endothelial cells (115). This latter CXCL10-specific receptor may 
be implicated in endothelial cell migration and metastasis.

GAG-BiNDiNG PROPeRTieS OF  
iFN-iNDuCiBLe CXCR3 LiGANDS

A widely accepted concept in the chemokine field is the idea 
that chemokine-directed leukocyte migration in  vivo requires 
interaction between chemokines and GAGs (116–123). GAGs are 
polysaccharides usually present as part of proteoglycan complexes 
located in the glycocalyx and extracellular matrix. They are nega-
tively charged and retain chemokines—which are usually highly 
basic—thereby facilitating generation of a chemotactic concentra-
tion gradient that navigates leukocyte migration. GAG-mediated 
immobilization of chemokines allows chemokine presentation to 
their receptors on leukocytes. Interaction with GAGs promotes 
chemokine oligomerization and may also protect chemokines 
against proteolysis (124–126). All IFN-inducible CXCR3 ligands 
interact with GAGs and these interactions are essential for their 
in vivo function. For example, recruitment of plasmacytoid DCs 
requires immobilization of the IFN-inducible CXCR3 ligands on 
GAGs (127). CXCL9 in particular is an interesting chemokine 
in the context of GAG interactions due to its exclusive COOH-
terminal extension that consists for circa 50% of basic amino 
acids. Consequently, although CXCL9 is less potent on CXCR3, 
it is the most efficient GAG-interaction partner of the three IFN-
inducible CXCR3 ligands. Our lab previously synthesized several 
peptides derived from the COOH-terminal domain of CXCL9 
and showed that these highly positively charged molecules, 
specifically a peptide containing the 30 most COOH-terminal 
residues of full length CXCL9, compete with chemokines for 
GAG binding, thereby hindering CXCL8- and monosodium 
urate crystal-induced neutrophil extravasation in vivo (47, 128). 
Their extremely high affinity for GAGs also confers these peptides 
antiviral properties against GAG-binding viruses such as Dengue 
virus serotype 2, herpes simplex virus-1 and respiratory syncytial 
virus (129). Binding of the CXCL9-derived peptides to both solu-
ble and cellular GAGs of different origin was recently evidenced. 
Shorter peptides (less than 30 amino acids) displayed reduced 
GAG binding when NH2-terminal residues were omitted (128). 
Moreover, when i.v. injected in mice, the most potent peptide 
bound to the luminal side of endothelial cells, and prevented 
adhesion of neutrophils.

Although they lack such a unique positively charged tail as 
CXCL9, also CXCL10 and CXCL11 interact with GAGs. Moreover, 
it was demonstrated that in  vivo, but not in  vitro, chemotaxis 
induced by these chemokines, requires GAG interaction (116, 117). 
Interestingly, residues 20–24, 46, and 47 of CXCL10 were found 
critical regarding GAG-binding, but are also involved in CXCR3 
interaction and signaling (130). Key residues for GAG-binding of 
CXCL11 are a set of basic amino acids located in the 50s cluster of the 
chemokine as well as Lys17 (117). However, mutating these residues 
does not impair its potency on CXCR3. The role of GAGs in regulat-
ing the activity of CXCL10 and CXCL11 is probably not limited to 
their effect on chemokine-induced cell migration. In mice, CXCL10-
mediated inhibition of pulmonary fibrosis requires binding of the 
chemokine to GAGs (131). Furthermore, the antifibrotic properties 
of CXCL10 after myocardial infarction and inhibition of cardiac 
fibroblast migration manifest in a CXCR3-independent manner and 
are probably rooted at the level of CXCL10-GAG interactions (132). 
Evidence suggests that CXCL10 exerts antiviral properties against 
Dengue virus by competing for heparan sulfate binding (129, 133). 
Also its antiproliferative effects on endothelial cells might not require 
CXCR3-interaction, but may be attributed to GAG-binding (134). 
Indeed, it was suggested that the inhibitory effects on endothelial cell 
proliferation and angiostatic properties of CXCL10 are mediated via 
its specific heparan sulfate binding site (135). However, in human 
melanoma, the angiostatic effects of CXCL10 are mediated through 
CXCR3, in a GAG-independent manner (136). Furthermore, soluble 
heparin competes with the three IFN-inducible CXCR3 ligands for 
binding to endothelial cells, inhibiting transendothelial migration 
and arterial recruitment of T cells (137). Thus, implying that soluble 
and immobilized GAGs differently affect chemokine function and 
suggesting a potential therapeutic anti-inflammatory role for non-
anticoagulant heparin derivatives (137). Despite the original vision 
that the GAG-binding domain is located in the COOH-terminal 
chemokine region whereas the major domain for receptor interac-
tion is situated rather NH2-terminally, it was found that the two 
major interaction regions are not strictly limited to, respectively, 
the COOH- and NH2-terminus, as mentioned before for CXCL10 
(48, 130). This may imply that GAGs and chemokine receptors can 
show a certain degree of competition for chemokine binding, with 
a context-dependent outcome. Thus, whether the main interaction 
partner through which chemokines exert their biological functions 
is rather a GAG or their cognate protein receptors probably depends 
on the specific environment.

Also for CXCL11, interference with GAG binding may be inter-
esting from a therapeutic point of view. For example, interfering 
with CXCL11-GAG interactions using the multifunctional protein 
TNF-stimulated gene-6, modulates the inflammatory response 
(138). In mice, CXCL10 shows a higher affinity than CXCL11 for 
heparan sulfate, which is the most abundant and probably most 
biologically relevant GAG (Kd 0.95 ± 0.08 versus 118.3 ± 53.3 nM) 
(139). However, another study reported that the Kd of CXCL11 
for heparin and heparan sulfate is below 10 nM, and that bind-
ing of CXCL11 to these two GAGs is featured by intermediate 
dissociation and high association, and therefore an overall high 
affinity, with o-sulfation contributing to the chemokine-GAG 
interaction (140). The fact that conflicting results are obtained in 
different studies may suggest that the role of chemokine–GAG 
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binding is context-dependent. Furthermore, regarding studies 
that rely on surface plasmon resonance technology, the results 
probably depend on the exact chip coating and GAG modification  
(e.g., biotinylation), GAG identity (length, amount and density of 
sulfate and carboxylate groups) and concentrations tested. Also 
GAG density may codetermine chemokine affinity for GAGs (141). 
Additionally, the exact affinity observed for a specific GAG is most 
probably different for a human chemokine and its murine counter-
part. To add another level of complexity, it was found that CXCL11 
exhibits conformational heterogeneity, and the different states 
probably display divergent affinities for CXCR3 and GAGs (117). 
Strikingly, the GAG-binding affinity of CXCL11 in its high GAG-
affinity state, equals typical receptor binding affinity. Recently, it 
was demonstrated that multiple chemokines, including CXCL11, 
may provoke rearrangement and clustering of GAG chains (141). 
This phenomenon likely requires chemokine oligomerization, 
a process that itself is believed to occur in a GAG-dependent 
way. The exact molecular machinery underlying GAG-mediated 
chemokine oligomerization remains largely unknown. However, 
for CXCL10, but also for several other chemokines, GAG-induced 
oligomerization was found to be required for its in vivo activity 
(116, 119, 142). Oligomeric forms of CXCL9 and CXCL10 likely 
occur in physiological circumstances (116, 143, 144).

Scientific evidence suggests that GAGs not only modulate the 
activity of IFN-inducible CXCR3 interacting chemokines directly 
through ligand binding, but also play a role in upstream chemokine 
regulation. For example, unfractionated heparin inhibits IFN-γ-
induced CXCL9 and CXCL10 production by human breast cancer 
cells dose-dependently (145). Moreover, unfractionated heparin 
impacts the IFN-γ response at multiple levels by inhibiting IFN-γ 
binding to the cells and modulating STAT1 phosphorylation 
downstream of IFN-γ (145). In contrast to the inhibitory effect of 
unfractionated heparin on chemokine production, low molecular 
weight hyaluronan fragments and no other GAGs induce CXCL10 
via the NF-κB pathway (146). Furthermore, our lab recently found 
that soluble GAGs interfere with the interaction between CXCR3 
and its IFN-inducible ligands (126).

The multidimensional roles of GAGs in chemokine regula-
tion may also be interesting from a therapeutic point of view. 
A study aiming at improving insights into interactions between 
chemokines and the extracellular matrix showed that the heparin 
binding domains of CXCL10 and CXCL11 are also involved in 
binding of these chemokines to the extracellular matrix proteins 
fibrinogen and fibronectin (147). Strikingly, this apparently does 
not apply for CXCL9. Interestingly, CXCL11 synergized with 
fibronectin in wound healing. These observations underscore the 
importance of interactions between chemokines and the extracel-
lular matrix components in general, thus suggesting that these are 
not restricted to GAG binding.

ReGuLATiON OF iFN-iNDuCiBLe  
CXCR3 LiGAND ACTiviTY BY 
POSTTRANSLATiONAL MODiFiCATiON
Regulation of the precise chemokine activity and receptor speci-
ficity is a multidimensional process with potentially a central 
role for posttranslational modifications such as proteolytic 

processing, citrullination, nitration and glycosylation (14–17). 
Depending on the mode of processing and the chemokine 
involved, natural modifications may drastically modulate the 
in vitro and in vivo chemokine potency. The three IFN-inducible 
CXCR3 ligands make no exception to this rule (Table 2; Figures 4 
and 5). Human CXCL9, CXCL10, and CXCL11 and murine 
CXCL10 all contain a Pro residue at the penultimate NH2-
terminal position in their sequence, implying that they are sub-
strates for dipeptidyl peptidase (DPP) 4 or CD26 (46, 148–152).  
In addition, CXCL10 and CXCL11 are also processed by the 
related enzyme DPP8 (153). The multifunctional protein CD26 
exhibits serine protease catalytic activity and preferably cleaves 
dipeptides from substrates with a (hydroxy)Pro or Ala in the sec-
ond position at the NH2-terminus. The IFN-inducible CXCR3 
ligands, especially human CXCL10 and CXCL11 and murine 
CXCL10, are short half-life CD26 substrates (148, 149). For all 
human IFN-inducible CXCR3 interacting chemokines, CD26-
mediated processing results in loss of chemotactic activity with 
retention of angiostatic features. Moreover, this site-specific trun-
cation converts CXCL10 and CXCL11 into CXCR3 antagonists. 
Natural CD26-processed isoforms of CXCL10 and CXCL11, 
i.e., CXCL10(3–77) and CXCL11(3–73), were isolated from cell 
culture supernatant, while CXCL10(3–77) was also detected 
in murine and human body fluids (46, 150, 151, 153–156).  
Coexpression of CXCL10 and membrane-bound CD26 was 
found on stimulated fibroblasts, suggesting the existence of a 
negative feedback machinery controlling CXCL10-dependent 
chemotaxis (46). Indeed, regarding the effect of CD26-mediated 
truncation for the biological activity of IFN-inducible CXCR3 
ligands, one could speculate that CD26 expression and/or 
specific enzymatic activity may be reduced when the role of 
these chemokines becomes particularly relevant. However, this 
hypothesis has not been proven yet (157). CXCL10 was claimed 
to be the most relevant chemokine biomarker in patients with 
rheumatoid arthritis, but also large numbers of CD26-expressing 
cells were found in these patients (158–160). Remarkably, 
although rheumatoid arthritis was not associated with altered 
levels of soluble CD26, the specific activity of the enzyme was 
reduced, probably because of glycosylation (161, 162). In mice, 
inhibition of CD26 was found to protect CXCL10 from inacti-
vation, resulting in enhanced T cell infiltration into the tumor 
tissue, thereby improving not only the natural antitumor immu-
nity but also the response to existing immunotherapies (156). 
In humans, CD26-mediated cleavage of CXCL10 correlates 
with failure to spontaneously clear viral hepatitis C infection  
(163, 164). Recently, direct evidence in favor of CD26 inhibition 
to preserve full length, active CXCL10 and prevent cleavage 
into the inactive isoform CXCL10(3–77), was found in humans 
(150). Interestingly, we recently demonstrated that GAGs pro-
tect human CXCL9, CXCL10, and CXCL11 against processing 
by CD26 in a dose-dependent manner (126).

In addition to NH2-terminal truncation, also the COOH-
terminal domain of IFN-inducible CXCR3 ligands can be 
naturally cleaved (Figures  4 and 5). COOH-terminal process-
ing seems biologically most relevant for CXCL9. As early as in 
1995, it was reported that natural CXCL9 displays a high degree 
of COOH-terminal heterogeneity, with most of the secreted 
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TABLe 2 | Posttranslational modifications of IFN-inducible CXCR3 ligands.

CXCR3 
ligand

Mode of 
processing

Responsible 
enzyme(s)

Confirmation of 
processing 

Biological consequences Natural source of modified 
chemokine

Reference

CXCL9 NH2-terminal 
cleavage

CD26/DPP4 In vitro Loss of signaling and chemotaxis on 
leukocytes

ND (148, 149)

Retains antiangiogenic activity

COOH-terminal 
cleavage

Furin In vitro ND ND (165)
MMP-7, -9, -12 In vitro ND ND (166, 167)
ND In vitro Reduced calcium response THP-1 cells, human peripheral 

blood monocytes
(168)

ND In vitro ND PBMCs (47)

Degradation MMP-8 In vitro Inactivation ND (166)

CXCL10 NH2-terminal 
cleavage

CD26/DPP4, 
DPP8

In vitro, in vivo 
(CD26/DPP4)

Inactivation, CXCR3 antagonist Fibroblasts, osteosarcoma cells, 
human and murine plasma

(46, 148–150, 
153–156)

COOH-terminal 
cleavage

Furin + CP-B in vitro, in vivo Unaltered in vitro activity IFN-γ-stimulated primary human 
keratinocytes

(165)

MMP-8, -12 In vitro ND ND (166, 169)

Cleavage at both 
termini

MMP-2, -9 In vitro ND ND (166, 167)

Degradation MMP-7, -9 In vitro Inactivation ND (166, 169)

Citrullination PAD2, PAD4 In vitro Reduced activity dsRNA- and IFN-γ-stimulated 
PBMCs

(48)

CXCL11 NH2-terminal 
cleavage

CD26/DPP4, 
DPP8

In vitro Inactivation, CXCR3 antagonist IFN-γ-stimulated keratinocytes (148, 149, 151, 
153)

CD26/
DPP4 + CD13

In vitro Reduced angiostatic activity dsRNA- and IFN-γ-stimulated 
PBMCs and fibroblasts

(170)

Cleavage at both 
termini

MMP-8, -9, -12 In vitro NH2-terminal cleavage: CXCR3 antagonist 
increased GAG binding. These effects are 
lost upon subsequent COOH-terminal 
processing

ND (169)

Degradation MMP-7, -12 In vitro Inactivation ND (169)

Citrullination PAD2 In vitro Reduced activity ND (48)

CP-B, carboxypeptidase B; DPP, dipeptidyl peptidase; IFN, interferon; MMP-, matrix metalloprotease; ND, not determined; PAD, peptidylarginine deiminase.
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chemokine lacking up to 25 amino acids (168). In our lab, 
COOH-terminally shortened isoforms and no full length CXCL9 
of 103 amino acids was detected in cell culture supernatant from 
PBMCs stimulated with dsRNA and IFN-γ, and from fibroblasts 
stimulated with dsRNA, IFN-γ, or LPS (47). Enzymes responsi-
ble for COOH-terminal processing of CXCL9 in vitro are furin 
and MMP-7, MMP-9, and MMP-12 (165, 166, 169). However, 
these are extracellular proteases, while it has been suggested that 
natural COOH-terminally truncated CXCL9 isoforms may result 
from proteolysis even before chemokine secretion, at least when 
considering CXCL9 produced by the Chinese Hamster Ovary cell 
line (168). In addition to the possibility of yet uncharacterized key 
player enzymes and processing mechanisms, also the exact biologi-
cal impact of COOH-terminal cleavage on CXCL9 activity in vivo 
remains largely unknown. However, the truncated isoforms are 
less potent in in vitro calcium mobilization assays, underscoring 
the idea that the physiological function of the COOH-terminal 
chemokine region is not limited to merely GAG binding (168). 
Worth mentioning, COOH-terminally truncated CXCL9 species 
do not antagonize the activity of the native chemokine (168).

In vitro, the COOH-terminal domain of CXCL10 can be 
cleaved by MMP-8 and MMP-12, while the related enzymes 
MMP-2, MMP-7 and MMP-9 rather process the chemokine at 

both termini or completely destroy the protein (166, 167, 169). 
For CXCL10, COOH-terminal processing by furin plus car-
boxypeptidase B (CP-B) was confirmed in vivo (165). However, 
no evidence was found for altered biological functioning of 
CXCL10 modified by furin/CP-B. Conflicting results have been 
reported regarding cleavage of CXCL9 and CXCL10 by MMP-8 
and MMP-9. Two studies reported MMP-9-mediated process-
ing of CXCL10, with one also demonstrating cleavage of the 
chemokine by MMP-8 (166, 167). The authors of the latter study 
also reported processing of CXCL9 by both enzymes (166). In 
contrast, in a third study, cleavage of CXCL9 and CXCL10 by 
the two MMPs could not be confirmed (169). In the context of 
proteolytic processing by MMPs, CXCL11 is a highly remarkable 
ligand. On the one hand, removal of its four most NH2-terminal 
residues by MMP-8, MMP-9, or MMP-12 turns the chemokine 
into a CXCR3 antagonist with increased heparin binding proper-
ties (169). However, on the other hand, upon subsequent cleavage 
by these MMPs near position 58 in the COOH-terminal domain 
of CXCL11, the antagonistic features and altered GAG binding 
of CXCL11 that resulted from NH2-terminal processing are lost.

Thus, all human IFN-inducible CXCR3 ligands are substrates 
for specific MMPs and CD26, with CXCL11 being most sus-
ceptible to cleavage by most of these enzymes, at least in vitro 
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FiGuRe 4 | Identified modifications of IFN-inducible CXCR3 ligands. Schematic linear structures of CXCL9, CXCL10, and CXCL11. Enzymes responsible for 
chemokine modification and corresponding cleavage sites, if determined, are indicated. Conserved Cys residues are indicated in pink. CP-B, carboxypeptidase B; 
CXCR, CXC chemokine receptor; DPP, dipeptidyl peptidase; IFN, interferon; MMP-, matrix metalloprotease; ND, not determined; PAD, peptidylarginine deiminase.
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(148, 149, 169). Although processing of CXCL10 has been 
studied more intensively in an in vivo context, in vivo evidence 
of natural modification of CXCL11 is scarce at the moment. 
The reason why CXCL11 has been investigated to a lesser 
extent in vivo may be rooted at multiple levels. First, concentra-
tions of the naturally secreted chemokine are often rather low 
compared to CXCL9 and CXCL10, at least when considering 
cell culture supernatant from stimulated endothelial cells (107) 
or leukocytes (35). Additionally, several independent research 
groups suggest that C57/BL6 mice, one of the most routinely 
used animal models, do not express endogenous CXCL11  
(171, 172). Lastly, regarding CD26-mediated processing speci-
fically, murine CXCL11 and CXCL9 do not contain a Pro in 
the penultimate NH2-terminal position, implying that they are 

no substrates for CD26. However, the short in vitro half-life of 
human CXCL11 in the presence of various proteolytic enzymes, 
combined with the drastic effects of modification on its biologi-
cal activity, imply that proteolytic modification of CXCL11 in 
humans may be highly relevant.

In addition to enzymatic modification generating truncated 
isoforms of the IFN-inducible CXCR3 ligands, also site-
specific citrullination by peptidylarginine deiminases (PADs) 
has been evidenced for CXCL10 and CXCL11 (Figures 4 and 5). 
Specifically, PADs can deiminate the positively charged Arg 
residue toward the neutral amino acid citrulline (Cit) at the 
NH2-terminal positions 5 and 6 of CXCL10 and CXCL11, 
respectively (48). Compared to native CXCL10 and CXCL11, 
[Cit5]CXCL10, and [Cit6]CXCL11 show impaired T  cell 
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FiGuRe 5 | 3D models of interferon-inducible CXC chemokine receptor 3 (CXCR3) ligands. CXCL9 was modeled with Swiss-Model software using CXCL8 as a 
template. CXCL10 and CXCL11 were drafted with PDB accession numbers 1LV9 (84) and 1RJT (85), respectively. Yellow, potential citrullination sites; red, residues 
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13

Metzemaekers et al. CXCR3 and Its Interferon-Induced Ligands

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1970

chemotactic activity and [Ca2+]i mobilization, and reduced 
GAG-binding, while their receptor binding properties remain 
unaffected. Moreover, natural [Cit5]CXCL10 was found in 
conditioned medium from stimulated PBMCs. Thus, despite 
the fact that citrullination increases the molecular mass of 
the substrate involved by only 1 mass unit, significant con-
sequences for the biological chemokine function may result. 
Furthermore, emerging evidence suggests that protein citrul-
lination becomes more important in an inflamed environment 
(173, 174).

Although the biological effects of multiple modifications of  
IFN-inducible CXCR3 ligands has been examined in vitro or 
even in vivo, the exact underlying molecular pathways remain  
largely unknown. For example, it is yet to be elucidated whether  
specific modifications selectively affect Gα protein- or β-arrestins- 
dependent pathways. Moreover, one could speculate that post-
translational processing may convert the chemokine into a 
biased ligand that preferentially induces activation of a specific 
signaling cascade through its receptor. Furthermore, the fact 
that most enzymes known to process IFN-inducible CXCR3 
agonists are upregulated in an inflamed environment, suggests 
that chemokine modification may become more relevant during 
pathophysiological circumstances. Consequently, one could 
speculate that modified chemokine isoforms can be biomarkers 
for specific diseases. This hypothesis is favored by the observa-
tion that CD26-truncated CXCL10 correlates with HCV disease 
activity (149, 164).

uNPReCeDeNTeD veRSATiLiTY OF  
iFN-iNDuCiBLe CXCR3 LiGANDS AS 
eXeMPLiFieD iN ANGiOGeNeSiS, 
CANCeR AND iNFLAMMATiON

Relevance of iFN-inducible CXCR3 
Ligands in Disease and Therapy
The inflammatory nature and chemotactic activity for T  cells 
and NK  cells, among others, implies that CXCL9, CXCL10, 
and CXCL11 may be key players in inflammation and autoim-
munity. In addition, their antiangiogenic effect, which was first 
confirmed in vitro and in vivo for CXCL10 (175, 176), implies 
that the biological function of IFN-inducible CXCR3 ligands 
extends beyond their hallmark function of directing migration 
of CXCR3 expressing leukocytes. Meanwhile, also the angiostatic 
properties of the two other IFN-inducible CXCR3 agonists and 
of the platelet-derived CXCL4 and CXCL4L1 were demonstrated 
(78, 82, 149, 177–179). Addition of CXCR3 neutralizing antibod-
ies was found to abrogate migration of human endothelial cells 
and to inhibit the CXCL4L1-induced antiangiogenic activity 
in the rat cornea (78, 180). Moreover, anti CXCR3 antibodies 
prevented inhibition of tumor growth and CXCL4L1 had no 
effect on tumor growth in CXCR3−/− mice (78). These results 
may indicate that the angiostatic effect of the CXCR3 ligands is a 
CXCR3-dependent phenomenon, at least when chemokines are 
exogenously added. Moreover, in a murine model of Candida 
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albicans uveitis, neutralization of CXCR3 increased angiogen-
esis in the cornea, indicating that murine CXCR3 in this model 
provides a negative feedback on vessel formation (181). A similar 
observation was made in vitro in cocultures of human pericytes 
and endothelial cells. The pericytes suppress endothelial network 
formation, but this inhibitory action was reversed by adding 
neutralizing anti-CXCR3 antibodies (182). Also in a murine 
model of liver fibrosis, in which angiogenesis and fibrosis are 
induced by carbon tetrachloride (CCl4), CXCR3 has been 
shown to dampen angiogenesis (183). Indeed, angiogenesis 
was attenuated in CXCR3−/− mice, compared to wildtype mice. 
Enhanced neoangiogenesis and VEGF/VEGFR2 expression in 
Cxcr3−/− mice compared with wildtype littermates was strongly 
linked to fibrosis progression. There are also indications that 
CXCR3A is not the receptor mediating the antiangiogenic effects 
of its ligands. Administration of human CD26-truncated forms 
of both CXCL9 and CXCL10, which do not induce a calcium 
signal or chemotaxis through CXCR3A, retain antiangiogenic 
properties in the rabbit cornea assay (149). This implies that 
either alternative signaling pathways through CXCR3, receptor 
variants or alternative receptors, with a potential role for GAGs, 
are involved in the antiangiogenic activity. In addition, although 
an inhibitory effect of CXCR3 ligands was observed in many 
experimental models, to our notice there is no direct evidence 
showing the role of endogenously expressed CXCL9, CXCL10, 
and CXCL11 in angiogenesis in humans.

The fact that they are believed to regulate angiogenesis self-
evidently suggests that these chemokines may also be involved in 
tumor biology and hematological malignancies (24). In general, 
differential and context-dependent roles have been attributed to 
IFN-inducible CXCR3 ligands in numerous in vivo disease mod-
els (24, 25). However, summarizing all roles that were claimed for 
IFN-inducible CXCR3 ligands in specific diseases of inflamma-
tory and non-inflammatory origin, and the potential therapeutic 
relevance of interfering with the IFN-related CXCR3 chemokine 
network was previously done and extends beyond the scope of 
this review (24, 184–194). Hence, within the present review we 
included selected examples of IFN-inducible CXCR3 ligands in a 
biological context, and aim to illustrate that the multidimensional 
regulatory machinery and ligand-specific properties as indicated 
above may offer IFN-inducible CXCR3 ligands their non- 
redundant and context-dependent activities. Thus, we speculate 
that ligand exclusivity is the biological consequence of unprece-
dented versatility delineating the IFN-related CXCR3 chemokine 
system (Figure 2).

examples of Non-Redundancy and 
Dominance of Specific iFN-inducible 
CXCR3 Ligands
First of all, regarding the in  vivo chemotactic and angiostatic 
activity of individual IFN-inducible CXCR3 ligands, one has to 
keep in mind that most experimental models do not take into 
account the exclusive temporal and spatial expression patterns 
that seem inherent to individual ligands. For example, an early 
model claiming that IFN-inducible CXCR3 ligands recruit T cells 
to lung tissue with similar efficacy did not consider this aspect of 

chemokine regulation (195). The fact that CXCL9, CXCL10, and 
CXCL11 may be secreted at specific time points by specific cells in 
response to specific stimuli forms a first line of complexity when 
aiming to unravel their individual contributions during immune 
events. Although the vast majority of published data considering 
IFN-inducible CXCR3 ligands points toward non-redundant 
roles for individual ligands in vivo, few studies evidenced that 
ligand redundancy may exist in particular milieus. For example, 
loss of either CXCL9 or CXCL10 was countervailed for by the 
presence of the other in a murine model of obliterative bronchi-
olitis (196). Nevertheless, multiple reports exist on key roles for 
individual IFN-inducible CXCR3 ligands in particular diseases, 
emphasizing that ligand dominance may occur more commonly 
between IFN-inducible CXCR3 ligands. For example, neither 
CXCL9 nor CXCL11 could compensate for the loss of CXCL10 
activity in experimental models for infection with Dengue virus 
and West Nile virus (197, 198). In addition to a dominant role 
for CXCL10 in these viral infection models, the chemokine was 
demonstrated to also fulfill non-redundant activities in a mouse 
model of vitiligo (199). In pulmonary sarcoidosis, CXCL10, 
and not CXCL9 nor CXCL11, is released by bronchoalveolar 
lavage cells (200). One has to keep in mind that most research 
conducted on the IFN-related CXCR3 chemokine system 
involves CXCL10, although this does not mean that CXCL10 is 
always the most relevant IFN-inducible CXCR3 ligand. In line 
with this idea, an essential role for CXCL9 but not CXCL10 was 
demonstrated for example during murine kidney inflammation 
(201). CXCL9 also was specifically associated with macrophage 
activation syndrome complicating systemic juvenile idiopathic 
arthritis (202). The currently available studies on in  vivo 
functions of CXCL11 are limited, entailing a potential risk for 
underappreciating this chemokine. To support the idea that also 
CXCL11 may be a most relevant member of the IFN-inducible 
CXCR3 ligand family, a recent study suggested potential associa-
tion between a homozygous CXCL11 variant with an increased 
risk of contact allergy (203). In addition, and inherent to the lack 
of CXCR3 spliced variants in mice, most animal models do not 
allow to investigate a potential role for a cell-specific expression 
of receptor variants and different signaling pathways through 
these variants in patients.

examples of Collaboration and Mutual 
Antagonism of iFN-inducible CXCR3 
Ligands
In addition to ligand dominance, also the simultaneous expression 
of more than one IFN-inducible CXCR3 ligand can be prototypi-
cal for a disease, and eventually a certain degree of collaboration 
may exist between the three ligands. For example, upregulation 
of CXCL10 and CXCL11 was found in patients with Chlamydia 
Trachomatis (204). Production of all three IFN-induced CXCR3 
ligands was enhanced in cerebral malaria in mice, and mouse 
strains that were more susceptible to the disease had an enhanced 
expression of the CXCR3 receptor (205). Moreover, both CXCL9 
and CXCL10 were reported to be required for development of 
cerebral malaria in mice (206). Also the host’s ability to control 
herpes simplex type 2 infection was found to involve CXCL9 
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and CXCL10 (207). Regarding diabetes, production of all three 
IFN-inducible CXCR3 ligands by pancreatic β-cells may precede 
disease onset (208). Nevertheless, data from a study on rejection 
of allograft heart transplants provided an example of antagonism 
between IFN-inducible CXCR3 ligands, since increased levels 
of CXCL9 suppressed CXCL10 expression in this context (209). 
Interestingly, in addition to a potential mutual effect on each  
other’s expression or function, also crosstalk between IFN-
inducible CXCR3 ligands and non-CXCR3 interacting chemokines 
may occur. Specifically, CXCL9, CXCL10, and CXCL11 increased 
the sensitivity of plasmacytoid DCs to the constitutively expressed 
CXCR4 ligand CXCL12 by 20–50-fold (210). Moreover, collabo-
ration seems not only restricted to chemokines, since synergy was 
also described between CXCR3 and the T cell receptor (211). In 
contrast, coexpression of the atypical receptor ACKR4 completely 
inhibited CXCR3-mediated chemotaxis (212).

Due to their potential to inhibit angiogenesis and recruit 
antitumor leukocytes, IFN-inducible CXCR3 ligands may 
function as tumor suppressors (213). For example, in colorec-
tal cancer high levels of CXCL9 and CXCL10 correlated with 
increased disease-free survival (214). It was suggested that 
increasing CXCL9 and CXCL10 might be an effective immu-
notherapeutic approach in this type of disease (215). Moreover, 
in melanoma enhanced CXCL9 and CXCL10 correlated with 
reduced metastasis (216). As a last example of IFN-inducible 
CXCR3 interacting chemokines as potential tumor suppres-
sors, CXCL9 and CXCL10 were found to promote the natural 
antitumor immunity of the host also in gastric cancer (217, 218).  
Nevertheless, the capacity to recruit immune cells such as 
regulatory T cells (219, 220) also implies that CXCL9, CXCL10, 
and CXCL11 can shape the microenvironment toward a rather 
tumor-promoting milieu. Indeed, a critical role for CXCL10 and 
to a lesser extent CXCL9 and CXCL11 was found in promoting 
breast cancer development (221). CXCL10 and CXCL11 were 
also associated with poor prognosis in a model for colorectal 
cancer by initiating macrophage infiltration (222).

Final Remarks
Most reports on IFN-inducible CXCR3 ligand activities do not 
consider the facts that three CXCR3 isoforms have been identi-
fied, that also two platelet-derived chemokines interact with 
CXCR3 and that CXCL11, but not CXCL9 or CXCL10, is a ligand 
for ACKR3. This consequently adds an important dimension  
of complexity to the IFN-related CXCR3 chemokine system.  

Indeed, the fact that eventually opposing downstream pathways 
may be initiated by different CXCR3 isoforms may explain the 
differential activity of a specific IFN-inducible CXCR3 ligand 
(74). In addition to multiple CXCR3 isoforms, also several 
isoforms of IFN-inducible CXCR3 ligands themselves may 
exist in vivo (14–17). As mentioned, numerous studies reported 
association between up- or downregulation of one or more IFN-
inducible CXCR3 ligands and a specific disease state. However, 
it is usually unclear whether the authentic, full length chemokine 
or a modified isoform with a drastically different biological 
activity is most abundant. Indeed, the slowly appearing scien-
tific evidence that in vivo functioning of IFN-inducible CXCR3 
ligands is modulated by posttranslational modification may also 
explain apparently opposing activities of IFN-inducible CXCR3 
ligands. This idea is supported by the fact that enzymes known to 
process these chemokines into molecules with altered biological 
activity are naturally upregulated in specific diseases. Overall, 
the versatility that seems inherent to the IFN-related CXCR3 
chemokine system emphasizes the need for antibodies and 
sensitive techniques able to discriminate between specific forms 
of the IFN-inducible CXCR3 variants in biological samples and 
in vivo. We speculate that improved insights into the presence 
and abundance of both receptor and chemokine isoforms would 
dramatically contribute to our understanding of the IFN-related 
CXCR3 chemokine network. Moreover, due to their apparent 
roles in infection, inflammation, angiogenesis, and cancer, 
thoroughly understanding the IFN-related CXCR3 chemokine 
system would be of clinical value, both from a diagnostic and 
therapeutic point of view.
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