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CCR5 and its interaction with chemokine ligands have been crucial for understanding 
and tackling HIV-1 entry into target cells. However, over time, CCR5 has witnessed 
an impressive transition from being considered rather unimportant in physiology and 
pathology to becoming central in a growing number of pathophysiological conditions. 
It now turns out that the massive efforts devoted to combat HIV-1 entry by interfering 
with CCR5, and the subsequent production of chemokine ligand variants, small chem-
ical compounds, and other molecular entities and strategies, may set the therapeutic 
standards for a wealth of different pathologies. Expressed on various cell types, CCR5 
plays a vital role in the inflammatory response by directing cells to sites of inflammation. 
Aside HIV-1, CCR5 has been implicated in other infectious diseases and non-infectious 
diseases such as cancer, atherosclerosis, and inflammatory bowel disease. Individuals 
carrying the CCR5Δ32 mutation live a normal life and are warranted a natural barrier to 
HIV-1 infection. Therefore, CCR5 antagonism and gene-edited knockout of the receptor 
gained growing interest for the therapeutic role that CCR5 blockade may play in the 
attenuation of the severity or progression of numerous diseases.
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inTRODUCTiOn

From its discovery, CCR5 has been a key player in HIV-1 entry into target cells and, together with 
its chemokine ligands, helped in understanding and tackling HIV-1 infection (1, 2). CCR5 predomi-
nates among the chemokine co-receptors used by HIV-1 for cell entry, and R5-tropic HIV-1 strains 
are those most commonly transmitted in the early stages of infection. A 32 base pair deletion within 
the CCR5 gene leads to a non-functional gene product that does not reach the cell surface, and 
subjects with a homozygous CCR5Δ32 deletion are protected from HIV-1 infection (3).

The discovery and implication of CCR5, CXCR4, and their chemokine ligands in HIV-1 patho-
genesis triggered massive research efforts that cross-fertilized many biomedical fields related to the 
chemokine system and regulation. In recent years, evidence has accumulated that CCR5 and its 
ligands may play a role in various inflammatory diseases, as cellular activation of CCR5 normally 
happens through chemokine binding, which then regulate intracellular trafficking and protective 
cellular and humoral responses. Indeed, the migration of lymphocytes to inflammatory areas is 
controlled by chemokine gradients (4). CCR5 may also be relevant in the development of various 
types of cancer, as tumor cells directly secrete or induce fibroblasts to secrete CCL5, which maintain 
proliferation of CCR5-positive cancer cells. Finally, CCR5 may play a role in autoimmune diseases 
such as rheumatoid arthritis and multiple sclerosis (MS).

In this mini-review, we describe several aspects related to the pathophysiology of CCR5, discuss 
its possible dispensability, and analyze its blockade as a comprehensive therapeutic perspective.
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FigURe 1 | CCR5 blockade. CCR5 blockade may occur (i) naturally (triangle on the bottom), by the CCR5Δ32 deletion that prevents the receptor to be 
transported to the cell surface; (ii) via gene editing strategies (triangle on the left) that ablate the CCR5 gene; or (iii) by receptor antagonism (triangle on the right) 
using different molecular entities. The cell membrane is represented with a green rectangle. Ribbon representation of CCR5 and 5p7-CCL5 three-dimensional 
structures were generated using PyMOL from PDB entry 5UIW (10), MVC from PDB entry 4MBS (11), and the FAB fragment of RoAb13 from PDB entry 4S2S 
(12).
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iS CCR5 A DiSCARDABLe 
TROUBLeSOMe ReCePTOR?

Soon after its discovery and implication for HIV-1 entry, CCR5 
has been the subject of extensive research as a possible new player 
in the search for preventative and therapeutic solutions to the 
HIV-1 infection pandemic (2). A radical approach to CCR5 
targeting could be the elimination of the receptor by gene editing, 
in an attempt to resemble the naturally occurring Δ32 deletion 
(5) (Figure 1). This approach has its foundation on the fact that 
individuals homozygous for the CCR5Δ32 deletion are seem-
ingly healthy. The proof of concept for CCR5 elimination has 
been provided by the so-called Berlin patient, an HIV-1 infected 
person who, after a double CCR5Δ32 stem cell transplant, has 
remained HIV free (6, 7). However, the CCR5Δ32 mutation 
dates thousands of years and individuals that carry it naturally 
may have adapted their chemokine system to physiologically bal-
ance the absence of a functional CCR5 (8). Therefore, the effect 

of CCR5Δ32 stem cell transplants and artificially induced CCR5 
knockouts should be considered carefully, and individuals sub-
jected to these treatments should be followed up for a long time 
(9). Similar caution needs to be taken when acting on CCR5 with 
more conventional approaches (e.g., using CCR5 antagonists), 
although drug discontinuation is likely to restore normal CCR5 
expression and function.

Therefore, CCR5 blockade is still an open question, as well 
as the genetic mechanism and environmental pressure that 
generated the CCR5Δ32 mutation. While HIV-1 cannot be 
accounted for the origins of the CCR5Δ32 mutation, these have 
been initially attributed to selective pressure by pathogens such 
as Yersinia pestis or variola virus. However, these hypotheses have 
been dismissed in favor of an older selection event connected to 
a different pathogen (13). Indeed, the CCR5Δ32 gene has been 
detected in Bronze Age skeletons (14) and is estimated to have 
emerged ~5,000  years ago, predating the time during which 
smallpox and plague became widespread human pathogens (13).
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CCR5 in PATHOLOgY

A role for CCR5 has been suggested in numerous diseases, many 
involving the nervous system. CCR5 ligands are produced in the 
central nervous system (CNS) by microglia, astrocytes, endothe-
lial cells, and even neurons (15, 16). The cerebrospinal fluid (CSF) 
of patients with relapsing-remitting MS has CCR2+CCR5+ TH1 
cells during a relapse; CCR5+CD8+ T cells and CCR5+ monocytes 
are higher in the CSF than in the blood of patients with the disease, 
and CCR5 is expressed in inflammatory cells infiltrating the CNS 
in vivo (17, 18). CCR5 is also expressed on immune cells within 
inflammatory lesions in MS and may contribute to recruitment of 
these cells to the inflamed tissue or to their activation. Finally, the 
expression of CCR5 ligands has been shown at sites of inflamma-
tion in MS (19). Interestingly, MS can develop in people who are 
homozygous for the CCR5Δ32 mutation. The CCR5Δ32 allele 
is not associated with MS risk (20, 21), but the disease seems to 
be less severe in carriers of the allele (22), suggesting that CCR5 
antagonists might diminish disease activity.

In contrast, homozygosity for the CCR5Δ32 allele is overrep-
resented in patients with symptomatic West Nile virus infection 
(23, 24) and is associated with severe meningoencephalitis in 
tick-borne encephalitis virus infections (25). Most likely, CCR5 
facilitates clearance of these infections by promoting leukocyte 
trafficking to the CNS, a proof of its beneficial effects for human 
health (23). CCR5 may instead be detrimental in patients with 
cerebral malaria, in brain samples of whom it was found to be 
upregulated (26). The CCR5Δ32 allele seems to be associated 
with resistance to Crimean-Congo hemorrhagic fever (CCHF) 
virus infection, at least in the Turkish population (27). Indeed, 
CCL3, CCL4, and CCL5, natural ligands of CCR5, are associated 
with CCHF, and their levels are increased in adult patients with 
the infection (28).

In an emerging infectious disease, dengue virus infection, an 
association has been found with CCR5 expression, and the infec-
tion induces the expression of CCR5 ligands (29).

In its pathogenesis, Toxoplasma gondii produces a chemokine 
mimic that triggers CCR5, a subtle mechanism likely used 
to warrant T. gondii survival in the host (30). However, in the 
absence of CCR5, mice succumb to infection with uncontrolled 
parasite growth, altered lipid metabolism, hepatic steatosis, and 
widespread intestinal damage with ileum necrosis and prominent 
neutrophils infiltrate (31). Whether CCR5 is essential for T. gondii 
infection control in humans is unknown.

Poxviruses use chemokine receptors, including CCR5, to 
infect target cells; however, their molecular mechanism of recep-
tor usage is distinct from that of HIV-1 (32). In a mouse model 
based on intranasal vaccinia virus infection, CCR5 expression in 
T cells contributes to the dissemination of the virus to the lungs 
and beyond; the data suggest that the role of CCR5 in vaccinia 
virus infection is not redundant and that CCR5 may be necessary 
for systemic infection in vivo (33).

Staphylococcus aureus is the cause of a large number of deadly 
infections worldwide, and the emergence of antibiotic-resistant 
S. aureus strains represents a steadily increasing global threat. 
The bicomponent pore-forming leukotoxin ED (LukED) is used 
by S. aureus to compromise the host immune system and cause 

deadly infectivity, and the gene for LukED is present in numerous 
clinically relevant S. aureus strains (34). LukE binds to human 
(and mouse) CCR5 on T cells, macrophages, and dendritic cells 
(35); subsequently, a bicomponent octamer formed by alternate 
LukE and LukD monomers assembles on the surface of target 
cells. The pores formed by LukED ultimately lead to cell death. 
LukED kills CCR5+ cells in  vivo in mice, and animals lacking 
CCR5 are protected from mortality due to S. aureus infection 
(35). Even though both LukE and gp120 target CCR5, they use 
different determinants on the receptor (36). Interestingly, CCR5 
antagonism by maraviroc (a small chemical HIV-1 entry inhibi-
tor) confers mice with resistance to lethal S. aureus infection. 
Maraviroc completely blocks LukED pore formation in  vitro 
and therefore toxicity toward CCR5+ cells (35). Therefore, the 
use of CCR5 antagonists to counteract S. aureus infection is an 
interesting example of antibacterial intervention, alternative or 
even complementary to antibiotics. In light of the debate on the 
emergence of the CCR5Δ32 mutation, the deadly effects of S. 
aureus infections on humankind and LukE tropism for CCR5 
might have generated the ancient selection of the CCR5Δ32 
allele (35).

CCR5 may also have a role in autoimmune diseases. In 
rheumatoid arthritis, increased levels of CCR5 ligands CCL3, 
CCL4, and CCL5 are found in the synovial fluid (37, 38), and 
the CCR5Δ32 variant seems to protect from the disease (39). 
However, maraviroc does not efficiently control inflammation in 
this setting (40).

CCR5 appears to be relevant in atherosclerosis and the 
development of related diseases (41). A meta-analysis of 13 
studies assessed whether individuals carrying the CCR5Δ32 
variant could be either protected or at risk for atherosclerosis-
related cardiovascular diseases and indicated that the CCR5 
Δ32-positive genotype (Δ32/Δ32 or wt/Δ32) increases the risk 
of atherosclerotic disease only in Asian populations (42). In a 
recent report, CCR5 has been described as a non-redundant, 
essential receptor for the homing of CD4 T cells that exacerbate 
atherosclerosis (43).

An increased expression of CCL5 has been detected as early as 
8 days postpartum in a mouse model of tubulointerstitial kidney 
disease, an inflammatory disorder that causes progressive kidney 
damage and renal failure (44). It might be possible that CCL5 
participates in the early cascade of event bridging the unfolded 
protein response (caused by an uromodulin mutation) to inflam-
mation, although further investigations are needed (44).

CCL5 expression is increased in inflammatory bowel disease 
(IBD), likely pointing to a contribution by CCL5 in the progres-
sive tissue destruction during the inflammatory processes (45). 
A recent investigation provided evidence that blocking CCR5 
either by genetic ablation or by pharmacological inhibition with 
maraviroc rescued mice from colitis in both acute and chronic 
models (46). The latter is particularly interesting since the live 
microbicide strategy developed to provide vaginal in vivo delivery 
of CCL5-based HIV-1 entry inhibitors by engineered lactobacilli 
(47) could indeed be applied in the context of IBD, where lacto-
bacilli are naturally resident commensal bacteria.

CCR5 has been implicated in the development of various types 
of cancer, including breast cancer, ovarian and cervical cancer, 
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prostate cancer, colon cancer, melanoma, Hodgkin lymphoma, 
and multiple myeloma (48). Cancer cells secrete CCL5 or induce 
fibroblasts to secrete CCL5, which sustain the proliferation of 
CCR5-positive tumor cells (48); recruit T-regulatory cells and 
monocytes with suppressive functions; cause osteoclast activation; 
and favor bone metastasis, neo-angiogenesis, and dissemination 
of cancer cells to distant organs (49). CCL5 has been reported 
to provide antitumor adjuvanticity or, conversely, to promote 
carcinogenesis, depending on the tumor environment (50). These 
opposite effects appear to be justified by the type of cancer, CCR5 
expression by cancer cells, and localization of CCL5 expression. 
Hence, CCR5 antagonism or activation may be circumstantially 
tailored to provide an antitumor effect (50–53).

Finally, a multivariate analysis of unrelated HLA-matched 
bone marrow transplantation for hematologic malignancies 
conducted in Japan showed that the recipient CCR5-2086A/A 
genotype was significantly associated with a lower relapse rate, 
resulting in better disease-free and overall survival rates than 
other variations (54). Therefore, the recipient CCR5-2086A/A 
genotype affects the induction of the graft-versus-tumor effect 
without augmenting the development of graft-versus-host-
disease (GVHD), and CCR5 genotyping in transplant recipients 
may be useful in determining pretransplantation risks.

In a recently published comparison of a cohort of patients 
enrolled in a trial of reduced-intensity allo-hematopoietic stem 
cell transplantation with standard GVHD prophylaxis plus 
maraviroc and a contemporary control cohort receiving standard 
GVHD prophylaxis alone, maraviroc treatment was associated 
with a lower incidence of acute GVHD without increased risk 
of disease relapse and with reduced levels of gut-specific mark-
ers (55). Maraviroc treatment increased CCR5 expression on 
T cells and reduced T cell activation in peripheral blood without 
increasing the risk of infections. These data suggest that maravi-
roc protects against GVHD through modulation of allo-reactive 
donor T cell responses.

CCR5 gene eDiTing

As discussed earlier, CCR5 knockout induced by gene therapy 
techniques is a strategy to reproduce the naturally occurring 
CCR5Δ32 deletion (56) (Figure 1). However, CCR5 abrogation 
by gene editing has been so far considered exclusively for the 
cure of HIV-1 (5). Zinc finger nucleases (57) have been used on 
CCR5 (58) and recently reviewed for their therapeutic potential 
and clinical trial implications (59). Other CCR5-targeted gene 
editing techniques include the CRISPR/Cas9 nuclease system and 
the transcription activator-like effector nuclease (60), as well as 
short hairpin RNAs (61) and ribozymes (62).

CCR5 AnTAgOniSTS

In 2007, maraviroc, a negative allosteric modulator of the 
CCR5 receptor and therefore competitive CCR5 inhibitor, was 
approved for clinical use as an HIV-1 entry inhibitor that showed 
additional efficiency in antiretroviral-pretreated patients (63). 
Thus, maraviroc is far the single success story emerged from 
the massive pharmaceutical effort spent in the development of 

small chemical compounds acting as chemokine antagonists (64); 
many hurdles were associated with the lack of receptor specificity 
and the toxicity derived from it. The effect of CCR5 antagonism 
by maraviroc in HIV-1-infected individuals has been reported to 
lead to transient early treatment increase in the CD4 count and 
a late treatment increase in the CD8 count, which may imply a 
recovery of the cell-mediated immunity (65). Overall, maraviroc 
treatment did not seem to interfere with normal homeostasis, 
rather to improve it (66, 67), and ameliorate inflammatory pro-
cesses in HIV-1 and beyond (68).

In the effort to attain HIV-1 entry inhibition by CCR5 
blockade, CCR5 must be engaged by antagonist ligands, to avoid 
sustained receptor activation that could generate unwanted pro-
inflammatory conditions. As described above, the participation 
of CCR5 in a large array of chronic inflammatory diseases makes 
CCR5 antagonism (or, more drastically, gene-edited CCR5 knock 
out) an elective therapeutic option.

Two other CCR5 antagonists have been evaluated in clinical 
trials in HIV-infected individuals and have failed to progress. In 
phase II trials in treatment-naive patients of vicriviroc, a non-
competitive allosteric CCR5 antagonist (69, 70), viral rebound 
with continued treatment was observed (71), and in treatment-
experienced patients, there was an increase in malignancies (72). 
Aplaviroc, a spirodiketopiperazine derivative, caused severe 
hepatotoxicity in infected patients in phase II clinical trials (73).

Cenicriviroc is a relatively new CCR5 antagonist presently 
assessed in clinical trials; it inhibits both CCR2 and CCR5 
receptors and has good oral absorption (74). Cenicriviroc may 
offer other benefits in addition to its anti-HIV activity and is also 
currently in clinical trials testing its ability to reduce fibrosis in 
patients with non-alcoholic steatohepatitis and primary scleros-
ing cholangitis (75).

CCL3, CCL4, and CCL5, natural agonist ligands of CCR5, 
represent obvious templates for the development of protein-
based CCR5 antagonists. However, CCR5 activation by these 
chemokines required them to be molecularly switched into 
antagonists. A long-lasting success story is represented by the 
CCL5 derivatives saga (76). Populated by several different 
approaches targeting the chemokine N-terminus, it ultimately led 
to highly potent variants that interact with CCR5 as antagonists 
(77) and are ~200-fold more potent than maraviroc in blocking 
HIV-1 in vitro.

Another protein-based approach to CCR5 antagonism is the 
development of monoclonal antibodies (mAbs) against CCR5 
(78). PRO 140, a humanized IgG4 mAb derived from the murine 
mAb PA14 (79, 80), is currently in a phase III clinical trial (81). 
PRO 140 efficiently inhibits HIV-1 gp120 binding to CCR5 and, 
with lower potency, chemokines interaction with the receptor 
(78). Another promising anti-CCR5 mAb is CCR5mAb004, a 
fully human IgG4 also being tested in clinical trials (82). RoAb13 
is also capable of blocking HIV-1 infection (83), and the three-
dimensional structure of its Fab has been recently solved (12). 
Interestingly, naturally occurring anti-CCR5 antibodies have 
been suggested to contribute to the maintenance of homeostasis 
(84).

Blockade of CCR5 with antagonists is increasingly adopted 
to counteract inflammatory diseases and infections where this 
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receptor plays a relevant role. Being FDA approved and a small 
chemical compound, maraviroc is the CCR5 antagonist of elec-
tion; however, protein-based CCR5 antagonists could be equally 
or even more effective. The three-dimensional structure of the 
complex between CCR5 and maraviroc (11) helped significantly 
in understanding GPCR conformational modularity and visual-
ized the deep insertion of maraviroc in the CCR5 ligand cavity. 
Small chemical compounds have a relatively lower production 
cost and might be easier to administer, compared to protein 
drugs. However, last generation CCL5-based antagonists (77) 
provided in vitro anti-HIV-1 potency far superior than that of 
maraviroc and grant a virtually absent development of HIV-1-
resistant strains (85), which is not the case for maraviroc. In 
a recent breakthrough in structural biology (10), the three-
dimensional structure of the complex between CCR5 and 
5p7-CCL5 (a potent CCR5 antagonist) (77) has been solved, 
revealing the extensive and deep area of CCR5 occupancy by 
5p7-CCL5. This intimate molecular interaction largely justifies 
the impossibility for HIV-1 to generate escape mutants since 
gp120 occupies a similar cavity on CCR5 [modeled in Ref. 
(10)]; also the virus cannot generate a gp120 molecule able to 
circumvent the presence of 5p7-CCL5 or similar CCL5 variants. 

Ultimately, the high CCR5 affinity of these CCL5 variants could 
be exploited in the different pathological conditions where 
CCR5 plays a potentially crucial role.

COnCLUSiOn AnD PeRSPeCTiveS

Biomedical investigations are elucidating a growing role played 
by CCR5 in several inflammatory diseases, and a number of 
microorganisms hijack CCR5 to exert their tropism. In this 
scenario, CCR5 blockade is conceived as a relatively harmless 
therapeutic option (Figure 1). This option is implemented either 
by biochemical blockade of the receptor using CCR5 antagonists 
or by excision of the receptor by gene editing strategies. Which 
of the two strategies is preferable may depend on the disease 
dynamics and the actual CCR5 dispensability suggested by the 
CCR5Δ32 allele present in individuals living a seemingly healthy 
life.
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