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The inflammatory microenvironment affects breast cancer progression. Proteins that 
govern the inflammatory response are secreted into the extracellular space, but this 
compartment still needs to be characterized in human breast tissues in  vivo. Dense 
breast tissue is a major risk factor for breast cancer by yet unknown mechanisms and 
no non-toxic prevention for these patients exists. Here, we used the minimal invasive 
technique of microdialysis for sampling of extracellular proteins in live tissues in situ in 
breast cancers of women before surgery and in healthy women having dense or non-
dense breast tissue on mammography. Proteins were profiled using a proximity extension 
assay. Out of the 32 proteins assessed, 26 exhibited similar profiles in breast cancers and 
dense breast tissues; CCL-4, -7, -8, -11, -15, -16, -22, -23, and -25, CXCL-5, -8, -9, 
-16 as well as sIL-6R, IL-18, vascular endothelial growth factor, TGF-α, fibroblast growth 
factor 19, matrix metalloproteinase (MMP)-1, -2, -3, and urokinase-type plasminogen 
activator were all increased, whereas CCL-3, CX3CL1, hepatocyte growth factor, and 
MMP-9 were unaltered in the two tissues. CCL-19 and -24, CXCL-1 and -10, and IL-6 
were increased in dense breast tissue only, whereas IL-18BP was increased in breast 
cancer only. Our results provide novel insights in the inflammatory microenvironment in 
human breast cancer in situ and define potential novel therapeutic targets. Additionally, 
we show previously unrecognized similarities of the pro-inflammatory microenvironment 
in dense breast tissue and breast cancer in vivo suggesting that anti-inflammatory breast 
cancer prevention trials for women with dense breast tissue may be feasible.
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inTrODUcTiOn

Inflammation is one of the hallmarks of cancer initiation and progression (1). The importance of 
inflammation in tumor growth and metastasis has been described in numerous cancer types, includ-
ing breast cancer (2, 3). Inflammatory bioactive molecules such as interleukins and tumor necrosis 
factor, released into the interstitial fluid can be tumor promoting by affecting angiogenesis, cancer cell 
proliferation, invasiveness, and metastasis (4–6). Additionally, inflammation, which also is related to 
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TaBle 1 | Characteristics of patients subjected to intratumoral microdialysis.

Patient age Tumor size grade (nhg) er (%) Pr (%)

1 70 22 2 >50 >50
2 68 24 2 >50 >50
3 52 25 3 >50 10–50
4 78 28 2 >50 >50
5 62 21 2 >50 >50
6 63 19 2 >50 >50
7 45 40 3 0 0
8 61 25 2 >50 >50
9 48 30 2 >50 >50
10 73 30 2 >50 <5
11 57 27 1 >50 >50
12 66 60 2 >50 >50

ER, estrogen receptor; PR, progesterone receptor; NHG, Nottingham histological 
grade.
All cancers were HER-2 negative.

2

Abrahamsson et al. Inflammation in Dense Breast Tissue

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1994

oxidative stress, might foster the development of incipient in situ 
cancers into invasive clinically important cancers (7).

In breast cancer, some epidemiological studies support this 
concept whereas others have failed to show a correlation between 
regular use of non-steroidal anti-inflammatory drugs (NSAIDs) 
and progression of this disease (8–12). The malignant potential 
of atypical breast epithelial cells is dependent on the local micro-
environment but this compartment still needs to be characterized 
in human breast cancer and normal breast tissue with increased 
risk of cancer.

Increased mammographic density is a major independent risk 
factor for breast cancer (13). A fourfold increased risk of develop-
ing breast cancer has been shown for women with dense breast 
tissue, and absolute non-dense area seems to be independently 
and inversely associated with breast cancer risk (13, 14). The 
biological differences between the two types of breast densities 
and how it might contribute to breast cancer risk are, however, 
poorly understood. Dense breast tissue contains higher amounts 
of stroma, including collagen, and less fat but the proportion 
of epithelial cells, which is only 1–6% of the tissue, seems to be 
unrelated to breast density (13, 15–17). A few studies have shown 
that dense breast tissue may be associated with increased inflam-
mation and an altered metabolic profile (18–20).

Although mammography screening programs and improved 
treatments have reduced the death rate of breast cancer, preven-
tion strategies are still needed for this disease that affects more 
than 10% of all women (21). In some countries, the anti-estrogen 
tamoxifen is approved for prevention, but this therapy is associ-
ated with severe side-effects, such as thromboembolism, endo-
metrial cancer, and low quality of life (21, 22). Thus, providing 
effective and non-toxic breast cancer prevention for women at 
increased risk is clearly needed. Additionally, tamoxifen treat-
ment to women with breast cancer will only reduce the risk of 
recurrence by 30–50% (23). Hence, increased knowledge of the 
biology of breast cancer and dense breast tissue is key for finding 
novel therapeutic targets.

The tissue microenvironment, including the interstitial fluid, 
contains essential components that are important for the facilita-
tion of cancer growth and is a key determinant for cancer pro-
gression. The interstitial fluid represents approximately one-third 
of the total body fluid but to date this compartment still needs to 
be characterized. The homeostasis of the microenvironment is 
regulated by soluble factors in the interstitial fluid and one major 
difficulty in studying this, is the collection of components from 
this compartment. Therefore, we used microdialysis as an in vivo 
approach for sampling of extracellular molecules from the inter-
stitial fluid directly in live tissue in  situ. Breast cancer patients 
and healthy women with either dense or non-dense breast tissue 
were included in the study. The two main objectives of the study 
were to characterize the inflammatory microenvironment in 
human breast cancers and to investigate any resemblance of the 
microenvironment in dense breast tissue and breast cancer. We 
show that out of the 32 assessed proteins related to inflammation, 
26 exhibited similar regulation in dense breast tissue as in breast 
cancer. Our results provide novel biological understanding of 
human breast cancer defining several targets for further immu-
notherapy research and indicate that investigations of targeting 

inflammation as a prevention strategy in women with dense 
breast tissue may be feasible.

MaTerials anD MeThODs

study Populations
The study was carried out in accordance with the Declaration of 
Helsinki and the Regional Ethical Review Board of Linköping, 
Sweden, approved the study. All subjects gave written informed 
consent. A total of 51 women were included in two different 
patient cohorts. The first cohort consisted of 12 women who 
had breast cancer and were investigated before surgery. Tumor 
histology, size, immunohistochemistry for estrogen receptor 
(ER) and progesterone receptor (PR), and HER-2 receptor, and 
Nottingham histological grade according to the Elston Ellis 
scoring system were determined at the Department of Pathology 
and Cytology, University Hospital of Linköping, Table 1. For the 
second cohort, 39 healthy postmenopausal women (55 years of 
age or older) were consecutively recruited from the screening 
mammography program at Linköping University Hospital as pre-
viously described (20). The regular mammograms of the women 
were assessed by one experienced observer (Anna Rzepecka) 
according to the Breast Imaging Reporting and Data System 
(BI-RADS) density scale (24), and breast densities were cat-
egorized as either BI-RADS A (entirely fatty non-dense breasts) 
or BI-RADS D (extremely dense). An MRI was performed on 
these women to confirm the initial breast density assessment, 
as described previously (20). None of the healthy women had 
a history of previous breast cancer or benign breast disease. In 
addition, none of the 51 investigated women were currently using 
(or had used within the previous 3 months) hormone replace-
ment therapy, anti-estrogen therapies, including selective ER 
modulators or degraders, or regularly used of NSAIDs, including 
over the counter preparations.

Microdialysis Procedure
The women with ongoing breast cancer were investigated before 
surgery; one microdialysis catheter was inserted within the can-
cer tumor and the other microdialysis catheter was inserted into 
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normal adjacent breast tissue. In the healthy volunteer women 
investigated in normal breast tissue, the microdialysis catheter 
was placed in the upper lateral quadrant of the left breast directed 
toward the nipple as previously described (25–34).

Prior insertion of the microdialysis catheters, 0.5 ml lidocain 
(10  mg/mL) was administrated intracutaneously. Microdialysis 
catheters (71/M Dialysis AB, Stockholm, Sweden), which consists 
of a tubular dialysis membrane (diameter 0.52  mm, 100,000 
atomic mass cutoff) glued to the end of a double-lumen tube 
(80  mm long  ×  0.8  mm in diameter), were inserted via a spl-
itable introducer (M Dialysis AB), connected to a microinfusion 
pump (M Dialysis AB) and perfused with NaCl 154 mmol/L and 
hydroxyethyl starch 60 g/L (Voluven®, Fresenius Kabi, Uppsala, 
Sweden), at a perfusion rate of 0.5 µL/min. 20 and 10 mm mem-
branes were used in the cohort of various breast densities and 
breast cancer patients, respectively. After a 60-min equilibration 
period, the outgoing perfusate was stored at −80°C for subse-
quent analysis.

Protein Quantifications
The samples were analyzed by using a multiplex proximity 
extension assay (Olink Bioscience, Uppsala Sweden). In brief, 
1 µL sample was incubated in the presence of proximity antibody 
pairs tagged with DNA reporter molecules. Once the pair of 
antibodies is bound to their corresponding antigens, the respec-
tive DNA tails form an amplicon by proximity extension, which 
was quantified by high-throughput real-time PCR (BioMark™ 
HD System, Fluidigm Corporation). The generated fluorescent 
signal directly correlates with protein abundance. The output 
from the Proseek Multiplex protocol is in quantitation cycles 
produced by the BioMark’s Real-Time PCR Software. To mini-
mize variation within and between runs, the data are normal-
ized using both an internal control (extension control) and an 
interplate control, and then transformed using a pre-determined 
correction factor. The pre-processed data were provided in the 
arbitrary unit normalized protein expression (NPX) on a log2 
scale, which were then linearized by using the formula 2NPX.  
A high NPX value corresponds to a high protein concentration. 
However, the value is a relative quantification meaning that no 
comparison of absolute levels between different proteins can be 
made.

statistical analyses
Statistical analyses were performed using paired Wilcoxon 
matched-pairs signed rank test and unpaired Mann–Whitney U 
test. A p < 0.05 was considered as statistically significant. Statistics 
were performed with Prism 7.0 (GraphPad software).

resUlTs

As shown in Table  1, 11 out of the 12 breast cancers were ER 
positive. None of the cancers overexpressed HER-2. As previously 
reported there were no significant differences in age, years since 
menopause, BMI, or plasma estradiol levels between the healthy 
women with dense vs. non-dense breast tissues (20). There were 
no subsequent complications after the microdialysis investiga-
tions in either patient group.

ccls in Dense Breast Tissue and Breast 
cancers
A panel of 12 CCLs was analyzed (Figure 1). Ten out of the 12 
CCLs were regulated in a similar fashion in dense breast tissue 
and breast cancer. In breast cancer CCL-4, -7, -8, -11, -15, -16, 
-22, -23, and -25 exhibited increased levels compared with nor-
mal adjacent breast tissue, whereas no significant differences were 
found of CCL-3, -19, and -24. In dense breast tissue, CCL-4, -7, 
-8, -11, -15, -16, -19, -22, -23, -24, and CCL-25 were increased 
compared with non-dense breast tissue. No significant differ-
ences were found in the levels of CCL-3 within the breast cancer 
cohort, or the healthy women cohort. Two CCLs were differently 
regulated; CCL-19 and -24 were unaltered in breast cancers but 
increased in dense breast tissue.

cXcls and cX3cl1 in Dense Breast 
Tissue and Breast cancers
As shown in Figure 2, CXCL-5, -8, -9, and -16 were increased 
in breast cancer and dense breast tissue compared with the cor-
responding normal tissues. Interestingly, CXCL-1 and CXCL-10 
were unaltered in breast cancers whereas significant increased 
levels were detected in dense breast tissue. No change of CX3CL1 
was found in either tissue.

il-6, il-18, and Pro-Tumorigenic Proteins 
in Dense Breast Tissue and Breast 
cancers
IL-6 was unaltered in breast cancer but significantly increased in 
dense breast tissue, whereas IL-6RA was increased in both tissues. 
Increased levels of IL-18 were found in dense breast tissue as well 
as in breast cancer, but IL-18BP was increased in breast cancer 
only.

In addition to inflammatory cytokines, proteins associated 
with angiogenesis and cancer progression were also analyzed. As 
shown in Figure 3, vascular endothelial growth factor (VEGF), 
transforming growth factor-α (TGF-α), and fibroblast growth 
factor 19 (FGF-19) all demonstrated increased levels both in 
dense breast tissue and in breast cancer whereas no difference 
of hepatocyte growth factor (HGF) levels were found in either 
tissue.

Proteases in Dense Breast Tissue and 
Breast cancers
Proteolysis in the tissue microenvironment may influence the 
release of local inflammatory mediators in the tissue microenvi-
ronment. In Figure 4, the five proteases detected in the present 
study were altered in a similar fashion in both tissues; matrix met-
alloproteinase (MMP)-1, 2, 3, and urokinase-type plasminogen 
activator (uPA) were increased whereas MMP-9 was unaltered.

DiscUssiOn

Here, we present novel data of the local inflammatory microenvi-
ronment in human breast cancer in vivo. Additionally, to the best 
of our knowledge, this is the first report showing the similarity of 
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FigUre 2 | Extracellular levels of CXCL, CX3CL1, and IL-18 in vivo in breast cancers and healthy normal breast tissue with different densities. 51 women were 
investigated using microdialysis; 12 breast cancer patients underwent microdialysis before surgery. One catheter was inserted into the breast cancer (black bars) 
and another into adjacent normal breast tissue (white bars). 39 postmenopausal healthy volunteer women, attending the regular mammography-screening program 
and were categorized as either having dense or non-dense breasts underwent microdialysis of their left breast. Women with dense breasts (n = 20) are depicted in 
red and women categorized as non-dense (n = 19) are depicted in yellow. Data represent protein abundance in linear values (2NPX as described in the Section 
“Materials and Methods”). Graphed data are presented as median with 95% CI (*P < 0.05, **P < 0.01, ***P < 0.001).

FigUre 1 | Extracellular levels of CCLs in vivo in breast cancers and healthy normal breast tissue with different densities. 51 women were investigated using 
microdialysis; 12 breast cancer patients underwent microdialysis before surgery. One catheter was inserted into the breast cancer (black bars) and another into 
adjacent normal breast tissue (white bars). 39 postmenopausal healthy volunteer women, attending the regular mammography-screening program and were 
categorized as either having dense or non-dense breasts underwent microdialysis of their left breast. Women with dense breasts (n = 20) are depicted in red and 
women categorized as non-dense (n = 19) are depicted in yellow. Data represent protein abundance in linear values (2NPX as described in the Section “Materials and 
Methods”). Graphed data are presented as median with 95% CI (*P < 0.05, **P < 0.01, ***P < 0.001).
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FigUre 3 | Extracellular levels of pro-tumorigenic proteins in vivo in breast cancers and healthy normal breast tissue with different densities. 51 women were 
investigated using microdialysis; 12 breast cancer patients underwent microdialysis before surgery. One catheter was inserted into the breast cancer (black bars) 
and another into adjacent normal breast tissue (white bars). 39 postmenopausal healthy volunteer women, attending the regular mammography-screening program 
and were categorized as either having dense or non-dense breasts underwent microdialysis of their left breast. Women with dense breasts (n = 20) are depicted in 
red and women categorized as non-dense (n = 19) are depicted in yellow. Data represent protein abundance in linear values (2NPX as described in the Section 
“Materials and Methods”). Graphed data are presented as median with 95% CI (*P < 0.05, **P < 0.01, ***P < 0.001).

6

Abrahamsson et al. Inflammation in Dense Breast Tissue

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1994

the in vivo inflammatory cytokine profile in dense breast tissue 
and breast cancer. Out of 32 pro-inflammatory proteins analyzed, 
26 exhibited similar profiles of the levels in dense breast tissue 
vs. non-dense breast tissue, and breast cancer tissue vs. normal 
adjacent breast tissue.

A major strength of our study is that we sampled the proteins 
directly from tissues in patients and healthy volunteers in  situ. 

Only by using a minimally invasive technique such as microdi-
alysis, samples from healthy breast tissue in women not scheduled 
for any clinically advised procedure can be obtained. In vivo 
studies of the tissue microenvironment, where cell–cell interac-
tions are communicated by soluble factors released into the 
extracellular compartment, are especially important. Commonly 
used laboratory techniques such as mRNA quantification and 
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FigUre 4 | Extracellular levels of proteases in vivo in breast cancers and healthy normal breast tissue with different densities. 51 women were investigated using 
microdialysis; 12 breast cancer patients underwent microdialysis before surgery. One catheter was inserted into the breast cancer (black bars) and another into 
adjacent normal breast tissue (white bars). 39 postmenopausal healthy volunteer women, attending the regular mammography-screening program and were 
categorized as either having dense or non-dense breasts underwent microdialysis of their left breast. Women with dense breasts (n = 20) are depicted in red and 
women categorized as non-dense (n = 19) are depicted in yellow. Data represent protein abundance in linear values (2NPX as described in the Section “Materials and 
Methods”). Graphed data are presented as median with 95% CI (*P < 0.05, **P < 0.01, ***P < 0.001).
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immunohistochemistry are based on whole tissue analyses and, 
therefore, detect cellular events rather than soluble extracellular 
molecules. Unlike ex vivo sampling of the tumor interstitial fluid, 
for which surgically removed tissue is cut into pieces before incu-
bation in a solution to retrieve the remaining proteins, micro-
dialysis allows sampling of the extracellular molecules directly 
from live tissue without any manipulation. The draw-back of such 
studies is that a limited number of subjects can be included in the 
time-consuming in vivo sampling with the complicated logistics.

It has previously been shown that several of the CC chemokines 
play an important role for breast cancer progression and immune 
cells recruited by these chemokines are implicated in enhancing 
cancer growth and resistance to therapy (35–40). Interestingly, 
CCL-3, which was unaltered in both breast cancer and dense 
breast tissue, has been shown to be important for breast cancer 
progression and metastases in experimental animal models  

(38, 40). Our human data do not support an extracellular upregu-
lation of this chemokine in breast cancers in vivo.

Chemokines can play dual roles in tumor development. The 
chemokines CXCL-9 and CXCL-10 are involved in the activation 
of antitumor Th1 cells, but they also function as potent angiostatic 
factors (41, 42). On the other hand, the neutrophil chemotactic 
chemokines, CXCL-1 and CXCL-8, have been shown to be 
pro-tumorigenic and pro-angiogenic by their ability to recruit 
pro-tumorigenic neutrophils into cancer tissue (43–47). CXCL-9 
was increased in both breast cancer and in dense breast tissue 
suggesting that among an upregulation of pro-inflammatory 
cytokines other may balance the net results of the inflammatory 
response of the tissue. Surprisingly, no significant upregulation of 
the extracellular CXCL-1 was detected in breast cancers whereas 
dense breast tissue exhibited at least three times higher levels 
than non-dense breast tissue. In several studies CXCL-8 has 
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been shown to be a key player in the inflammatory/angiogenic 
microenvironment including increasing invasion and chemotaxis  
of breast cancer stem cells (44, 45). CXCL-8 also regulates the 
release of VEGF, which is one of the most potent and specific 
angiogenic factors. Several isoforms of VEGF exist but the main 
bioactive forms are freely diffusible proteins in the extracellular 
space and have greater angiogenic and tumorigenic properties 
than the heparin-bound isoforms (48). We have previously shown 
that direct measurements of soluble VEGF locally in tissues 
accurately reflect the amount of bioactive protein released in situ 
(30, 49, 50). As expected, and in line with previous data, increased 
VEGF levels were found in both breast cancers and dense breast 
tissue compared with their normal tissue counterparts.

The pleiotropic cytokine IL-6 has been implicated in several 
cancer forms, including breast cancer. Circulating levels of IL-6 
has been associated the progression of breast cancer and with 
advanced disease (51). In our data set, no increased levels of IL-6 
were detected in breast cancer, whereas in dense breast tissue the 
IL-6 levels were increased. However, significantly increased levels 
of extracellular sIL-6R were detected in both tissues. In a classic 
signaling, IL-6 binds to the IL-6 receptor, and this complex bind 
to glycoprotein 130 receptors in the cell membrane for the ini-
tiation of downstream signaling. However, a trans-signaling may 
also occur when an extracellular IL-6/sIL-6R complex is formed 
which then binds to membrane glycoprotein 130 and generate 
a downstream signaling (52). The IL-6 membrane receptor is 
expressed in hepatocytes and immune cells only, thus, the classic 
signaling is limited to these cells. As the membrane glycoprotein 
130 is expressed in all cells types a trans-signaling by sIL-6R may 
be elicited universally and may, therefore, have a higher impact 
of the immune response and thus play a major role in the IL-6 
signaling.

The pro-inflammatory cytokine IL-18 has been associated 
with both pro- and antitumorigenic properties (53). IL-18BP, a 
natural inhibitor of IL-18, has high affinity for mature IL-18 and 
blocks its interaction with the IL-18 receptor (53). Our results 
revealed increased levels of both IL-18 and IL-18BP in breast 
cancer whereas in dense breast tissue IL-18 alone was increased. 
Whether this is an advantage or disadvantage regarding breast 
cancer progression remains to be elucidated when the exact 
biologic role of IL-18 in cancer development is determined.

We also measured three key pro-tumorigenic growth and 
angiogenic factors associated with inflammation, TGF-α, 
FGF-19, and HGF, and showed that both TGF-α and FGF-19 
exhibited increased levels in both breast cancer and dense breast 
tissue compared with their normal tissue counterparts. TGF-α is 
a natural ligand for the EGFR, which is overexpressed in many 
tumors and plays a central role in cancer development by pro-
moting cell proliferation and angiogenesis (54). FGFs have been 
demonstrated to increase cancer cell survival in experimental 
murine breast cancer models (55). Our present data revealed that 
the FGF-19 levels were twice as high in breast cancer and tripled 
in dense breast tissue, compared with the normal tissues within 
each cohort, suggesting that FGF-19 may be a clinically relevant 
protein to target also in human breast tissue.

Hepatocyte growth factor has been implicated in the progres-
sion of experimental breast cancer (56). Our data did not reveal 

any differences in HGF levels. The association of HGF and breast 
cancer progression has primarily been shown in triple-negative 
breast cancers; our data are mainly based on ER+ breast cancer, 
whether HGF is increased in ER− human breast cancer remains 
to be elucidated.

Proteolysis is a regulatory pathway that influences the local  
tissue inflammation by degrading and remodeling of the microen-
vironment, and by cleavage of precursors of cytokines and growth 
factors. Additionally, several cytokines may induce cells in the 
microenvironment to secrete MMPs (57, 58). Upregulation of 
MMPs and paradoxically TIMPs has been correlated with tumor 
aggressiveness of various cancer forms, including breast cancer 
(59–64). However, the biological function of MMPS is complex 
as it has been demonstrated that individual MMPs and TIMPs 
may either promote or inhibit tumor progression and MMP 
inhibition has also failed as antitumor therapy in clinical trials 
(65–68). Here, we show that MMP-1 was increased in both breast 
cancer and dense breast tissue. MMP-1 has been significantly cor-
related with the development of brain metastasis in breast cancer  
patients and with a release of CCL-7 (69). In addition, MMP-1 has 
been associated with multi-drug resistance in experimental breast 
cancer (70). Its role in clinical breast cancer patients remains to be 
determined but our data suggest that indeed, MMP-1 is increased 
in human breast cancer. MMP-2 and MMP-3 were also increased 
in both tissues whereas the levels of MMP-9 were unaltered. 
Regarding MMP-9, we and others, have shown that increased 
MMP-9 activity leads to tumor regression (67, 68, 71–75). The 
data in the present study suggest that MMP-9 may not be a major 
contributor to breast cancer progression/inhibition in human 
breast tissue in vivo.

Urokinase-type plasminogen activator is a serine protease that 
has been shown to be involved in multiple steps of breast cancer 
progression and it has also been independently associated with 
adverse outcome in breast cancer patients (76). As expected, uPA 
was significantly increased in breast cancer but in addition, we 
made the novel findings that uPA was also increased in dense 
breast tissue.

In conclusion, our data have revealed that the microenviron-
ment in dense breast tissue exhibits similar profiles of inflamma-
tory proteins as breast cancer [>80% of the measured proteins 
(26/32)]. Whether a tissue microenvironment exerts a pro- or 
anti-inflammatory response depends on the balance between 
inflammatory proteins, and our data suggest that the scale of 
inflammatory biomarkers is tipped into a pro-inflammatory 
microenvironment in both dense breast tissue and in breast 
cancer. It may, therefore, be hypothesized that if atypical 
epithelial cells arise in dense breast tissue a pro-inflammatory 
extracellular microenvironment would be more permissive for 
a continuous expansion of these cells into a clinically important 
breast cancer. Given the toxicity of the only approved prevention 
drug tamoxifen, other novel preventive approaches for breast 
cancer are needed. Our study provides mechanistic support 
for prevention strategies targeting inflammation in women 
with dense breast tissue. Thus, studies investigating whether 
the local tissue microenvironment in dense breast tissue can be 
modulated with anti-inflammatory therapy are warranted. In 
addition, our results provide novel biological understanding of 
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human breast cancer defining several targets for further cancer 
immunotherapy research.
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