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and Katarzyna Kwiatkowska*

Laboratory of Molecular Membrane Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of the 
Polish Academy of Sciences, Warsaw, Poland

S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins 
in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. 
S-palmitoylation determines the functioning of proteins by affecting their association with 
membranes, compartmentalization in membrane domains, trafficking, and stability. In 
this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions 
of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated 
proteins in the invasion of host cells by bacteria and viruses, and those involved in the 
host responses to the infection. We highlight recent data on protein S-palmitoylation 
in pathogens and their hosts obtained owing to the development of methods based 
on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein 
lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and 
lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate 
immune receptors, is also discussed.

Keywords: acyl-biotin exchange, bacterial effector proteins, click chemistry, fatty acylation of proteins, 
hemagglutinin, iFiTM, S-palmitoylation, tumor necrosis factor α

iNTRODUCTiON

Palmitic acid (C16:0) is a long-chain saturated fatty acid, and a component of various lipids playing 
important roles in cell membrane organization, signal transduction, and energy storage. Moreover, 
the palmitoyl chain can be attached to proteins in a process called palmitoylation (S-palmitoylation), 
which modification affects their localization and functioning.

In the human body palmitic acid is synthetized in a process called de novo lipogenesis. It takes 
place mainly in adipocytes, hepatocytes, and cells of lactating mammary glands (1). Palmitic acid is 
used for the synthesis of phospholipids and sphingolipids, may undergo elongation and/or desatura-
tion into other fatty acids (e.g., stearic acid or oleic acid, respectively), and can be esterified to form 
storage lipids—triacylglycerols. Apart from de novo synthesis, palmitic acid is also provided to the 
human body with food. Since palmitic acid is universally found in natural fats, its consumption 

Abbreviations: 17ODYA, 17-octadecynoic acid; ABE, acyl-biotin exchange; APT, acyl-protein thioesterase; BCR, B  cell 
receptor; FIV, feline immunodeficiency virus; GPI, glycosylphosphatidylinositol; HA, hemagglutinin; HCV, hepatitis C virus; 
HIV-1, human immunodeficiency virus-1; HSV, herpes simplex virus; IFITM, interferon-induced transmembrane protein; 
IFN, interferon; IFNAR, IFNα/β receptor; IL, interleukin; LPS, lipopolysaccharide; PPT, palmitoyl protein thioesterase; SILAC, 
stable isotope labeling by amino acids in cells; SILAM, stable isotope labeling of mammals; TCR, T cell receptor; TEM8, tumor 
endothelial marker 8; TNF, tumor necrosis factor; TNFR, TNF receptor; TLR, toll-like receptor; VSV, vesicular stomatitis virus; 
zDHHC, zinc finger DHHC domain containing.
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TaBle 1 | Fatty acylation and prenylation of proteins.

Modification lipid amino acid modified linkage Representative proteins Reference

S-acylation C16:0

Palmitic acid

Cysteine Thioester IFITM3, toll-like receptor 2, hemagglutinin (HA), 

glycoprotein G of vesicular stomatitis virus,  

Lyn, and other Src kinases

(8–12)

C18:0

Stearic acid

HA and transferrin receptor (9, 13)

C16:1

Palmitoleic acid

IFITM3 (14)

C18:1

Oleic acid

H-Ras (14, 15)

C20:4

Arachidonic acid

Fyn kinase (15)

N-acylation C14:0

Myristic acida

Glycine Amide Gag of human immunodeficiency virus-1, Lck, and  

other Src kinases, Arf1

(16–19)

C16:0

Palmitic acid

Gαs (20)

C16:0

Palmitic acid

Cysteine Amide Sonic hedgehogb (21)

ε-N-acylation C14:0

Myristic acid

Lysine Amide Tumor necrosis factor α, interleukin-1, and α-hemolysin  

of Escherichia coli

(22, 23)

C16:0

Palmitic acid

Adenylate cyclase of Bordetella pertussis (24)

O-acylation C16:0

Palmitic acid

Serine or threonine Oxyester Histone H4 (25)

C8:0

Octanoic acid

Ghrelin (26)

C16:1

Palmitoleic acid

Wnt proteins, e.g., Wnt3ac (27)

S-prenylation Farnesyl

Geranylgeranyl

Cysteine Thioether H- and N-Ras (28)

Rab proteins (28)

Attachment of glycosylphosphatidylinositol anchor or phosphatidylethanolamine (29) to the C-terminus of proteins is also a form of lipidation but is not shown here.
aN-myristoylation is in most cases co-translational, but during apoptosis caspases can cleave some proteins, such as BID, exposing their N-terminal glycine residue,  
which is then modified by attachment of myristate (30).
bHedgehog proteins are additionally modified by covalent attachment of cholesterol to their C-terminus (31).
cO-acylation of Wnt proteins is reversed by Notum of the α/β hydrolase superfamily (31).
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exceeds the consumption of other saturated fatty acids and, in 
the USA it accounts for about 60% of the total intake of saturated 
fatty acids (2). A growing body of experimental and clinical 
evidence points to a link between a westernized diet, including 
a high intake of saturated fatty acids, and chronic inflammatory 
diseases (3–5). As dietary saturated and unsaturated fatty acids 
apparently modulate activity of immune cells, their influence on 
the immune responses triggered upon infection is also beginning 
to be investigated (6). These facts drive the interest in palmitic 
acid with an aim of elucidating the molecular mechanisms of its 
immunomodulatory properties.

In this review, we focus on S-palmitoylation of proteins crucial 
for the interactions of pathogenic bacteria and viruses with the 
host. We emphasize novel data on the role of S-palmitoylated pro-
teins in the invasion of host cells by pathogens and those involved 
in the host innate immune responses to the infection, which 
have been obtained thanks to the application of new technical 
approaches. Recently, substantial progress in the understanding 
of protein palmitoylation was made possible by the development 
of methods allowing high-throughput analysis of cellular/tissue 
palmitoyl proteomes. We begin, however, by showing how unique 
protein S-palmitoylation is among other protein lipidations.

THe MaNY FaCeS OF FaTTY aCYlaTiON 
OF PROTeiNS

S-Palmitoylation of Proteins and its 
influence on Protein localization, 
Trafficking, and Stability
S-palmitoylation is a posttranslational modification of proteins 
consisting in a potentially reversible covalent attachment of pal-
mitoyl chain to a cysteine residue(s) of proteins through a thioester 
bond (Table 1). Thus, S-palmitoylation resembles other revers-
ible regulatory posttranslational protein modifications, including 
phosphorylation or acetylation, well-established factors affecting 
protein structure and functions. In particular, S-palmitoylation 
modifies cellular localization of proteins and their stability. The 
most dramatic changes of localization concern cytosolic proteins 
which upon S-palmitoylation acquire a hydrophobic anchor facil-
itating their docking into membranes (Figure 1). However, sev-
eral integral membrane proteins also undergo S-palmitoylation. 
It often occurs on cysteine residue(s) located in the proximity 
of the junction of the transmembrane and cytoplasmic domains 
of the protein. S-palmitoylated transmembrane proteins occupy 
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FigURe 1 | Dynamic protein S-palmitoylation. Palmitate is transferred to the thiol group of cysteine from palmitoyl-CoA by integral membrane zDHHC-family 
palmitoyl acyltransferases. Upon S-palmitoylation cytosolic proteins gain a hydrophobic moiety allowing their anchoring in the membrane. Proteins are 
depalmitoylated by acylthioesterases [acyl-protein thioesterase (APT) 1/APT2 and ABHD17] and translocate to the cytosol.
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various cellular compartments, such as endoplasmic reticulum, 
Golgi apparatus, and the plasma membrane. In accordance, for 
some proteins, such as transmembrane adaptor proteins in leu-
kocytes, S-palmitoylation was found secondary to the length and 
hydrophobicity of the transmembrane domain as a determinant 
of plasma membrane destination (7).

S-palmitoylation also contributes to the compartmen-
talization of proteins to distinct domains of membranes—rafts 
and tetraspanin-rich microdomains. In fact, the interest in 
S-palmi toylation was boosted when it was found to be required 
for the targeting of some signaling proteins to rafts. Rafts are 
nanodomains of the plasma membrane and some intracellular 
membranes, mainly of the trans-Golgi apparatus, rich in sphin-
golipids, glycerophospholipids with saturated fatty acid chains, 
and cholesterol (32). The plasma membrane nanodomains are 
sites of signal transduction by distinct receptors of immune cells 
involved in both acquired immune reactions, such as T cell recep-
tor (TCR), Fcε receptor I, Fcγ receptor II, and in innate immune 
responses, such as toll-like receptor 4 (TLR4) (33, 34). Rafts are 
also sites of virion assembly and budding, as established, e.g., for 
influenza A virus and human immunodeficiency virus-1 (HIV-1) 
(35, 36). Peripheral membrane proteins acylated with saturated 
fatty acids are likely to anchor preferentially between the ordered 
saturated lipids of rafts rather than between the disordered lipids 

of the surrounding membrane. It has been shown that, owing to 
their raft localization, S-palmitoylated kinases of the Src family 
interact with raft-associating plasma membrane immunorecep-
tors and initiate signaling cascades fundamental to acquired 
immunity (15, 37, 38). It is worth noting that also the acyl chains 
attached to proteins can affect the membrane structure. Studies 
on model membranes have revealed that palmitic and myristic 
acids facilitate formation of ordered lamellar membrane regions  
(39, 40). In accordance, S-palmitoylation of erythrocyte periph-
eral membrane protein called membrane-palmitoylated protein 
1 (MPP1) was found to be required for the proper lateral organi-
zation and fluidity of erythrocyte membrane. In the absence of 
MPP1 S-palmitoylation, raft assembly was disturbed and eryth-
rocyte functioning compromised leading to hemolytic anemia in 
patients deficient in the enzyme catalyzing this reaction (41, 42). 
Preferential raft association is a feature of some S-palmitoylated 
transmembrane proteins, e.g., adaptor proteins PAG, LAT, and 
NTAL, which collaborate with the abovementioned immunore-
ceptors. In fact, palmitoylation is required for the raft association 
of most integral raft proteins (8, 43, 44).

On the other hand, S-palmitoylation does not obligatorily 
confer raft localization on transmembrane proteins. Certain 
S-palmitoylated proteins, such as transferrin receptor, glyco-
protein G of vesicular stomatitis virus (VSV), and anthrax toxin  
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receptor, tumor endothelial marker 8 (TEM8), are actually 
excluded from rafts. Apparently, a combination of S-palmitoylation 
and the properties of the transmembrane domain of the protein 
contribute to its destination to the raft or non-raft environment  
(43, 45). It has also been proposed that the attachment of a 
fatty acyl chain at the juxtamembrane cysteine(s) of a protein 
can induce tilting of its transmembrane fragment, determining 
in which part of the membrane it will accommodate to avoid a 
hydrophobic mismatch potentially caused by the thickness of the 
bilayer (46).

That not all S-palmitoylated proteins associate with rafts has 
been shown convincingly for macrophage-like RAW264 cells, 
where only about half of those proteins were found in the Triton 
X-100-resistant membrane fraction enriched in rafts (47, 48). In 
accordance, proteomic data on the distribution of S-palmitoylated 
proteins in prostate cancer cells have revealed that several such 
proteins are recovered in the non-raft (Triton X-100-soluble) 
fraction and are likely localized to microdomains enriched in 
scaffold proteins called tetraspanins (49). The tetraspanins are 
small integral membrane proteins found in the plasma mem-
brane and other cellular membranes, having four transmembrane 
helices and undergoing S-palmitoylation at several conserved 
cysteine residues. The tetraspanins interact with each other and 
with various transmembrane and cytosolic partners, often also 
S-palmitoylated, forming microdomains (“tetraspanin web”) 
(50). It has been suggested that the amino acid composition of 
the S-palmitoylation site in some transmembrane proteins, such 
as the adaptor proteins involved in acquired immune responses, 
determines the association of those S-palmitoylated proteins with 
rafts or with the tetraspanin-enriched microdomains (44). An 
intriguing and still poorly addressed question concerns the rela-
tion between rafts and the tetraspanin-enriched microdomains, 
apparently of functional significance, e.g., during virus budding 
from host cells (35). This uncertainty stems partially from the fact 
that S-palmitoylation of tetraspanins governs their interactions 
with cholesterol and gangliosides leading at certain conditions 
to the recovery of tetraspanins in detergent-resistant membrane 
fractions enriched in rafts (51, 52). Besides its involvement in 
targeting proteins to rafts or tetraspanin-enriched microdomain, 
S-palmitoylation has been found to govern accumulation of the 
transmembrane chaperone protein calnexin in the perinuclear 
domain of endoplasmic reticulum (53).

S-palmitoylation also affects protein stability through its 
interplay with ubiquitination or phosphorylation, as found for 
the anthrax toxin receptor TEM8, antiviral interferon-induced 
transmembrane protein IFITM1, calnexin, and zDHHC6, one of 
palmitoyl acyltransferases described below (54–57).

Possibly the most intriguing is the reversible character 
of S-palmitoylation. Enzymes catalyzing palmitoylation and 
depalmitoylation of proteins have been characterized (58, 59).  
Palmitate is transferred onto the thiol group of cysteine from 
cytosolic palmitoyl-CoA by palmitoyl acyltransferases, enzymes 
containing the zinc finger DHHC domain named after the highly  
conserved Asp–His–His–Cys peptide (Figure 1). This is a two-
step reaction comprising transient autoacylation of zDHHC 
enzymes and transfer of the fatty acyl chain from this intermedi-
ate to a protein substrate (60). In mammals, the zDHHC enzyme 

family consists of 24 proteins, and zDHHC proteins are also found 
in other eukaryotes but not in bacteria nor are they encoded 
by viral genomes. Mammalian zDHHC enzymes, each having 
at least four transmembrane helices, are located in the plasma 
membrane, endoplasmic reticulum, and Golgi apparatus (58). 
They display some specificity toward their protein substrates and 
also selectivity toward fatty acyl moieties other than palmitate, 
which contributes to the heterogeneity of lipids attached to 
proteins, such as viral glycoproteins described below (61). In the 
opposite process, the thioester bond is cleaved by acyl-protein 
thioesterases (APTs) (APT1 and APT2) and palmitoyl protein 
thioesterases (PPTs) (PPT1 and PPT2), which are localized in 
the cytosol and in lysosomes, respectively. APT1 and APT2 
likely govern the dynamic functional changes of S-acylation of 
proteins (62) while PPT1 and PPT2 depalmitoylate proteins dur-
ing their degradation (63, 64). Recently, serine hydrolases of the 
ABHD17 family have also been identified as depalmitoylating 
enzymes, and their specific substrate proteins determined (65, 
66). Of note, the zDHHCs, APT1/APT2, and ABHD17 proteins 
are S-palmitoylated themselves, and palmitoylation of zDHHCs 
and depalmitoylation of APT1/2 can occur in a cascade manner 
(57, 62).

The dynamic cycles of palmitoylation/depalmitoylation detected 
for several peripheral membrane proteins are often synchronized 
with intracellular trafficking of those proteins. They circulate 
between the plasma membrane and the Golgi apparatus or 
endosomes, as exemplified by N- and H-Ras, R7-regulator of 
G protein and APTs. In fact, it is proposed that palmitoylation-
dependent anchoring of APT1 in the plasma membrane allows it 
to depalmitoylate H-Ras at this location, while subsequent auto-
depalmitoylation releases APT1 guiding it, alongside H-Ras, 
for another round of palmitoylation at the Golgi apparatus (62, 
67–69). Cycles of palmitoylation/depalmitoylation are crucial for 
signaling by distinct plasma membrane receptors and for their 
distribution (69–71). Activation of TCR receptor or Fas receptor 
in T cells was found to trigger quick and transient palmitoylation 
of Lck kinase of the Src family (72, 73), but the exact meaning 
of the dynamic protein S-palmitoylation for processes triggered 
during the host–pathogen interaction awaits elucidation.

It is worth mentioning that although the zDDHC enzymes 
catalyze bulk protein palmitoylation in eukaryotic cells (74), some 
proteins have a unique autopalmitoylation activity. These include 
Bet3, a component of a multisubunit transport protein particle 
complex involved in vesicular trafficking, TEA domain transcrip-
tion factors, and also bacterial Evf protein (75–78). The palmitic 
acid residue is attached constitutively to a specific cysteine residue 
of those proteins, remains buried inside a hydrophobic pocked in 
their core thereby affecting the tertiary structure and, thus, inter-
actions with other proteins (75, 77). An exhaustive discussion on 
the physiology of S-palmitoylated proteins in eukaryotic cells can 
be found in several recent reviews (46, 79, 80).

S-Palmitoylation is a Special Case of 
S-acylation of Proteins
It has been established that, in addition to palmitate, various 
other fatty acyl moieties, such as saturated stearate (C18:0) or 
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monounsaturated palmitoleate (C16:1), and oleate (C18:1) can be 
attached via the thioester linkage to proteins. The early reports on 
the heterogeneity of the fatty acyl moieties attached to cysteines 
obtained by analysis of selected immunoprecipitated proteins  
(15, 16, 81–83) have recently been complemented by a com-
prehensive proteomic analysis of fatty-acylated proteins of 
macrophage-like RAW264 cells (14). The latter study showed that 
an enrichment of culture medium of cells with monounsaturated 
fatty acids leads to their incorporation into a similar set of pro-
teins as those normally modified with palmitate. Among them, 
several proteins relevant to innate immune responses were found. 
All these data justify the use of a broader term S-acylation rather 
than S-palmitoylation (Table 1). The physiological consequences 
of S-acylation of proteins with individual fatty acids are slowly 
being revealed. Modification of Fyn kinase with polyunsaturated 
fatty acid residue, such as arachidonate (C20:4), disturbed its raft 
localization and, thereby, TCR signaling (15). A heterogeneity of 
S-acylation was also found in viral spike proteins, such as hemag-
glutinin (HA) of influenza A virus, and E1 and E2 of Semliki Forest 
virus, which are modified in host eukaryotic cells by attachment 
of both palmitate and stearate (9). In HA, stearate is attached at 
the transmembrane cysteine while palmitate is attached to two 
cysteine residues in a membrane-proximal region of the protein. 
The stearoyl chain seems to accommodate into a groove formed 
by amino acids of the transmembrane helix shaping the domain 
in a way that facilitates its fitting into rafts (84). S-stearoylation 
of human transferrin receptor 1 at the juxtamembrane cysteine 
residues(s) is a key factor of the signaling cascade controlling 
mitochondrial morphology and functioning (13). Of interest, the 
latter study also showed that dietary supplementation of stearic 
acid reversed the deleterious effects of a genetically determined 
mitochondria dysfunction in Drosophila. Taking into account 
that unsaturated fatty acids affect the profile of S-acylation of 
proteins in vitro (14, 15), it is of outmost interest whether a similar 
effect of unsaturated and saturated (palmitic) fatty acids could be 
achieved in vivo with respect to proteins of immune cells.

N- and O-acylation of Proteins
Beside S-acylation, less frequently palmitate can also be attached 
to the amine group of various amino acids (glycine, cysteine, and 
lysine) giving N-palmitoylation or to the hydroxyl group of serine 
or threonine in a process called O-palmitoylation (Table 1). As 
during S-palmitoylation, also other fatty acids can be utilized in 
these processes named then N- and O-acylation. Thus, a type of 
protein N-acylation is N-myristoylation, a frequent modification 
contributing to membrane anchoring of peripheral proteins. The 
saturated myristate (C14:0) is transferred to the protein from 
myristoyl-CoA by N-myristoyl transferase (two isozymes in 
mammals). In a vast majority of cases, myristate is attached co-
translationally to the N-terminal glycine residue (after removal of 
the initiator methionine) via an amide linkage (Table 1). Like most 
lipidations, this modification is irreversible. Several viral proteins 
are N-myristoylated, such as Gag of HIV-1 crucial for budding 
of newly formed virions from plasma membrane rafts of host 
cells, and proteins of parasitic protozoa Plasmodium falciparum, 
Trypanosoma brucei, and Leishmania donovani (causing malaria, 

African sleeping sickness, and leishmaniosis, respectively). For 
this reason, N-myristoyl transferase is considered a potential 
drug target in the therapy of these diseases (17–19, 85, 86).

Data on the N- and O-palmitoylation of proteins involved 
in the host–pathogen interactions are limited, but interesting 
conclusions can be drawn from the information concerning 
proteins taking part in other processes. N-palmitoylation of 
the N-terminal glycine of the α-subunit of a heterotrimeric G 
protein (Gαs) has been described (20) (Table 1) besides the well-
known S-palmitoylation of this pivotal signaling protein. The 
N-palmitoylation of Gαs is irreversible, and the enzyme respon-
sible for this modification is unknown. It has been speculated 
that S- to N-palmitoyl migration can occur both in vivo and also 
in vitro during mass spectrometry analysis (20, 87). This suggests 
that caution is needed in interpreting results of this methodologi-
cal approach, which is used with increasing frequency to study 
fatty acylation of proteins in immune cells (see next sections). 
Probably the best-characterized is the N-palmitoylation of the 
N-terminal cysteine residue of hedgehog proteins (sonic, Indian, 
and desert in mammals). It determines secretion of these proteins, 
which regulate embryonic patterning (Table 1). Secreted Wnt and 
ghrelin proteins are examples of O-acylation of serine residues 
with unusual fatty acid residues such as palmitoleate (C16:1) and 
octaonoate (C8:0) (Table  1). The fatty acylation of hedgehog, 
Wnt, and ghrelin is catalyzed by enzymes from the multipass 
membrane-bound O-acyl transferases family (31). Besides these 
unusual fatty acid residues, attachment of palmitate to serine and 
threonine residues is found in secreted venom toxins of the spider 
Plectreurys tristis, which selectively target neuronal ion channels 
(88). Also histone H4 is O-palmitoylated at a serine residue in 
the nucleus by acyl-CoA:lysophosphatidylcholine acyltransferase 
(25) (Table 1). The latter is of special interest in the context of 
innate immune responses since histone H4 O-palmitoylation 
regulates transcriptional activity, which is the final outcome of 
the pro-inflammatory signaling pathways triggered by receptors 
of the innate immune system.

Special attention should be devoted to ε-N-acylation consist-
ing in the attachment of a fatty acid residue to the side chain 
of lysine by amide linkage (Table  1). ε-N-myristoylated are 
interleukin 1α (IL-1α) and tumor necrosis factor α (TNFα), the 
pro-inflammatory cytokines crucial in combating bacterial infec-
tions (22). The enzyme(s) catalyzing this reaction is unknown, 
but it has been established that sirtuins reverse this modification 
(89). The ε-N-acylation affects the release of TNFα by immune 
cells (90, 91). Surprisingly, this rare modification is also found in 
toxins of so-called RTX (repeats-in-toxin) class released by some 
pathogenic Gram-negative bacteria (23, 24). We describe these 
cases in more detail in the following sections.

S-Prenylation, another Common 
lipidation of Proteins
Besides S-palmitoylation and N-myristoylation, S-prenylation 
is another common lipidation that endows proteins with a 
hydrophobic moiety and contributes to their association with 
membranes. This modification relies on the posttranslational and 
irreversible attachment of either farnesyl or geranylgeranyl chains 
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to a cysteine residue in the C-terminal CAAX box (alternatively 
also CC and CXC motifs) via a thioether linkage. The process is 
catalyzed by protein prenyl transferases that use polyprenylpy-
rophosphate as the donor of the isoprenoid group (Table 1). In 
peripheral membrane proteins, the S-palmitoylation site is often 
located in proximity of N-myristoylation or S-prenylation sites or 
a polybasic motif, which all are likely to mediate initial weak bind-
ing of a protein to a membrane and thereby facilitate subsequent 
attachment of palmitate to the protein by the integral membrane 
zDHHC enzymes (31). In contrast to S-palmitoylation, data on 
the role of S-prenylation of proteins key to the host–pathogen 
interactions are scarce (92). However, since S-prenylation is typi-
cal for the ubiquitous small GTPases of Ras superfamily, it is vital 
for proper functioning of B and T cells (93, 94).

A glance at Table  1 indicates that palmitate can be cova-
lently bound via oxyester, amide, and thioester linkages to 
respective amino acid residues creating an array of possible 
modifications. O- and N-palmitoylation of proteins seems to 
be stable, resembling in this regard the other common protein 
lipidations, N-myristoylation and S-prenylation. By contrast, 
there exist enzymes cleaving the thioester bond formed during 
S-palmitoylation. For a long time, our understanding of protein 
S-palmitoylation and its dynamics was poor in comparison with 
other reversible protein modifications due to technical difficul-
ties. Only recently have these difficulties been overcome with  
the introduction of methods allowing high-throughput iden-
tification of palmitoylated proteins, also those involved in the 
immune response to microbial pathogens, as discussed in the next  
sections.

MeTHODOlOgiCal PROgReSS 
FaCiliTaTeS DeTeCTiON OF PROTeiN 
PalMiTOYlaTiON

One of the basic problems hindering studies on protein 
S-palmitoylation lies in the fact that there is no identifiable con-
sensus sequence for the palmitoylation site that could facilitate 
its prediction. From the technical point of view, the progress in 
a comprehensive survey of protein S-palmitoylation was also 
hampered by a lack of antibodies detecting this modification, 
with the sole exception of an antibody specific to palmitoylated 
PSD-95 (95). A classical method used to demonstrate protein 
palmitoylation is based on metabolic labeling of living cells with 
[3H]-palmitic acid, subsequent immunoprecipitation of a selected 
protein and detection of the incorporated tritiated fatty acid by 
autoradiography (96). A major disadvantage of this method is its 
low sensitivity. Only a minute fraction of the radioactive palmi-
tate is bound to proteins, the majority being incorporated into 
lipids, which requires lengthy film exposure (counting in days).

A methodological breakthrough in the identification of 
palmitoylated proteins came with the development of two non-
radioactive methods based on so-called click chemistry (97–99) 
and acyl-biotin exchange (ABE) (74, 100). These techniques have 
paved the way for high-throughput mass spectrometry-based 
proteomic analysis of protein palmitoylation in various cells 
and tissues and facilitated identification of new palmitoylated 

proteins of both pathogens and host cells involved in the innate 
immune responses.

The Click Chemistry-Based Method of 
analysis of Protein Fatty acylation
In the click chemistry-based method, cells are metabolically 
labeled with a palmitic acid analog bearing an alkyne group at 
the ω carbon of the fatty acyl chain, such as 17-octadecynoic 
acid (17ODYA) or alk-16 (Figure 2A), and this step resembles 
the classic labeling of cells with [3H]-palmitic acid. However, in 
the click chemistry-based assay, the labeling and lysis of cells is 
followed by in vitro coupling of the function group of the palmitic 
acid analog to a reporter tag, which greatly enhances the sensitiv-
ity of detection of labeled proteins (98, 99). Thus, after cell lysis, 
the labeled proteins are subjected to Cu(I)-catalyzed cycloaddi-
tion known as “click” reaction with an azide-bearing detection 
tag. In this step, a triazol is formed between the alkyne group 
in the palmitic acid analog and the azide of the tag (Figure 2A). 
The azide-bearing tags can be either fluorescent, such as 
tetramethylrhodamine or dyes with infrared fluorescence, or 
carry a biotin moiety. Depending on the tag used, subsequent 
SDS-PAGE separation of proteins allows global visualization 
of palmitoylated proteins by simple in-gel fluorescence or by 
blotting with a streptavidin-conjugated reporter (98, 101, 102). 
Notably, proteins biotinylated via the click reaction can also be 
enriched on streptavidin-coated beads and then subjected to 
on-bead tryptic digestion (or in-gel digestion if eluted from the 
beads) followed by identification by mass spectrometry. Such 
comprehensive click chemistry-based proteomic analysis has 
brought about identification of an array of palmitoylated proteins 
in dendritic cells (10, 103), macrophage-like RAW264 cells (14), 
and T cells (99, 104, 105). Some of the S-palmitoylated proteins 
newly identified in those studies, such as IFITM3 and TLR2, are 
involved in the host–pathogen interactions regulating innate 
immune responses (10, 103), while many others are known to 
contribute to adaptive immunity (99, 105), as described below. 
Recently, global profiling of Toxoplasma gondii (the causative 
agent of toxoplasmosis) has been performed revealing that many 
components of the parasite’s motility complex are palmitoylated 
(106). Similar studies on Cryptococcus neoformans (the fungus 
causing cryptococcal meningitis) have revealed a contribution 
of specific zDHHC palmitoyl acyltransferase, called Pfa4, to 
its virulence (107). Moreover, application of analogs of various 
saturated and unsaturated fatty acids confirmed the heterogene-
ous nature of the fatty acylation of proteins in RAW264 cells and 
suggested that dietary unsaturated fatty acids, after incorporation 
to proteins, can change their properties and thereby affect the 
functioning of immune cells (14).

The major advantage of the click chemistry-based method is 
that it can reveal the time course of protein S-palmitoylation. By 
using click chemistry-based labeling in the pulse-chase mode, 
one can follow the dynamics of protein palmitoylation. With such 
an approach, it was found that the palmitate turnover on Lck, 
an Src-family tyrosine kinase, is accelerated by T cell activation 
(72). Additional introduction of stable isotope labeling by amino 
acids in cells (SILAC) has provided quantitative proteomic data 
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on the dynamics of protein palmitoylation in the cell (104, 110). 
This approach revealed, rather unexpectedly, that in unstimu-
lated T  cell hybridoma, the palmitoylation of most protein 
species does not undergo turnover (104). Another advantage of 
the click chemistry-based assay is its high specificity, because 
the alkyne group introduced in the analog of palmitic acid is 
not normally found in cells (98, 102). The click chemistry-based 
methods can also be used to follow the cellular localization of 
palmitoylated proteins by immunofluorescence when combined 
with the proximity ligation technique (111, 112). Palmitoylation 
of individual proteins can also be studied after their immunopre-
cipitation (11, 72, 73, 98).

Despite its unquestionable success, the click chemistry-based 
methods have limitations. They will detect only those proteins 
that undergo palmitoylation during the period of the metabolic 
labeling of cells. One should also bear in mind that the palmitic 

acid analog can be incorporated at S-, N-, and O-palmitoylation 
sites alike (111, 112). In addition, although 17ODYA (alk-16) is 
preferentially used to mimic palmitoylation of proteins, it can 
also be incorporated with low efficiency at N-myristoylation 
sites of proteins (98, 99). Another group of proteins that will be 
labeled with the palmitic acid analog but are not S-palmitoylated 
are those bearing the glycosylphosphatidylinositol (GPI) anchor 
(85, 113). Most of these limitations can be overcome using vari-
ous fatty acid reporters, inhibitors, and by exploiting the sensi-
tivity of the thioester bond to hydroxylamine treatment. Given 
the large variety of chemical reporters preferentially mimicking 
distinct fatty acids, recent years have witnessed a plethora of 
chemistry-based proteomic studies not only on palmitoylated 
but also myristoylated proteins and proteins bearing the GPI 
anchor, including those of pathogens and immune cells (10, 14, 
85, 86, 114).
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The aBe Method Reveals Protein  
S-acylation
The ABE method can be used as a complement to the click 
chemistry-based approach in cell studies but unlike the latter 
it is uniquely suitable for studying whole tissues. ABE does not 
require metabolic labeling of proteins in living cells, thus some 
of the abovementioned limitations and difficulties do not apply. 
The ABE method relies on in vitro exchange of thioester-linked 
palmitate to a derivative of biotin which allows subsequent 
affinity purification of the resulting biotin-labeled proteins on 
streptavidin-coated beads (Figure 2B). The first step of the ABE 
involves lysis of cells or tissues followed by irreversible blockage 
of free thiol groups in the solubilized proteins by alkylation, most 
often with N-ethylmaleimide. Subsequently, the thioester bonds 
existing in S-palmitoylated proteins are broken with hydroxylamine, 
releasing palmitoyl moieties. The newly exposed thiol groups can 
now be tagged with sulfhydryl-reactive derivatives, such as bio-
tin-HPDP, forming disulfide bonds with thiols. The biotinylated 
proteins are subsequently captured on streptavidin-coated beads 
and eluted with agents that reduce the disulfide bond between the 
protein and biotin-HPDP, such as β-mercapthoethanol, DTT, or 
TCEP (49, 74, 115, 116). As an alternative to biotinylation, in the 
so-called acyl-RAC technique, the newly exposed protein thiol 
groups in hydroxylamine-treated cell lysates are captured on a 
resin containing sulfhydryl-reactive groups (117). In both ABE 
and acyl-RAC, the eluted proteins can be separated by SDS-PAGE 
and visualized by gel staining or immunoblotting, or identified 
by mass spectrometry. Furthermore, when the hydroxylamine-
released palmitoyl moieties are exchanged for a polyethylene 
glycol-maleimide derivative of a distinct molecular weight, a 
shift in-gel migration of tagged proteins is observed reflecting the 
number of fatty acyl residues originally S-bound to the protein 
(118, 119).

The ABE method has so far been used successfully for prot-
eomic profiling of S-acylated proteins in immune cells, such as 
RAW264 cells (48), several types of blood cells, such as platelets, 
primary T cells, and immortalized B cells (120–122), pathogenic 
microorganisms such as T. brucei and T. gondii (123, 124), 
and tissues (125, 126). To quantify the aberrations in protein 
palmitoylation in a mouse model of Huntington’s disease, whole 
animal stable isotope labeling of mammals (SILAM) was applied 
followed by tissue isolation and ABE procedure (127). In another 
approach, for quantitative analysis of the T-cell palmitoylome, 
ABE was combined with labeling of proteins with various 
oxygen isotopes during their digestion with trypsin before mass 
spectrometry analysis (122). In addition, preselection of tryptic 
peptides obtained by ABE on streptavidin-coated or sulfhydryl-
reactive resins greatly facilitates the identification of S-acylation 
sites by mass spectrometry (49, 110, 117).

Some aspects of the ABE method deserve a comment. Since 
the assay relies on the sensitivity of thioester bonds to hydroxy-
lamine, ABE detects all S-acylation without distinguishing 
between S-palmitoylation and the other cases. Furthermore, 
there is a possibility of false-positive detection of proteins bearing 
a thioester linkage with compounds other than fatty acyl residues, 
such as ubiquitin in the E2 ubiquitin conjugase Ubc1 (115). 

Another source of false-positives is proteins in which free thiol 
groups were not completely alkylated before biotinylation. On 
the other hand, insufficient deacylation of bonafide fatty-acylated 
proteins with hydroxylamine results in their absence in the final 
sample (116).

In summary, the click chemistry-based method relies on 
metabolic labeling of cells with a palmitic acid analog which 
incorporates into proteins and next tagging it with reporter 
molecules greatly enhancing the sensitivity of detection. It only 
reveals proteins undergoing S-palmitoylation during metabolic 
labeling of cells and allows revealing turnover of this modifica-
tion. By contrast, the ABE method is based on direct binding 
of sulfhydryl-reactive derivatives to thiol groups of cysteines 
unraveled by hydroxylamine treatment after lysis of cells or tissues. 
It allows the investigation of the whole but static palmitoylome. 
A comparative proteomic study of protein palmitoylation in  
P. falciparum found that the sets of proteins identified using these 
two approaches overlapped in 57.2% (113), indicating that they 
provide complementary data on the cellular palmitoyl proteome. 
Thanks to the application of the click chemistry- and ABE-based 
methods numerous new palmitoylated proteins have been identi-
fied. In 2015, a SwissPalm database was launched, (128) which 
provides an excellent, manually curated resource of information 
on palmitoylated proteins, palmitoylation sites, etc., available at 
http://swisspalm.epfl.ch/. All these efforts have greatly furthered 
our knowledge on molecular mechanisms regulating diverse 
aspects of cell functioning, including host–pathogen interactions 
and progress of infectious diseases, as highlighted below.

PalMiTaTe aS a COMPONeNT OF 
PROTeiNS aND liPiDS RelaTeD  
TO BaCTeRial PaTHOgeNiCiTY

Bacteria lack protein palmitoyl acyltransferases of the zDHHC 
family and, therefore, are essentially devoid of S-palmitoylated 
proteins. Yet, they have developed unique mechanisms utilizing 
fatty acids, such as palmitic acid, to modify their glycolipids 
and proteins. These modifications augment infectivity and help 
bacteria evade recognition by the host innate immune system. 
For example, the vast majority of Gram-negative bacteria pro-
duce lipopolysaccharide (LPS) as a part of their outer membrane. 
LPS is composed of the variable polysaccharide O-antigen and 
more-conserved lipid A containing two glucosamine residues 
hexa-acylated with hydroxymyristic, myristic, and lauric acid. 
Lipid A is recognized by CD14 protein and TLR4 receptor 
complexed with MD2 protein on the plasma membrane of the 
host immune and some non-immune cells. Activation of TLR4 
triggers strong pro-inflammatory reactions aiming at eradication 
of the bacteria, but when exaggerated, eventually leading to sepsis 
(129). Incorporation of an additional palmitoyl chain into lipid 
A markedly diminishes its ability to activate TLR4 and to induce 
the host pro-inflammatory responses, which is correlated with an 
increased survival of bacteria forming a biofilm (130, 131). This 
strategy is utilized among others by Salmonella typhimurium, a 
causative agent of gastroenteritis, by Bordetella bronchiseptica, 
a respiratory pathogen of human and other mammals, and by 
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Yersinia pestis causing plague (132, 133). The formation of the 
extra-acylated LPS relies on the transfer of palmitate from 
phospholipids onto the hydroxymyristate chain at position 2 of 
glucosamine of lipid A. The reaction is catalyzed by lipid A pal-
mitoyltransferases (PagP in Salmonella and its homologs in other 
bacteria) localized in the outer membrane of these pathogens 
(134, 135). In addition to causing steric hindrance preventing the 
binding to the TLR4/MD2 complex, the hepta-acylation of LPS 
also protects bacteria from the lytic activity of cationic antimicro-
bial peptides, most likely by reducing the fluidity of the bacterial 
outer membrane (136, 137).

Apart from being incorporated into LPS in diverse bacteria, 
palmitate has also been found to modify a virulence factor of 
Gram-negative Erwinia carotovora, the Evf protein. The palmi-
toyl chain is linked via a thioester bond to the Cys209 residue 
at the center of Evf, plausibly by a self-palmitoylating activity of 
the protein. E. carotovora is a phytopatogen using insects such 
as Drosophila as vectors for dissemination between plants. The 
palmitoylation of Evf is required for infectivity of E. carotovora 
and its persistence in the insect gut, however, its mode of action 
of unknown. It has been speculated to be linked with an ability 
of Evf to associate with lipid bilayers, but the lack of similarities 
between Evf and any other bacterial protein of known function 
makes prediction on this subject difficult (79).

A number of bacterial toxins of so-called RTX class released 
during infection of mammals by pathogenic Gram-negative bac-
teria undergo ε-N-acylation of the side chain of internal lysines. 
These toxins include adenylate cyclase of Bordetella pertussis, 
acylated with palmitic acid, and α-hemolysin of extraintestinal 
(uropathogenic) Escherichia coli, acylated with myristic acid and 
also 15- and 17-carbon fatty acids. The acylation is catalyzed by an 
endogenous bacterial acyltransferase which, unlike its eukaryotic 
counterparts, transfers the acyl chain not from acyl-CoA but from 
acyl-carrier protein. The acylated toxins secreted by the bacteria 
bind to the plasma membrane of the host cells, oligomerize and 
form pores causing cell lysis. In the case of the toxin of B. pertus-
sis, essential is also the delivery of the adenylate cyclase moiety to 
the cell interior. Acylation is required for virulence possibly being 
involved in oligomerization of the toxins (23, 24, 138).

Although lacking S-palmitoylated proteins (with the single 
known exception of Evf), bacteria express a wide range of 
membrane-bound proteins modified by a complex lipidation at 
the N-terminus, with palmitate frequently being a component 
of the lipid moiety (139, 140). The bacterial lipoproteins are 
synthesized in a multistep process catalyzed by a unique set of 
lipoprotein processing enzymes, Lgt, LspA, and Lnt, absent 
in eukaryotic cells. The formation of these lipoproteins begins 
with the attachment of a diacylglycerol via a thioester bond to 
a cysteine residue located in the so-called lipobox motif of the 
signal sequence of the transmembrane lipoprotein precursor. The 
signal sequence is then cleaved next to the lipid-modified cysteine 
leaving it at the N-terminus of the mature protein (141). In Gram-
negative and less frequently also Gram-positive bacteria, a third 
fatty acid residue is additionally attached via an amide linkage 
to the amino group of the cysteine in a reaction analogous to 
the N-acylation of hedgehog proteins (see Table 1). This di- and 
tri-lipidation ensures membrane anchoring of the lipoproteins. 

All such lipoproteins of Gram-positive bacteria are exposed to the 
milieu while in Gram-negative bacteria some face the periplasm. 
The lipoproteins of Gram-positive bacteria, e.g., Streptococcus 
pneumoniae (causing pneumonia), Mycobacterium tuberculosis 
(tuberculosis), and Gram-negative bacteria, such as Neisseria men-
ingitidis (meningitis), Y. pestis (plague), the spirochaete Borrelia 
burgdorferi (Lyme disease) and Treponema pallidum (syphilis) 
are crucial for their virulence. They control several aspects of the 
host–pathogen interactions, like adhesion and entry to host cells, 
protection against proteolysis and oxidative stress in the host cell, 
and regulation of expression of genes encoding cytokines both 
during initiation and progress of the disease (140–142). The sur-
face exposure of the lipoproteins allows their involvement in the 
host cell invasion while on the other hand forming the so-called 
pattern signal recognized by the TLR2 receptor, which triggers 
the pro-inflammatory responses helping to combat the bacteria 
(143). Of interest, TLR2 is S-palmitoylated, as discussed below. 
The involvement of lipoproteins in pathogenesis fuels studies on 
their properties. One such recent work employing click chemistry 
to profile the lipoproteins of E. coli identified 88 lipoproteins with 
high/medium confidence, 70% of them predicted before by bioin-
formatics analysis (144). Notably, in that study a 14-carbon alky-
nyl fatty acid analog alk-14 rather than alk-16 was preferentially 
incorporated into the lipoproteins, contradicting earlier studies 
using gas chromatography and TLC, which found that palmitate 
was predominantly used for bacterial protein modification (139). 
Further studies are required to establish whether the fatty acid 
found in lipoproteins varies depending on culture conditions or is 
species specific. For example, 17ODYA labeling for click reaction 
confirmed incorporation of palmitate into pallilysin (Tp0751), 
a lipoprotein of T. pallidum. Pallilysin is a metalloprotease that 
degrades human fibrinogen and laminin. It is suggested that its 
exposure on the bacteria surface enables degradation of host 
structural proteins to facilitate rapid dissemination of this highly 
invasive pathogen (140).

Bacteria occasionally high-jack the palmitoylation machinery 
of host cells to modify the environment so as to favor their 
internalization, survival, and replication inside the cells. Bacillus 
anthracis (the causative agent of anthrax) is an example of such 
bacteria that modify S-palmitoylation of host proteins to their 
ends. The anthrax toxin produced by this pathogen binds to 
the TEM8 and CMG2 (capillary morphogenesis protein-2) 
proteins which, under physiological conditions, are involved 
in cell–cell and cell–extracellular matrix interactions. They are 
S-palmitoylated at multiple (two to four) cysteines (54). The 
S-palmitoylation of TEM8 was found to inhibit its association 
with plasma membrane rafts preventing its ubiquitination by the 
raft-associated E3 ubiquitin ligase Cbl. The binding of anthrax 
toxin drives association of the receptor-toxin complexes with 
rafts possibly correlated with depalmitoylation of the receptor. 
This allows subsequent ubiquitination of the receptor, an uptake 
of the receptor/toxin complexes in a clathrin-dependent manner 
and eventual delivery of the toxin to endosomes. These events are 
facilitated by S-palmitoylation of partner(s) of the receptors, most 
likely including kinases of the Src family (54, 145, 146).

While B. anthracis utilizes palmitoylated host proteins to 
induce its internalization, a growing body of data suggests that 
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also bacterial proteins can undergo S-palmitoylation inside the 
host cells. This type of modification concerns so-called effectors, 
bacterial proteins that are injected into the host cell cytoplasm 
either across the plasma membrane or the membrane of vesicles 
enclosing internalized pathogens, with the help of their secre-
tion systems. These are secretion systems type III and type IV, 
homologs of which have been described for pathogens and sym-
bionts of mammals, insects, and plants (147, 148). The bacterial 
effectors can be S-palmitoylated to reach host cell membranes 
and thereby accumulate at a location most suitable for their acti-
vity. Application of the click chemistry-based method utilizing 
an analog of palmitic acid (alk-16) for cell labeling has revealed 
S-palmitoylation of two effector proteins of Salmonella enterica, 
such as SspH2 and SseI (149). S. enterica invades gut endothelial 
cells and is a leading cause of gastroenteritis and typhoid fever. 
SspH2 carries an E3 ubiquitin ligase domain while SseI shows 
sequence homology to bacterial proteins that have a deamidase 
activity, and inhibits migration of Salmonella-infected cells. The 
latter activity requires S-palmitoylation of SseI. Both proteins are 
stably S-palmitoylated, most likely by zDHH3 and zDHH7 of 
the host and bind to the plasma membrane in a palmitoylation-
dependent manner (149). Also two effector proteins of the IpaH 
family of Shigella spp. were found to be S-palmitoylated in that 
study, suggesting that this modification can control the activity 
of effector proteins of other pathogens as well (149). Indeed, 
GobX and LpdA, effector proteins of Legionella pneumophila, the 
causative agent of Legionnaires’ disease invading macrophages 
and lung endothelial cells, are S-palmitoylated as was found 
recently using click chemistry. LpdA is a phospholipase hydrolyz-
ing various phosphatidylinositols while GobX is an E3 ubiquitin 
ligase. GobX is targeted in a palmitoylation-dependent manner 
to the Golgi apparatus, and LpdA to the plasma membrane and 
a subset of intracellular vesicles (150, 151). Thus, the diversified 
subcellular localization of bacterial effector proteins reflects that 
of eukaryotic proteins.

It is worth noting that global profiling of acylated proteins with 
the application of click chemistry and an alkyne-functionalized 
analog of myristic acid, alk-14, for cell labeling was effective in 
reveling the mechanism of action of Shigella flexneri effector 
protein IpaJ of type III secretion system. This is a unique pro-
tease that cleaves off the N-terminal myristoylated glycine. This 
proteolytic demyristoylation activity of IpaJ is specific toward 
Golgi-associated ARF/ARL family of GTPases regulating cargo 
transport through the Golgi apparatus, inhibition of which is 
apparently pivotal for virulence of the bacteria causing diarrhea 
in humans (152).

In addition to the S-palmitoylation of the effectors of patho-
genic bacteria of mammals mentioned earlier, double acylation, 
N-myristoylation and S-palmitoylation, has been reported of 
the so-called avirulence (Avr) proteins (effectors of type III 
secretion system) of Pseudomonas syringae, a causative agent 
of diverse plant diseases. Among them, AvrRpm1 and ArvB are 
N-myristoylated and S-palmitoylated by host acyltransferases 
at neighboring glycine and cysteine residues localized at the 
N-terminus of the proteins (similarly to eukaryotic kinases of the 
Src family), while in AvrPphB and two AvrPphB-like effectors— 
ORF4 and NopT, the double acylation motif is exposed after 

auto-cleavage of the proteins (similarly to some eukaryotic 
proteins cleaved by caspases). The acylation of the Avr proteins 
ensures their anchoring in the host plasma membrane, which is 
required for their functioning. In disease-susceptible plants Avr 
proteins contribute to successful infection; however, in plants 
expressing host resistance (R) genes they trigger plant defense 
signals, in both cases engaging plasma membrane-associated host 
proteins (153, 154).

The importance of palmitoylation of bacterial effector proteins 
for their infectivity is only beginning to be uncovered, in no small 
part owing to the development of the click chemistry-based 
method for detection of this protein modification. However, the 
strategy of high-jacking the host palmitoylation machinery to 
modify own proteins seems to be much more commonly employed  
by viruses.

PROTeiN PalMiTOYlaTiON iN viRal 
iNFeCTiONS

Viruses do not encode palmitoyl acyltransferases but exploit 
extensively the host palmitoylation machinery to modify their 
proteins essential for infection of host cells and own replication. 
In fact, S-palmitoylation of proteins was discovered in 1979 as a 
modification of envelope glycoproteins of Sindbis virus and VSV. 
In those studies [3H]-palmitic acid was used for metabolic labe-
ling of virus-infected cells and labeled proteins were identified by 
autoradiography (12, 155). Subsequently, a number of other viral 
proteins have been found to be palmitoylated using this approach.

The most-studied group of viral palmitoylated proteins is 
those found in enveloped viruses, i.e., viruses covered by a lipid 
bilayer obtained during their replication from a membrane of the 
host cell, such as the plasma membrane or endoplasmic reticu-
lum. Influenza virus, HIV-1, hepatitis C virus (HCV), and herpes 
simplex virus (HSV) are the best known enveloped viruses. 
The envelope is rich in transmembrane, often S-palmitoylated, 
glycoproteins called spikes, which can bind to cognate receptors 
on the host cell plasma membrane triggering endocytosis of 
the virion, mediate subsequent fusion of the viral and cellular 
membranes allowing entry of the viral genome to the cytoplasm, 
and are also involved in the budding of newly formed virus 
particles from the cell. An example of such multifunctional 
palmitoylated transmembrane glycoproteins is HA present in the 
envelope of influenza virus together with another palmitoylated 
transmembrane protein, the matrix protein M2, which forms 
a proton channel earning the protein the name viroporin. As 
mentioned earlier, HA of influenza A virus is S-stearoylated and 
S-palmitoylated, respectively, at one cysteine residue located in 
the transmembrane domain of HA and two cysteines found in the 
cytoplasmic (intraviral) tail in close proximity to the membrane 
(156). On the other hand, M2 is S-palmitoylated on the amphi-
philic helix located in the cytoplasmic part of the protein. Due to 
the S-palmitoylation and the presence of a cholesterol-binding 
motif the helix bends toward and associates with membranes 
(157, 158). During infection, HA binds to sialic acid residues of 
glycans localized on the surface of airway and alveolar epithelial 
cells. The bound virions are endocytosed and next the viral and 
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endosome membranes fuse. The membrane fusion is driven by 
HA, which undergoes conformational changes induced by low 
pH of endosomes. Acidification of endosomes activates also the 
M2 proton channel activity, protons entering viral core facilitate 
dissociation of the viral genome which then moves to the nucleus 
where RNA replication occurs. The S-palmitoylation of HA is 
required for the fusion of the viral and endosome membranes at 
least in some subtypes of the virus while the ion channel activity 
of M2 is not dependent on its S-palmitoylation (159). Newly syn-
thesized viral proteins and RNA are assembled into virions in the 
plasma membrane rafts which merge into lager platforms crucial 
for the virion assembly and budding off. The triple fatty acyla-
tion of HA is required for its targeting to plasma membrane rafts  
(160, 161). Besides S-palmitoylation, also the amino acid sequence 
of the transmembrane domain of HA determines its association 
with rafts (45). On the other hand, among the amino acids of 
the cytoplasmic tail of HA no other than the two S-palmitoylated 
cysteines are required for viral assembly and replication, although 
it is still not clear whether raft targeting (in cooperation with 
the transmembrane fragment) is the only mechanism of their 
participation. It is proposed that they affect conformation of the 
HA tail controlling its interaction with structural matrix protein 
M1 lying beneath the viral envelope (162, 163). The budding off 
of the virion is facilitated by M2 which localizes at the edges of 
rafts as a result of a combination of its S-palmitoylation, choles-
terol binding, and properties of the transmembrane fragment. 
M2 protein can create a “wedge” altering membrane curvature 
thereby facilitating membrane scission and release of the virion 
(157, 164).

The influenza virus S-palmitoylated proteins are the archetype 
for many other viral proteins. Thus, S-palmitoylated spike gly-
coproteins include S-protein of coronaviruses (e.g., severe acute 
respiratory syndrome virus), the fusion (F) protein of paramyxo-
viruses (e.g., measles virus), Env of retroviruses [e.g., HIV-1,  
feline immunodeficiency virus (FIV)], and filoviruses (e.g., Ebola).  
Other viral proteins modified with palmitate are viroporins, such 
as E protein of coronaviruses, and also peripheral membrane 
proteins or nucleocapsid proteins absent in influenza virus. It has 
been found that S-palmitoylation of F13L, a peripheral protein 
of the envelope of vaccinia virus, controls the association of the 
protein with intracellular membranes, thereby the formation of 
the envelope (165). The core protein of the nucleocapsid of HCV 
resides on the surface of lipid droplets and binds in a palmitoyla-
tion-dependent manner to membranes of the droplet-associated 
endoplasmic reticulum. Subsequently, it recruits viral proteins 
and newly synthesized RNA for viral particle formation (166). 
Besides the interest in the role of viral protein S-palmitoylation 
for infectivity and possible use of host zDHHC enzymes as tar-
gets of anti-influenza drugs (167), viral proteins often serve as a 
model to study the consequences of fatty acylation for protein 
functioning and localization in distinct membrane domains 
(see S-Palmitoylation of Proteins and Its Influence on Protein 
Localization, Trafficking, and Stability of this review). Readers are 
referred to recent exhaustive reviews that consider these topics 
(36, 84, 168) while we will focus here on the recent advances in 
the field of viral protein palmitoylation brought about mainly by 
proteomic studies.

The click chemistry-based approach has led to the identi-
fication of S-palmitoylation in the cytoplasmic domain of the 
transmembrane spike protein Env of FIV, considered to be the 
cat equivalent of HIV-1. Env comprises three transmembrane 
gp41 glycoproteins and three associated gp120 which bind to 
CD4 receptor and coreceptors on the surface of T lymphocytes 
allowing fusion of the viral envelope and the plasma mem-
brane and entry of viral capsid. Four cysteines in FIV Env 
are S-palmitoylated vis-a-vis two found in the Env of HIV-1. 
The two most membrane-proximal cysteines, 804 and 811, are 
required for the FIV membrane-fusion activity and incorpora-
tion of Env into virions (169), in agreement with the importance 
of Env S-palmitoylation for virion assembly of some HIV-1 
strains (170–172). The assembly of HIV-1 virions takes place in 
plasma membrane rafts and is driven by N-myristoylated Gag 
protein which anchors and oligomerizes preferentially in these 
plasma membrane domains due to the presence of the fatty acyl 
chain (18).

The development of click chemistry-based methods allowed 
for the first time global profiling of acylated proteins in virus-
infected cells. In addition to identifying acylated viral proteins 
this approach has also revealed how the viral infection modulates 
the acylation pattern of the host cell proteins. Thus far, click 
chemistry has been used to study protein myristoylation and 
palmitoylation in cells infected with HIV-1 and with HSV. In 
the latter case, the standard metabolic labeling with alkyne-
functionalized myristic and palmitic acid analogs followed by 
click chemistry and mass spectrometry was combined with 
SILAC to discern between the changes in the extent of protein 
acylation and those in their abundance following viral infection. 
This approach allowed an elaborate quantitative analysis of host 
protein acylation and has revealed an overall downregulation 
of the level of both host protein modifications in infected cells. 
While the decreased content of myristoylated proteins resulted 
mainly from suppression of host protein synthesis, the drop in 
several S-palmitoylated proteins ensued from the inhibition 
of their palmitoylation in infected cells. The affected proteins 
were localized mainly to the plasma membrane and the Golgi 
apparatus and were involved in vesicle-mediated transport and 
ion transport. In addition, the study has expanded the list of 
HSV-encoded acylated (mostly palmitoylated) proteins that 
play different functions in the viral cycle, such as gE, gI, gK, 
US2, and US3 (110). Similar results pointing to global changes 
of host protein acylation were obtained upon analysis of protein 
myristoylation and palmitoylation in cells infected with HIV-1. 
In that study, the cells were labeled with analogs of palmitic or 
myristic acid tagged with an azide moiety for click chemistry 
reaction; however, the following mass spectrometry analysis did 
not address the relation between changes of protein acylation vs. 
alteration of protein level. The study identified 17 palmitoylated 
and 7 myristoylated proteins significantly differing in abundance 
between HIV-1 infected and uninfected cells. Several of the pro-
teins affected by the infection were of host origin. The abundance 
of myristoylated proteins was in general increased while that 
of the palmitoylated ones—decreased in infected cells (173). In 
other words, the two studies have revealed that HSV and HIV-1 
not only encode proteins that are acylated in the host cell but 
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also alter the palmitoylation of host proteins, likely to adapt the 
cellular environment to favor their replication and budding. 
The majority of the acylated proteins affected by HIV-1 or HSV 
infection had not been described earlier in this context; there-
fore, further studies on these proteins could be crucial for better 
understanding of viral infection. Thus, the click chemistry-based 
approach has been highly effective in revealing changes of the 
host protein palmitoylation and opening new possibilities for the 
identification of novel antiviral drug targets.

PalMiTOYlaTiON OF HOST PROTeiNS 
iNvOlveD iN aNTiBaCTeRial aND 
aNTiviRal DeFeNSe

The innate immune responses are the first line of active defense 
against microbial infections. The application of click chemistry-
based and ABE methods and their use for large-scale analysis of 
protein palmitoylation in murine dendritic CD2.4 cells (10, 103), 
and murine macrophage-like RAW264 cells (14, 48) comple-
mented by proteomic analysis of the raft fraction of those cells (47) 
have contributed significantly to the understanding of the role of 
palmitoylation of host receptors and signaling proteins involved 
in innate immune responses. Thus, the palmitoyl proteome 
analysis of murine dendritic cells unraveled S-palmitoylation of 
TLR2, a receptor expressed in cells of myeloidal lineage, which 
heterodimerizes with TLR1 or TLR6 to bind bacterial tri- or 
diacylated lipoproteins, respectively, and also other microbial 
components, such as glycolipids (e.g., lipoarabinomannan) of 
Mycobacterium and yeast zymosan (174). Besides TLR2, two 
other human TLRs out of 10 ectopically expressed in HEK293 
cell, flagellin receptor TLR5, and TLR10, a unique TLR negatively 
regulating the pro-inflammatory activity of TLR2, were also 
found to be palmitoylated. The S-palmitoylation site of human 
TLR2 was mapped to Cys609 adjacent to its transmembrane 
domain. The modification was present in unstimulated cells and 
was linked with up-regulation of the cell surface localization of 
TLR2. Mutation of Cys609 abolished the ability of the receptor 
to induce pro-inflammatory signaling in response to microbial 
ligands of TLR2 (10). Further studies are needed to reveal 
whether S-palmitoylation of TLR2 controls its association with 
rafts as sites of TLR2 activation (175) and/or affects endocytosis 
of the receptor, as found for the anthrax toxin receptor (54).

One of the most extensively studied TLRs, TLR4 activated 
by bacterial LPS, is not palmitoylated. Yet, saturated fatty acids 
have been indicated to trigger pro-inflammatory signaling of 
TLR4. Thus, the TLR4/MD2 receptor complex is involved in the 
pro-inflammatory outcome of a diet rich in palmitic acid, as was 
found when analyzing markers of inflammation in the heart and 
adipose tissue of high fat diet-fed mice (176, 177). The molecular 
mechanisms underlying the pro-inflammatory properties of pal-
mitic acid can involve its influence on the plasma membrane lipid 
order, hence raft organization, in a way that facilitates transloca-
tion of TLR4 (and TLR2) toward rafts (178, 179). Palmitic acid also 
directly binds to the TLR4-associated MD2 protein (177, 180).  
An influence of palmitic acid on sphingomyelin/ceramide 
metabolism, which enhances the LPS-induced responses, has 

also been considered (181). Recent proteomic studies based on 
17ODYA labeling of RAW264 macrophage-like cells followed by 
click chemistry have revealed that stimulation of cells with LPS 
induces profound changes of the abundance of palmitoylated pro-
teins (182). The data are in agreement with earlier findings show-
ing that LPS induces accumulation of S-palmitoylated Lyn kinase 
in the raft-enriched fraction of cells, allowing it to downregulate 
TLR4 signaling (11). One of the upregulated S-palmitoylated 
proteins was type II phosphatidylinositol 4-kinase IIβ, which 
phosphorylates phosphatidylinositol to phosphatidylinositol 
4-monophosphate. It was shown that palmitoylation determines 
the involvement of the kinase in LPS-induced signaling (182). 
These data suggest that S-palmitoylated proteins, including 
enzymes catalyzing phosphatidylinositol synthesis and turnover, 
are important factors affecting the pro-inflammatory responses 
triggered by LPS.

Notably LPS induces production of TNFα, a pro-inflammatory 
cytokine that is S-palmitoylated itself. TNFα is synthesized as a 
transmembrane 27-kDa precursor (tmTNFα) transported from 
the endoplasmic reticulum to the plasma membrane through the 
Golgi apparatus and recycling endosomes (183). Human tmTNFα 
is S-palmitoylated at Cys30 located at the boundary between its 
transmembrane and cytosolic fragments, as was found indepen-
dently by radiolabeling and by labeling with 17ODYA followed by 
click chemistry (184, 185). Poggi et al. (185) arrived at a complex 
model explaining how the S-palmitoylation of TNFα affects its 
activity (Figure 3A). The modification was shown to favor the 
association of tmTNFα with rafts. Upon cell activation, the 
extracellular domain of tmTNF is cleaved by ADAM17 metal-
loproteinase whereupon the soluble TNFα (sTNFα) is released to 
the extracellular milieu and activates TNF receptor (TNFR) 1 and 
TNFR2. As ADAM17 localizes to both non-raft and raft regions 
of the plasma membrane, the S-palmitoylation of tmTNFα does 
not affect its cleavage and production of the soluble cytokine. 
However, S-palmitoylated tmTNFα interacts with TNFR1 in 
rafts thereby reducing the binding of sTNFα and consequently 
reducing the sensitivity of the cell to this cytokine. In addition, 
the fragment of tmTNFα which remains after the release of 
sTNFα in rafts if further processed by intramembrane SPPL2a 
and 2b proteases giving rise to ICD (intracellular domain) of an 
own biological activity. By contrast, the non-raft fragment of the 
ADAM17-cleaved tmTNFα is rapidly degraded (185).

The transport and maturation of TNFα are also regulated by 
another posttranslational acylation, ε-N-myristoylation (22). As 
shown in Figure 3B, myristic acid residues are attached to two 
lysines (Lys19 and 20) of human tmTNFα. This modification is 
reversed by sirtuin 6 catalyzing the demyristoylation. Depletion 
of sirtuin 6 decreases the release of sTNFα since the ε-N-acylated 
TNFα precursor is redirected to and accumulates in lysosomes 
(90, 91). It is worth noting that exogenous palmitic acid stimulates 
the ε-N-myristoylation of tmTNFα, thereby reducing the release 
of sTNFα in favor of accumulation of tmTNFα in lysosomes  
(90, 91). This somehow surprising anti-inflammatory effect of 
palmitic acid can be explained by competitive binding between 
long-chain fatty acids (in this case, palmitic) and myristoylated 
substrates of sirtuin 6 found in vitro—(89) and adds a new dimen-
sion to the potential effects of palmitic acid.
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FigURe 3 | Influence of fatty acylation of transmembrane tumor necrosis factor α (TNFα) on production of soluble sTNFα. (a) S-palmitoylation and (B) ε-N-
myristoylation of tmTNFα. (a) Non-palmitoylated tmTNFα is localized outside rafts while that S-palmitoylated on Cys30—in rafts of the plasma membrane. tmTNFα 
is cleaved by ADAM17 protease in both these plasma membrane environments giving rise to sTNFα, which subsequently activates TNF receptor (TNFR) 1 receptor 
leading to activation of NFκB and ERK1/2. However, only the raft-residing tmTNFα is further processed by SPPL2b protease to yield ICD, which activates the 
promoter of interleukin (IL)-1β and expression of IL-12. On the other hand, a pool of S-palmitoylated tmTNFα interacts in rafts with TNFR1 preventing its activation 
by sTNFα. (B) tmTNFα is transported from the endoplasmic reticulum via Golgi apparatus and recycling endosomes [1, 2] to the plasma membrane [3].  
In the plasma membrane, TNFα is cleaved by ADAM17 giving rise to sTNFα [4] or is internalized [5] and either returns from the endosomes to the plasma membrane 
[6, 3] or is directed to lysosomes for degradation [7]. ε-N-myristoylation of tmTNFα at Lys19 and Lys20 facilitates its degradation [5, 7] at the expense of processing 
to sTNFα [4]. Oligomerization of tmTNFα and TNFR1 is not shown.
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S-palmitoylation of host proteins is also vital in antiviral 
defense. Viral nucleic acids, which are recognized by several 
TLRs and also cytoplasmic pattern-recognition receptors, induce 
robust production of type I interferons (IFNs), mainly INFα and 
IFNβ. The IFNα and IFNβ released from cells which first encoun-
ter viruses, e.g., dendritic cells, induce an antiviral reaction in an 
autocrine and paracrine manner upon binding to plasma mem-
brane IFNα/β receptor (IFNAR) consisting of subunits 1 and 2. 
Both human IFNAR subunits are S-palmitoylated, as has been 
found by classical radiolabeling. The S-palmitoylation of IFNAR1 
on Cys463, localized near the cytoplasmic end of the transmem-
brane domain, is required for downstream activation of STAT1 
and STAT2 and the following transcription of IFNα-activated 
genes (186). Among the IFN-induced proteins, some have been 
shown to be palmitoylated, using click chemistry and ABE. They 
include the immunity-related GTPase Irgm1, BST2 also known 
as tetherin, and IFITM1 and 3 (10, 104). IFITMs are potent 
restriction factors against a wide range of enveloped viruses, 
e.g., influenza, West Nile, dengue, and Zika viruses (187, 188).  
IFITMs localize primarily to endolysosomal membranes where 
they inhibit viral replication by blocking their fusion with these 
membranes and also facilitate virus degradation (187). The exact 
mechanism of this antiviral activity is not clear, but it seems to 
rely on a perturbation of the organization of endolysosomal 
membranes. This can be linked with the intramembrane topol-
ogy of IFITMs and their S-palmitoylation. IFITM1 and 3 likely 
possess two loops embedded in but not spanning the membrane 
with both the N- and C-termini facing the cytoplasm (55, 189). 
S-palmitoylation of conserved cysteine residues adjacent to these 
loops, Cys71, 72, and 105 in murine IFITM3, contributes to 
the membrane binding, similarly as found earlier for caveolins 
(119, 189). The S-palmitoylation also facilitates clustering of 
IFITM3 in the membranes, which is of potential significance for 
its antiviral activity (103). In support of the latter, the antiviral 
capacity was markedly reduced for non-palmitoylated mutant 
forms of IFITM3 (103, 119). However, S-palmitoylation did not 
affect the endolysosomal localization or stability of IFITM3. 
Subsequent studies have revealed that the localization and deg-
radation of murine IFITM3, both shaping its antiviral capacity, 
are orchestrated by numerous posttranslational modifications 
comprising polyubiquitination, tyrosine phosphorylation by the 
Src-family kinase Fyn, and methylation (189, 190). By contrast, 
S-palmitoylation alone of the closely related murine IFITM1 
endowed it with an antiviral activity and enhanced stability by 
preventing proteasomal degradation (55), which indicates diverse 
effects of this modification on individual IFITM isoforms.

The presented data are only beginning to fill the gap which 
existed in our understanding of the role of protein palmitoyla-
tion in innate immune responses. For a long time, it was lagging 
behind that on acquired immune responses, in which a plethora 
of S-palmitoylated proteins have long been known to be involved. 
They include receptors (CD4 and CD8), tyrosine kinases of the 
Src family, transmembrane adaptor proteins (e.g., LAT, NTAL, 
and PAG/Cbp), and α subunits of heterotrimeric G proteins. 
Their S-palmitoylation in most cases targets them to rafts and 
is a prerequisite for their involvement in the signaling pathways 

triggered by immunoreceptors [TCR, B  cell receptor (BCR), 
and Fcγ and Fcε receptors] crucial for the acquired immune 
responses. An association of some components of these signal-
ing pathways with tetraspanin-enriched domains has also been 
considered. These topics are discussed in several earlier reviews 
(44, 79, 191, 192). It is worth noting that large-scale proteomic 
analyses of fatty-acylated proteins of T cells (99, 104, 105, 122) 
and B  cells (121), identifying numerous new palmitoylated 
proteins, have been published recently. Further studies will shed 
light on the possible engagement of those proteins in acquired 
immune responses and/or in the cross talk between the innate 
and the acquired immune system, in which phagocytic cells, such 
as macrophages and dendritic cells, are essential (193).

CONClUDiNg ReMaRKS

Protein S-palmitoylation affects their localization, trafficking, and 
stability. It has long been known as an important factor control-
ling signal transduction by the BCR and TCR receptors involved 
in acquired immune responses. It is now becoming evident that 
palmitic acid is also a key lipid affecting the diverse processes 
at the host–pathogen encounter. Palmitate is a component of 
bacterial LPS and lipoproteins; S-palmitoylation of viral, some 
bacterial, and numerous host proteins is recognized as a crucial 
factor affecting both the virulence of pathogens and the innate 
immune reactions of the host. Our understanding of the latter 
has benefited greatly from the development of novel methods 
of detection of this protein modification. Their application has 
led to the identification of numerous proteins involved in the 
host–pathogen interaction. The methods have also allowed high-
throughput proteomic analysis of palmitoylation of proteins in 
infected cells, showing widespread changes of the host cell palmi-
toylome. Future studies will tell whether complex feedback loops 
comprising palmitoyl acyltransferases and acylthioesterases, 
similar to those of kinases and phosphatases carrying out protein 
phosphorylation/dephosphorylation, are involved in controlling 
protein S-palmitoylation in infected cells. Revealing how the 
S-palmitoylation of particular proteins is regulated during the 
host–pathogen interactions should allow its modulation to favor 
the host defense.

aUTHOR CONTRiBUTiONS

All authors contributed to writing and critically revised the paper.

aCKNOwleDgMeNTS

The authors thank Prof. Andrzej Sobota from the Laboratory of 
Molecular Membrane Biology of the Nencki Institute (Warsaw, 
Poland) and Dr. Jan Fronk from the Faculty of Biology, University 
of Warsaw for helpful comments and critical discussion.

FUNDiNg

The work was supported by the National Science Centre, Poland, 
grant number DEC-2013/08/A/NZ3/00850 to KK.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


15
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