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Activated PI3Kδ Syndrome (APDS) is an inherited immune disorder caused by heterozy-
gous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase 
delta (PI3Kδ) subunits p110δ or p85δ. This recently described primary immunodeficiency 
disease (PID) is characterized by recurrent sinopulmonary infections, lymphoproliferation, 
and susceptibility to herpesviruses, with Epstein–Barr virus (EBV) infection being most 
notable. A broad range of PIDs having disparate, molecularly defined genetic etiology 
can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, 
PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity 
or antigen receptor signaling were found to be highly susceptible to pathological EBV 
infection. By contrast, the gain of function in PI3K signaling observed in APDS patients 
paradoxically renders these patients susceptible to EBV, though the underlying mecha-
nisms are incompletely understood. At a cellular level, APDS patients exhibit deranged 
B lymphocyte development and defects in class switch recombination, which generally 
lead to defective immunoglobulin production. Moreover, APDS patients also demon-
strate an abnormal skewing of T cells toward terminal effectors with short telomeres and 
senescence markers. Here, we review APDS with a particular focus on how the altered 
lymphocyte biology in these patients may confer EBV susceptibility.

Keywords: Activated Pi3Kδ Syndrome, PASLi, Pi3K/AKT/mTOR, epstein–Barr virus, immunodeficiency, B cell, T cell

inTRODUCTiOn

Epstein–Barr virus (EBV) is a gammaherpesvirus carried by ~95% of the world population. EBV has a 
tropism for oronasopharyngeal epithelial cells (site of lytic replication) and B lymphocytes (reservoir 
of latent virus) and is well controlled throughout life in most people. However, immunocompromised 
patients often show persistent EBV viremia, putting them at risk for B-cell transformation due to 
viral oncogenes. Indeed, the virus was first identified in a Burkitt’s lymphoma in the 1960s (1) and 
is also associated with nasopharyngeal (2, 3) and gastric (4–7) cancer. Thus, inherited gene defects 
causing primary immunodeficiency diseases (PIDs) are often associated with recurrent or persistent 
EBV infections and related malignancies, and unraveling the genetic and molecular mechanisms 
underlying PIDs has led to better knowledge of the cellular and molecular components of the 
immune system that control herpesviruses. Here, we review the features of the recently described 
PID called Activated PI3Kδ Syndrome (APDS) and discuss the immunological abnormalities that 
may confer susceptibility to EBV and elucidate the cellular and molecular immune mechanisms 
normally controlling EBV.

The Class IA phosphoinositide 3-kinase delta (PI3Kδ) complex is recruited to phosphoty-
rosines and catalyzes the phosphorylation of phosphatidylinositol-4,5-bisphosphate to generate 
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phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) that acts as a 
second messenger recruiting downstream signaling molecules. 
As a negative regulator of this signaling, the phosphatase 
PTEN can reverse this reaction and reduce levels of PIP3. 
PI3Kδ is a heterodimer of the p110δ catalytic subunit and the 
p85α, p55α, or p50α regulatory subunit and is known to play 
a major role in cell survival, cell growth, and cell-cycle entry 
through downstream mediators including AKT and mTORC1 
(8). Loss of PI3Kδ catalytic activity has been described in a 
single PID patient with severe disease, but EBV susceptibility 
was not reported (9). Gain-of-function (GoF) mutations in the 
PIK3CD or PIK3R1 gene encoding p110δ or p85α, respectively, 
have been identified by us and others in PID patients with a 
disorder now known as PASLI Disease (PI3Kδ-Activating 
mutation causing Senescent T  cells, Lymphadenopathy, and 
Immunodeficiency), or APDS for short. In the following 
sections, we will briefly review the discovery of APDS and its 
genetic and molecular basis, the clinical and immunological 
features of APDS, and possible contributors to poor control of 
EBV in APDS patients.

GeneTiC AnD MOLeCULAR BASiS  
OF APDS

Activated PI3Kδ Syndrome and causative PIK3CD mutations 
were initially described in two reports with a total of 26 patients 
in 14 unrelated families (10, 11). Prior to these initial reports, 
there had been one description of the most frequent mutation 
in PIK3CD (causing E1021K p110δ) in a single individual being 
studied for B-cell immunodeficiency, but no causative relation-
ship was established (12). Shortly after discovery of APDS and 
underlying PIK3CD mutations, two additional reports with 
eight patients from six unrelated families with similar clinical 
findings described splice site mutations in PIK3R1 as a second 
genetic cause for APDS (13, 14). Thus, APDS1 (or PASLI-CD) 
has been established to denote patients with PIK3CD mutations, 
and APDS2 (or PASLI-R1) denotes those with PIK3R1 mutations. 
Another more recent phenocopy of APDS has been called APDS-
like (APDS-L) and is caused by loss-of-function PTEN mutations 
(15, 16). Since the description of APDS in 2013, approximately 
214 patients have been described with a spectrum of clinical 
features described below (10, 11, 13–41).

The PI3Kδ complex forms when p110δ and p85α bind at a 
1:1 ratio. This constitutive complex remains stable due to tight 
binding interactions between the adaptor-binding domain 
(ABD) of p110δ and the inter-SH2 domain of p85α. To date, 
all activating APDS mutations affecting p110δ (E81K, G124D, 
N334K, R405C, C416R, E525K, E525A, R929C, E1021K, 
E1025G) and p85α (delE11, N564K) have been found or are 
expected to maintain some level of protein–protein interaction 
to form a hyperactive PI3Kδ complex, as free p110δ or p85α 
is unstable and would likely be degraded (Figure  1A). Each 
evaluated mutant has been found to hyperactivate signaling 
by disrupting inter- or intra-molecular inhibitory contacts, as 
observed for tumor-associated GoF mutations in the related 
PIK3CA (Figure 1A) (42, 43).

CLiniCAL AnD CeLLULAR FeATUReS  
OF APDS

The clinical spectrum of APDS1, APDS2, and APDS-L is largely 
overlapping and consists mostly of immunological abnor-
malities (Table 1), although growth retardation has also been 
reported APDS2 and, less frequently, APDS1 (10, 12–14, 17, 21, 
24, 26, 27, 29–33, 37). Recurrent upper and lower respiratory 
tract infections are the most common clinical features affecting 
98% of APDS patients and often resulting in progressive airway 
damage. APDS is associated with lymphoproliferative disease 
(71%), which commonly presents as lymphoid hyperplasia, 
splenomegaly, and/or lymphadenopathy. Autoinflammatory 
disease also occurs in 29% of cases. Importantly, recurrent 
infection with herpesviruses, such as EBV or cytomegalovirus 
(CMV), is observed in about 47% of cases but has not been 
associated with hemophagocytic lymphohistiocytosis (HLH). 
We hypothesize that HLH does not occur in APDS patients 
because, as described below, hyperactive PI3K drives polyclonal 
T-cell senescence, which limits homing, expansion, and sur-
vival of EBV-specific T cells and thereby prevents the cytokine 
storm that causes HLH (Figure 1B). EBV infection is found in 
30% of APDS patients and represents an important risk factor 
for the development of B-cell lymphoma (occurring in 20% 
of EBV-infected APDS patients). However, the occurrence of 
EBV-negative lymphomas has overall been reported as higher 
(19%) than EBV-positive lymphomas (6%), which likely reflects 
the oncogenic potential of hyperactive PI3K signaling. Thus, 
intrinsically hyperactive PI3K (rather than EBV infection) 
appears to be the more dominant driver of B-cell transforma-
tion in APDS.

The susceptibility to infections displayed by APDS patients 
is associated with deficiencies in both T and B lymphocyte 
function, a feature that categorizes APDS as a combined immu-
nodeficiency (Table 1). B-cell compartment abnormalities have 
been universally described in both APDS1 and APDS2. B-cell 
lymphopenia is found in 74% of patients and may be due to 
a developmental defect at the transitional stage, as IgD+CD10+ 
B cells are consistently increased in APDS patient blood (81%). 
Additionally, humoral defects have been observed in the major-
ity of APDS patients, leading to poor vaccine responses in some 
patients. Serum concentrations of IgM are increased in 65% 
of cases, while IgA and at least one IgG isotype are decreased 
(68%). This phenotype suggests a defect in class-switch recom-
bination (CSR), and in vitro studies have not yet provided a clear 
conclusion about whether this defect arises predominantly from 
B-cell-intrinsic or -extrinsic effects of PI3Kδ hyperactivation 
(11, 17, 22, 44). Although immunodeficiency is a major feature 
of APDS, expansion of CD8 T cells is commonly observed (70%) 
and, together with CD4 lymphopenia, explains the inverted 
CD4:CD8 ratios found in the disease (71%). In addition, the 
constitutive activation of PI3K is also linked to the progressive 
differentiation of T cells toward effector memory and terminally 
differentiated (TEMRA) subtypes. Consistently, CD8 T cells from 
APDS patients exhibit normal degranulation activity (induced 
by anti-CD3 stimulation) and TNF/IFNγ production (11) with 
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FiGURe 1 | Continued

reduced secretion of IL-2, weak proliferative responses, and 
enhanced restimulation-induced cell death (RICD) (10, 11, 
14, 22).

Thus, APDS is characterized by a complex spectrum of clinical, 
immunological, and cellular features. Elucidation of the genetic 
and molecular defects has improved diagnosis and care of APDS 
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FiGURe 1 | Activated PI3Kδ Syndrome (APDS) GoF mutations in the PI3Kδ complex and associated immune dysfunction responsible for Epstein–Barr virus (EBV) 
susceptibility. (A) Schematic representation of p110δ and p85α protein domains and APDS mutations reported in patients. The black line depicts the stabilizing 
interaction, and the blue lines show the inhibitory contacts within the PI3Kδ complex. ABD, adaptor-binding domain; BH, breakpoint-cluster region homology 
domain; P, proline-rich region; SH, SRC-homology domain; N, amino-terminal; i, inter; C, carboxy-terminal. (B) Schematic representation of the current 
understanding for the immune control of EBV in healthy subjects (left) and proposed hypothesis for EBV susceptibility in APDS (middle) and XLP1 (right) patients. 
APDS mutations cause abnormal polyclonal expansion of CD8 T cells that become senescent. Senescent CD8 T cells show an impaired EBV-specific response due 
to limited homing, expansion, and survival. In conjunction with CD8 T-cell defects, APDS patients exhibit an elevated frequency of transitional B cells, a major cell 
type for cell entry of EBV, and have defective humoral immunity that may further contribute to EBV susceptibility. In comparison, XLP1 patients, who are susceptible 
to EBV and develop HLH, are deficient in the SAP adaptor and exhibit defective EBV-specific T cell: B-cell interactions, causing a lack of CD4 help and a failure of 
CD8 T-cell cytotoxicity. As opposed to APDS, viral persistence in XLP1 patients causes a recurring stimulation/expansion of EBV-specific CD8 T cells and results in a 
cytokine storm underlying hemophagocytic lymphohistiocytosis (HLH). Antibodies depiction: taken from SMART (Servier Medical Art) licensed under a Creative 
Commons Attribution 3.0 Unported License.

4

Carpier and Lucas EBV in APDS

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 2005

patients (45). Because of the recurrent sinopulmonary infections, 
antibiotics are often given prophylactically, and immunoglobulin 
replacement is commonly used, although recurrent infections 
have been reported despite this treatment (15, 20, 26). Chemo- 
and/or radiotherapy are often used for lymphomas, a major cause 
of death in APDS patients (about 62% of deaths) (11, 14, 17–19, 
24, 30, 31, 37). Beyond the treatment of these specific symptoms, 
hematopoietic stem-cell transplantation has proven beneficial for 
restoration of immune function in 67% of APDS patients receiv-
ing this therapy, which requires availability of an HLA-compatible 
donor and is particularly risky in the setting of EBV infection 
(10, 14, 15, 18, 24, 31, 34, 36). Identification of the genetic and 
molecular etiology of APDS has also led to more specific treat-
ments, such as the use of the mTORC1 inhibitor (rapamycin) (10, 
11, 23, 24, 26, 28, 34, 40) and specific p110δ inhibitors, which are 
currently being evaluated for APDS treatment in clinical trials.

eBv SUSCePTiBiLiTY in APDS PATienTS

B-Cell Dysfunction
Epstein–Barr virus is usually acquired during childhood and is 
asymptomatic throughout life, while primary infection in young 
adulthood can (in ~30–70% of cases) cause infectious mono-
nucleosis (IM) (46). Although control of EBV infection by the 
immune system has been mainly attributed to CD8 T cells and 
to a lesser extent to NK  cells, a role for humoral immunity in 
protecting from EBV infection has recently been reevaluated with 
a focus on IM patients (46–48). Although a neutralizing antibody 
response against several viral proteins such as gp350, a particularly 
immunogenic EBV protein, is detectable in these patients (47), 
the peak of this antibody response occurs after disappearance of 
IM symptoms and clearance of the virus, and this delay has been 
attributed to B-cell dysfunction in acutely infected patients (46). 
Several vaccination strategies have focused on the gp350 protein 
(49–51) since it acts as a major mediator for entry of EBV into 
B  cells through its interaction with CD21 (52). Interestingly, 
vaccination using recombinant gp350 in phase-I and-II trials 
correlated with a gp350-specific antibody response and showed 
a protective effect in IM development but not in asymptomatic 
EBV infections (50, 51). Thus, the role of neutralizing antibodies 
in protecting B cells from infection and lowering the extent of 
infection during primary exposure can be considered in asymp-
tomatic individuals and especially in children who might carry 
maternal EBV-specific antibodies. This protection might also be 

crucial to prevent disease upon reexposure to EBV. As such, the 
defects in B-cell development and function observed in APDS 
patients might help explain their increased susceptibility to EBV.

Changes in B-cell differentiation and intrinsic B-cell dysregu-
lation may also be relevant contributors to EBV susceptibility 
in APDS. The nature of the B-cell compartment primarily 
infected by EBV has been a matter of debate, and it was first 
proposed that IgD−CD27+ memory B cells are the major entry 
point (53). However, in vitro observations as well as data from 
IM patients suggested that primary infection of B  cells occurs 
in naïve IgD+CD27 cells, which then undergo differentiation in 
germinal center reactions, resulting in the emergence of class-
switched memory B cells carrying EBV (54, 55). The observation 
that APDS patients exhibit an increased frequency of immature 
transitional CD10+ B cells and have a low frequency of memory 
CD27+ B cells (11) while remaining highly susceptible to EBV 
may support the possibility that EBV can also infect developing 
B cells. Indeed, several studies performed in mice have reported 
the ability of developing B cells to be infected by EBV (56) or 
the homologous γ-herpesvirus MHV68 (57, 58). The idea that 
transitional B cells might be a critical entry point and reservoir 
for EBV has been proposed before and fits with a model in 
which recurrent seeding of the developing B-cell compartment 
with EBV virions promotes establishment of long-term B-cell 
infection (57). In agreement with this hypothesis, depletion of 
transitional B  cells in mice reduces EBV in the mature B-cell 
compartment (58). Therefore, it is possible that persistent EBV 
infection is facilitated in APDS patients by the predominant 
transitional B-cell compartment that would provide a pathologi-
cally increased reservoir of EBV, although additional studies are 
required to evaluate this hypothesis.

The EBV latency proteins LMP2a and LMP1 are thought to 
be key players in hijacking B-cell maturation by EBV since they 
mimic B-cell receptor and CD40 signaling, respectively (59, 60). 
LMP1 in particular is sufficient to transform several cell types, 
activates PI3K signaling, and promotes B-cell survival, growth, 
and proliferation programs (59–61). As p110δ is the main Class 
IA PI3K isoform expressed in EBV-positive B-cell lymphomas, 
this isoform might be a major target for LMP1 (62), and EBV-
driven lymphomas in APDS may thus be facilitated in B  cells 
expressing hyperactive forms of PI3Kδ. Moreover, several studies 
have demonstrated that PI3K inhibition reduces EBV reactivation  
(59, 63, 64), suggesting that the increased PI3Kδ activity displayed 
by APDS patients would favor a constitutive lytic program and 
may contribute to persistent viremia.
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TABLe 1 | Summary of clinical and immunological features of APDS patients.

Clinical features immunological features

Reference Gene Mutationa number 
of 

patients

Respiratory 
infectionsb

Lympho-
proliferationc

eBv 
viremia

Other 
herpesviruses

B 
lymphoma

eBv + B 
lymphoma

increased 
immature/
transitional 

B cells

Decreased 
igA and/or 
igG titers

increased 
igM titers

Defect in 
memory 
B celld

increased CD8 
differentiatione

Jou et al. (12) PIK3CD E1021K 1 1/1 n.d. n.d. 1/1 (VZV) n.d. n.d. n.d. 1/1 1/1 n.d. n.d.

Angulo et al. (10) PIK3CD E1021K 17 17/17 10/17 1/17 4/17 1/17 n.d. 14/16 10/11 14/17 8/16 5/5

Lucas et al. (11) PIK3CD E1021K 3 3/3 3/3 3/3 1/2 1/3 1/3 3/3 2/3 2/3 2/2 2/2

PIK3CD E525K 5 5/5 3/5 5/5 4/5 1/5 1/5 5/5 3/5 0/5 3/5 1/1

PIK3CD N334K 1 1/1 1/1 1/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1

Crank et al. (17) PIK3CD E1021K 1 1/1 1/1 0/1 0/1 1/1 0/1 1/1 1/1 1/1 n.d. n.d.

PIK3CD C416R 2 2/2 2/2 1/2 1/2 (HSV) 2/2 0/2 2/2 1/2 2/2 n.d. n.d.

Deau et al. (13) PIK3R1 delE11 4 4/4 1/4 1/4 1/4 (CMV) n.d. n.d. 3/4 4/4 3/4 2/4 2/3

Kracker et al. (18) PIK3CD E1021K 8 8/8 6/8 0/8 0/8 2/8 0/8 0/1 5/8 7/8 2/2 n.d.

Lucas et al. (14) PIK3R1 delE11 4 4/4 3/4 0/3 1/3 (CMV) 1/4 n.d. n.d. 4/4 1/3 n.d. Majority

Hartman et al. (19) PIK3CD E1021K 5 5/5 1/5 0/3 2/5 (HSV1, VZV) n.d. n.d. n.d. 1/5 4/5 4/5 n.d.

Kannan et al. (20) PIK3CD E1021K 1 1/1 1/1 1/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1

Lougaris et al. (21) PIK3R1 delE11 4 4/4 4/4 n.d. n.d. n.d. n.d. 2/2 4/4 4/4 3/3 n.d.

Elgizouli et al. (23) PIK3CD E1021K 5 5/5 5/5 1/5 1/5 (CMV) 0/5 0/5 2/4 5/5 1/5 2/4 n.d.

Elkaim et al. (24) PIK3R1 delE11 36 36/36 22/36 8/36 6/35 (CMV), 2 
(VZV)

10/36 1/36 14/15 27/35 18/31 11/19 10/10

Kuhlen et al. (29) PIK3R1 delE11 1 1/1 1/1 0/1 1/1 (CMV) n.d. n.d. n.d. 1/1 1/1 1/1 1/1

Martínez-Saavedra 
et al. (25)

PIK3R1 delE11 1 1/1 0/1 n.d. n.d. n.d. n.d. 1/1 1/1 1/1 1/1 1/1

Olbrich et al. (26) PIK3R1 delE11 2 1/2 2/2 2/2 2/2 n.d. n.d. 1/1 2/2 2/2 2/2 1/1

Petrovski et al. (27) PIK3R1 delE11 4 4/4 4/4 0/4 0/4 0/4 0/4 2/4 4/4 2/4 4/4 1/4

Rae et al. (28) PIK3CD E1021K 1 1/1 1/1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1/1 1/1

Tsujita et al. (15) PIK3CD E1021K 2 2/2 2/2 0/2 1/2 (HSV) 0/2 0/2 2/3 2/2 0/2 2/2 n.d.

PIK3CD E525A 3 2/3 2/3 0/3 1/3 (Herpes 
zoster)

0/3 0/3 3/3 3/3 1/3 0/3 n.d.

Bravo García-Morato 
et al. (30)

PIK3R1 delE11 2 2/2 2/2 1/2 1/2 (herpetic 
lesions)

1/2 0/2 1/1 2/2 1/2 0/1 1/1

Chiriaco et al. (22) PIK3CD E1021K 1 1/1 1/1 1/1 0/1 0/1 0/1 1/1 1/1 1/1 0/1 1/1

Coulter et al. (31) PIK3CD E1021K or 
E525K

50 + 3 51/53 39/53 14/53 49% including 
EBV +  (human 
herpesvirus 6, 

VZV, HSV)

7/53 3/53 24/32 21/49 38/50 17/30 17/18
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Clinical features immunological features

Reference Gene Mutationa number 
of 

patients

Respiratory 
infectionsb

Lympho-
proliferationc

eBv 
viremia

Other 
herpesviruses

B 
lymphoma

eBv + B 
lymphoma

increased 
immature/
transitional 

B cells

Decreased 
igA and/or 
igG titers

increased 
igM titers

Defect in 
memory 
B celld

increased CD8 
differentiatione

Dulau et al. (35) PIK3CD E1021K 5 5/5 5/5 4/5 4/5 (CMV, HSV, 
VZV)

2/5 n.d. 4/5 3/5 4/5 5/5 n.d.

PIK3CD E525K 3 3/3 3/3 3/3 2/3 (CMV) 1/3 n.d. 3/3 2/3 1/3 2/3 n.d.

PIK3CD N334K 1 1/1 1/1 1/1 0/1 0/1 n.d. 1/1 1/1 1/1 0/1 n.d.

PIK3CD E1025G 1 1/1 1/1 1/1 1/1 (VZV) 0/1 n.d. 0/1 1/1 1/1 1/1 n.d.

Mettman et al. (41) PIK3CD E1021K 1 1/1 1/1 n.d. n.d. 0/1 0/1 n.d. 0/1 1/1 1/1 n.d.

Goto et al. (40) PIK3CD E1021K 1 n.d. 1/1 1/1 1/1 (CMV) 0/1 0/1 1/1 1/1 1/1 1/1 1/1

Hauck et al. (37) PIK3R1 delE11 3 3/3 2/3 1/3 0/3 1/3 1/3 0/2 2/3 2/3 n.d. 2/2

Wentink et al. (34) PIK3CD E1021K 9 9/9 3/9 2/9 n.d. 2/9 n.d. Increased 5/11 5/11 Decreased n.d.

PIK3CD E525K 1 1/1 1/1 0/1 n.d. 0/1 n.d. 0/1 0/1 n.d.

PIK3CD R929C 1 1/1 0/1 0/1 n.d. 0/1 n.d. 1/1 0/1 n.d.

PIK3R1 N564K 1 1/1 0/1 0/1 n.d. 0/1 n.d. 0/1 0/1 n.d.

PIK3R1 delE11 1 1/1 1/1 0/1 n.d. 0/1 n.d. 0/0 0/0 n.d.

Nademi et al. (36) PIK3CD E1021K 10 10/10 8/10 2/10 5/10 1/11 n.d. n.d. n.d. n.d. n.d. n.d.

PIK3R1 delE11 1 1/1 0/1 0/1 0/1 n.d. n.d. n.d. n.d. n.d. n.d.

Takeda et al (33) PIK3CD G124D 2 2/2 2/2 2/2 2/2 (Herpes 
zoster, labialis)

1/2 1/2 1/1 2/2 2/2 0/1 1/1

PIK3CD E81K 1 1/1 1/1 1/1 0/0 1/1 n.d. 0/1 0/0 0/0 1/1 0/0

Heurtier et al. (32) PIK3CD E81K 1 1/1 1/1 n.d. n.d. n.d. n.d. 1/1 1/1 0/1 1/1 1/1

PIK3CD G124D 2 2/2 2/2 n.d. n.d. n.d. n.d. 1/1 2/2 1/2 2/2 2/2

Rae et al. (38) PIK3CD R405C 1 1/1 0/1 0/1 0/1 0/1 0/1 n.d. 1/1 0/1 1/1 0/1

Saettini et al. (39) PIK3CD E1021K 1 1/1 1/1 1/1 0/1 0/1 0/1 1/1 1/1 0/1 1/1 1/1

214 98.1% 70.9% 29.5% 32.10% 18.80% 5.80% 80.7% 68.1% 65.3% 65.4% 70.3%

aFrequencies of activating PI3Kδ mutations among APDS1 and APDS2 patients: E1021K, 58%; C416R, 1%; R405C, 0.5%; E525K, 6%; E525A, 1%; N334K, 1%; E81K, 1%; G124D, 2%; R929C, 0.5%; E1025G, 0.5%; delE11, 29%; 
N564K, 0.5%.
bIncludes upper and lower respiratory tracts.
cIncludes splenomegaly and lymphadenopathy.
dAssessment of cell counts, frequency or B-cell memory class switch.
eFrequencies of effector/memory cells, CD57 expression, telomere lengths.
n.d., not determined; CMV, cytomegalovirus; EBV, Epstein–Barr virus; HSV, herpes simplex virus; VZV, varicella zoster virus.
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Thus, APDS patients harbor abnormal B  cells that likely 
promote EBV susceptibility through several mechanisms. These 
may include, among others, poor anti-EBV antibody responses, 
increased transitional B  cells serving as an EBV reservoir, and 
heightened cell-intrinsic PI3K signaling that may promote EBV-
driven B-cell transformation and/or EBV reactivation.

T-Cell Dysfunction
T  lymphocytes are a crucial immune cell type for control of 
EBV infection (65, 66). Substantial expansion of EBV-specific 
CD8 T cells has been observed in IM patients (67), and EBV 
control in healthy carriers has been correlated with the pres-
ence of functional EBV-specific CD8 T cells (68). However, the 
major arguments supporting a functional role for CD8 T cells 
in controlling EBV in vivo come from immunocompromised 
patients. Indeed, post-transplant lymphoproliferative disease 
(PTLD) is an important clinical concern in immunosup-
pressed transplant patients. In these patients, PTLD is caused 
by EBV-driven B-cell expansion and can be overcome by 
infusing EBV-specific cytotoxic T  cells (69–72). Moreover, 
immunodeficiency syndromes, particularly HLH and X-linked 
lymphoproliferative diseases, have also provided valuable 
lessons and advanced our understanding of the role for CD8 
T cells in EBV immunity (73, 74).

Monogenic causes of EBV-associated HLH have demon-
strated that defective cytotoxicity machinery most commonly 
underlies disease (66, 75). However, these more general defects 
are not present in APDS patients, highlighting a more nuanced 
mechanism conferring EBV susceptibility when PI3K signal-
ing is hyperactive. XLP1 patients deficient in the signaling 
lymphocytic activation molecule-associated protein (SAP) 
adaptor exhibit a very specific vulnerability to EBV viremia, 
and uncovering the genetic mutations responsible for disease 
contributed to defining crucial and non-redundant molecular 
pathways for EBV control by cytotoxic cells (76–79). Indeed, 
mutations in SH2D1A encoding SAP result in failure of T cell: 
B-cell interactions and inability to propagate 2B4- and NTBA-
mediated signals promoting cytotoxicity and instead favor an 
inflammatory cytokine storm that drives HLH (77, 80–84). 
Although XLP1 and APDS patients fail to control EBV infec-
tion, both patient cohorts harbor EBV-specific T  cells and 
their CD8 T  cells show normal in  vitro effector functions in 
response to SAP-independent stimuli (82, 85). Interestingly, 
positive signaling for cytotoxicity induced by receptors of the 
SLAM family (e.g., 2B4 and NTBA) that utilize the SAP adap-
tor involves PI3K/AKT activity (86, 87). Thus, both APDS and 
XLP1 share the feature of EBV susceptibility; however, unlike 
XLP1 patients, APDS patients are not susceptible to HLH. We 
hypothesize that hyperactive PI3K T-cell intrinsically drives 
polyclonal senescence and prevents a cytokine storm and HLH 
by limiting homing, expansion, and survival of EBV-specific 
T cells, as described further below (Figure 1B). Indeed, T cells 
from APDS patients exhibit enhanced stimulation-induced 
apoptosis (10), which is a feature shared with patients deficient 
in the anti-apoptotic factor XIAP who are susceptible to EBV 
and HLH (88, 89). Poor survival of EBV-reactive T cells may 
be a common underlying feature of EBV susceptibility in both 

XIAP deficiency and APDS, although the HLH phenotype in 
XIAP deficiency is poorly understood (90, 91).

The PI3K-driven expansion of effector CD8 T cells in APDS 
(11, 14) raises the question of why they cannot control EBV 
infection. The answer might come from the differentiation state 
of CD8 T cells since peripheral blood T cells in APDS patients 
are terminally differentiated with characteristics of senescence 
(92) (Table 1), including low IL-2 secretion, shortened telom-
eres, and poor proliferative capacity. Studies in mouse tumor 
models have similarly shown that senescent T  cells exhibit 
in  vivo defects including reduced survival, proliferation, IL-2 
production, lymphoid homing, and tumor rejection (Figure 1B) 
(93, 94). Replicative senescence occurs when telomere erosion 
that occurs with each cell division reaches a critical point, lead-
ing to irreversible cell-cycle arrest through activation of the 
DNA damage response that is thought to protect from cellular 
transformation by preventing genomic instability and infinite 
proliferation (95). CD8 and CD4 T-cell immunosenescence 
has been observed in elderly individuals (96), and numerous 
studies demonstrate a high correlation between T-cell aging 
and persistent infections (e.g., CMV, EBV and HIV) (97–99) or 
the development of tumors (100, 101). A closer look at CMV-
specific T cells has revealed a link between aging and increased 
frequency of CMV-specific CD8 T cells with a senescent phe-
notype (102, 103), suggesting that chronic antigen stimulation 
might drive T-cell senescence. Consistent with this hypothesis, 
the expression of the telomerase reverse transcriptase (TERT) 
that regulates the length of telomeres drastically declines in 
CD8 T cells after repeated antigen stimulation and acquisition 
of a senescent phenotype (104). Interestingly, overexpression of 
TERT increases the proliferative capacity of stimulated T cells 
(105), and using a pharmacological activator of TERT enhances 
CD8 T-cell-mediated control HIV infection in vitro (106).

Thus, immunosenescence represents a plausible contribu-
tor to defective EBV control in APDS patients, as CD8 T  cells 
might not be able to clonally expand and mount a robust and 
specific response against EBV despite their prominent effector 
phenotype (11). While repeated EBV antigen stimulation seems 
to be an attractive hypothesis for driving T-cell immunosenes-
cence in APDS, patients without active herpesviruses still have 
a high frequency of senescent T cells (Table 1), indicating that 
immunosenescence is likely not restricted to antigen-specific 
T cells. Instead, the hyperactivation of PI3K, a signaling pathway 
known to play multiple roles in survival, metabolism, cell growth, 
and cell-cycle progression (107–109), likely drives senescence 
by promoting exuberant in  vivo CD8 T-cell proliferation (and 
resulting in clinical features of lymphoproliferation). Moreover, 
several studies have linked increased PI3K/AKT/mTORC1 activ-
ity with senescence in immortalized and primary cells (110–115). 
Interestingly, studies in cells with hyperactive PI3K signaling 
or mTORC1 inhibition with rapamycin have led to a model in 
which PI3K/AKT/mTORC1 signaling plays an early role in cell 
senescence induction without hyperproliferation as a prerequisite 
(110). While this latter set of data suggests that DNA damage is 
not a driving factor for PI3K-dependent senescence, other studies 
further proposed that PI3K/AKT contributes to reactive oxygen 
species production to cause irreparable chromosomal damage 
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and irreversible cell-cycle arrest (111, 116). Although it is clear 
that the PI3K pathway plays an important role in senescence, 
further investigation is required to fully understand senescence 
of CD8 T  cells in APDS patients. As such, APDS provides an 
invaluable opportunity to study immunosenescence and roles for 
PI3K in its regulation in humans.

Thus, hyperactive PI3Kδ may drive CD8 T-cell growth, termi-
nal differentiation, and immunosenescence, although the detailed 
molecular basis of T-cell senescence in APDS patients remains to 
be fully elucidated. This state is associated with altered CD8 T-cell 
functions, including decreased proliferation and increased TCR 
restimulation-induced cell death, that might contribute to failure 
of APDS patients to adequately control EBV.

COnCLUSiOn

Genomics has greatly advanced studies of PIDs (117, 118), shed-
ding light on genes critical for human immunity. The recently 
solved PID called APDS highlights important roles for regulated 

PI3Kδ signaling in control of EBV through effects on B- and 
T-cell development and function.
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