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Recent advances in cancer treatment have emerged from new immunotherapies tar-
geting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen 
(CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 
monoclonal antibodies have demonstrated survival benefits in numerous cancers, 
including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lym-
phocytes appear to play a major role in the response to these immune checkpoint 
inhibitors (ICI). Cytotoxic T  lymphocytes (CTL) eliminate malignant cells through rec-
ognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the 
surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin  
complexes, and through killing of target cells, mainly by releasing the content of 
secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules 
and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and 
their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, 
on target cells, are involved in strengthening the interaction between CTL and tumor 
cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and 
peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRβ-chain gene 
usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site 
compared to autologous PBL. Moreover, functional studies indicated that these CTL 
mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous 
tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated 
genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell 
immunity. Accordingly, it has been shown that the presence of T lymphocytes directed 
toward tumor neoantigens is associated with patient response to immunotherapies, 
including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor- 
specific mutation-derived antigens open up new perspectives for development of effec-
tive second-generation therapeutic cancer vaccines.

Keywords: immunotherapy of cancer, cytotoxic T  lymphocytes, tumor antigens, neoantigens, T-cell receptor 
repertoire

Abbreviations: ACT, adoptive cell transfer; CDR, complementarity-determining region; CTL, cytotoxic T lymphocyte; CTLA, 
cytotoxic T-lymphocyte associated antigen; PD, programmed cell death; DC, dendritic cell; HLA, human leukocyte antigen; 
ICAM-1, intercellular adhesion molecule 1; ICI, immune checkpoint inhibitors; IFN, interferon; LFA-1, lymphocyte-function-
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lymphocyte; TSA, tumor-specific antigen.
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iNTRODUCTiON

CD8+ T lymphocytes play a central role in immunity to cancer 
through their capacity to kill malignant cells upon recognition 
by T-cell receptor (TCR) of specific antigenic peptides presented 
on the surface of target cells by human leukocyte antigen class I 
(HLA-I)/beta-2-microglobulin (β2m) complexes. TCR and asso-
ciated signaling molecules thus become clustered at the center 
of the T cell/tumor cell contact area, resulting in formation of a 
so-called immune synapse (IS) (1) and initiation of a transduc-
tion cascade, leading to execution of cytotoxic T  lymphocyte 
(CTL) effector functions. Major CTL activities are mediated 
either directly, through synaptic exocytosis of cytotoxic granules 
containing perforin and granzymes into the target, resulting 
in cancer cell destruction, or indirectly, through secretion of 
cytokines, including interferon (IFN)γ and tumor necrosis factor 
(TNF). Adhesion/costimulatory molecules, mainly lymphocyte-
function-associated antigen-1 (LFA-1, CD11a/CD18 or αL/β2) 
and CD103 (αE/β7) integrins, on CTL play a critical role in 
TCR-mediated killing by interacting with their cognate ligands, 
intercellular adhesion molecule 1 (or CD54) and E-cadherin, 
respectively, and directing exocytosis of lytic granules to the 
cancer cell surface at the IS (2, 3). NKG2D, a c-type lectin 
molecule expressed on activated lymphocytes (4, 5), also plays 
an important role in the induction of T-cell-mediated cytoxicity 
and in CTL-dependent rejection of cancer (6, 7). NKG2D ligands 
include major histocompatibility complex class I-related chain 
(MIC)A and MICB (8), and UL16-binding proteins 1, 2, and 3 
(9). These ligands are upregulated upon cell stress, such as tumor 
transformation, and are expressed by most of the cancer cells (10) 
in particular those of epithelial origin (11).

Activation of naive CD8 T  cells by antigen-presenting cells 
(APC) involves binding of TCR, that is associated with the CD3 
complex, to specific peptide-major histocompatibility complex 
class I (pMHC-I) complexes and the interaction of the costimu-
latory molecules CD28 and CD2 with their respective ligands 
CD80/CD86 and LFA-3 (12). Costimulatory receptors such as 
TNF receptor family member 4 (TNFRSF4 best known as OX40 
or CD134) and member 9 (TNFRSF9 best known as 4-1BB or 
CD137) also play an important role in T-cell priming and antitu-
mor immune responses (13–17).

ANTiTUMOR T-CeLL ReSPONSeS

Evidence for antitumor CD8+ T-cell immunity was provided by 
isolation of tumor-specific CTL from peripheral blood or tumor 
tissue of patients with diverse cancers, such as melanoma and 
lung carcinoma (18–22). The existence of a tumor-specific CTL 
response was further strengthened by identification of tumor-
associated antigens (TAA) and detection of TAA-specific CD8+ 
T cells in spontaneously regressing tumors (18). Moreover, a cor-
relation between tumor progression control and the infiltration 
rate of CD8+ T lymphocytes in the tumor was established (23). 
Efficacy of the antitumor immune response is negatively influ-
enced by a hostile tumor microenvironment. Establishment of an 
immunosuppressive state within the tumor is mediated by diverse 
immunosuppressive factors released by cancer cells themselves, 

such as vascular endothelial growth factor, transforming growth 
factor-β (TGF-β) and indoleamine 2,3-dioxygenase, and/or by 
recruiting regulatory immune cells with immunosuppressive 
functions, such as regulatory T (Treg) cells and myeloid-
derived suppressor cells (MDSC) (24). Indeed, a role for Treg 
cells in modulating tumor-specific effector T  lymphocytes by 
producing immunosuppressive cytokines, such as IL-10 and 
TGF-β, consuming IL-2 or expressing the inhibitory molecule 
cytotoxic T-lymphocyte associated antigen (CTLA)-4, has been 
reported (25, 26). MDSC are a heterogeneous group of myeloid 
progenitor cells and immature myeloid cells, including imma-
ture macrophages, granulocytes, and dendritic cells (DC), that 
impair T-lymphocyte functions by upregulating the expression 
of immune suppressive factors, such as arginase and inducible 
nitric oxide synthase, increasing the production of nitric oxide 
(NO) and reactive oxygen species, and inducing Treg cells (27). 
Moreover, it has been shown that predominant secretion of TNF 
by CD4+ T cells in MHC class II-expressing melanoma promotes 
a local immunosuppressive environment, impairing effector 
CD8+ T-cell functions (28).

While it is generally admitted that CD8+ T cells are directly 
involved in antitumor cytotoxic responses, the role of CD4+ 
T  cells is more controversial. Involvement of CD4+ T  cells in 
regulating antitumor immunity was associated with their help 
in priming of CD8+ T cells, through activation of APC and an 
increase in antigen presentation by major histocompatibility 
complex class I (MHC-I) molecules via secretion of cytokines 
such as IFNγ (29, 30). More recently, it has been shown that 
CD4+ T-cell help optimized CTL in expression of cytotoxic 
effector molecules, downregulation of inhibitory receptors, 
and increased migration capacities (31). A role for the CD4+ 
T-cell subset in optimizing the antitumor immune response was 
supported by in  vivo studies demonstrating that depletion of  
CD4+ T lymphocytes promotes tumor progression, whereas their 
adoptive transfer was correlated with improved tumor regression 
(32). Moreover, it has been reported that CD4+ T cells recognize 
most tumor-specific immunogenic mutanomes, and that vacci-
nation with such CD4+ immunogenic mutations confers antitu-
mor activity and broadens CTL responses in mice (33). Frequent 
recognition of neoantigens by CD4+ T cells was also observed in 
human melanoma (34). Notably, CD4+ CTL able to kill specific 
tumor cells have been described in several cancer types, includ-
ing non-small-cell lung carcinoma (NSCLC), cutaneous T-cell 
lymphoma, and melanoma (35–39); for review, see Ref. (32). 
Elsewhere, TAA-specific CD4+ T-cell clones were shown to medi-
ate HLA-II-restricted cytotoxic activity, making them attractive 
effectors in cancer immunotherapy (39, 40). While CD4+ CTL 
are able to lyse target cells via the granule exocytosis pathway  
(35, 36, 41, 42), they mainly use FasL- and APO2L/TRAIL-
mediated pathways to kill their target cells (35, 43).

TUMOR ANTiGeNS ReCOGNiZeD  
BY T CeLLS

Our fundamental knowledge of the tumor-specific T-cell response 
came with the discovery of tumor antigens that differentiated 
malignant cells from their non-transformed counterparts and 
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TABLe 1 | Classification of tumor-associated antigens.

Type of antigens Antigen characteristics example of human 
tumor antigens

Cancer-germline Expressed only by tumor cells  
and adult reproductive tissues

MAGE, BAGE, GAGE, 
NY-ESO-1

Differentiation Expressed by tumors and a  
limited range of normal tissues

Tyrosinase, Melan-A, 
gp100, CEA, MART-1

Overexpressed Expressed by both normal and  
tumor cells, but much highly  
expressed in tumor cells

HER2, WT1, MUC1, ppCT

Viral Expressed only by tumor cells  
as a result of viral infection

HPV, HBV, EBV, HTLV
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provided important input in the field of tumor immunology and 
cancer immunotherapy. The first human tumor antigen recog-
nized by CTL was identified in melanoma and was designated 
melanoma-associated antigen (MAGE)-1 (44). Subsequently, 
several other antigens of the MAGE family were characterized, 
most of which were identified through generation of tumor cell 
lines and isolation of reactive autologous CTL clones. Based on 
their expression profile, tumor antigens were initially classified 
into two categories: TAA and tumor-specific antigens (TSA). 
TAA are relatively restricted to tumor cells, and, to a limited 
degree, to normal tissues, whereas TSA are expressed only in 
tumor cells, arising from mutations that result in novel abnormal 
protein production.

At present, numerous TAA have been identified in a large 
variety of human cancer types. They are heterogeneous in nature 
and were classified into at least four groups according to their 
expression repertoire and the source of the antigen: antigens 
encoded by cancer-germline genes, differentiation antigens, 
overexpressed antigens, and viral antigens (Table  1). Antigens 
encoded by cancer-germline genes are expressed in tumor cells 
and in cells from adult reproductive tissues, including placenta 
and testicular cells, and are thus designated cancer testis antigens. 
Differentiation antigens are expressed only in tumor cells and in 
the normal tissue of origin, while overexpressed antigens are 
derived from proteins that are overexpressed in tumors, but are 
expressed at much lower levels in normal tissues. Viral antigens 
derive from viral infection and are associated with several human 
cancers, including cervical carcinoma, hepatocarcinoma, naso-
pharyngeal carcinoma, and adult T-cell leukemia (45, 46).

The first mutant TSA, also termed neoantigens, were identi-
fied by the genetic method (46) via isolation of reactive CD8+ 
and CD4+ T-cell clones (Table 2). Recent accessibility to next-
generation sequencing (NGS) technology and improvement in 
in  silico epitope prediction have contributed to identification 
of patient-specific tumor antigens generated by somatic muta-
tions in individual tumors (Table 3). Notably, most mutations 
identified in tumor-expressed genes do not generate neoantigens 
recognized by cognate T  lymphocytes. Moreover, a large frac-
tion of these mutations are not shared between patients and may 
thus be considered patient specific (47). These neoantigens have 
opened up new perspectives in cancer immunotherapy. They 
were shown to be involved in the success of immune checkpoint 

inhibitor (ICI) (48–50), adoptive cell transfer (ACT) immuno-
therapy (51, 52), and even virally induced epithelial cancer (53) 
and DC-based immunotherapy (54, 55); thus, they might be of 
use as predictive biomarkers of the response to immunotherapy.

PROCeSSiNG OF CD8 T-CeLL ePiTOPeS

Most antigenic peptides recognized by CD8+ T  cells originate 
from degradation of intracellular proteins by proteasomes and 
translocation to the lumen of the endoplasmic reticulum (ER) by 
the transporter associated with antigen processing (TAP)1/TAP2 
heterodimeric complex. Once in the ER, peptides larger than 11 
residues are further cleaved by ER amino-peptidase (ERAP)1 
and ERAP2 before being loaded onto MHC-I molecules and 
presented on the surface of target cells for CD8 T-cell recognition 
[for review, see Ref. (87, 88)].

Defects in the antigen-processing machinery and, in 
particular, in TAP subunits, have been described as a major 
mechanism used by several tumors to escape from CD8 T-cell 
immunity (89). In this context, alternative peptide degrada-
tion pathways permitting CD8 T cells to overcome this tumor 
evasion mechanism have been identified. Indeed, proteasome/
TAP-independent CTL epitopes, generated either by the cyto-
solic metallopeptidase insulin-degrading enzyme or cytosolic 
endopeptidases nardilysin and thimet oligopeptidase, have 
been described (90, 91). Moreover, TAP-independent process-
ing of antigenic peptides can be achieved by the so-called secre-
tory pathway in which the proteolytic enzyme furine releases 
C-terminal peptides (92). Interestingly, peptide epitopes 
that emerge at the surface of cancer cells with impaired TAP 
function derived from self-antigens and act as immunogenic 
neoantigens, as they are not presented by normal cells (93). 
Our group identified a signal peptide-derived CD8 T-cell 
epitope processed independently of proteasomes/TAP, by a 
novel pathway involving signal peptidase and the signal peptide 
peptidase (94, 95). These signal sequence-derived peptides 
represent attractive T-cell targets that permit CTL to destroy 
TAP-impaired tumors and therefore correspond to promising 
candidates for cancer immunotherapy.

THe TCR RePeRTOiRe AND ANTiTUMOR 
T-CeLL iMMUNiTY

The TCR–CD3 complex, expressed on the T-cell surface, allows 
recognition of antigenic peptides bound to MHC molecules on 
target cells and APC, and transduction of the signal into the cyto-
sol to initiate signaling events leading to T-cell activation (96). 
The TCRα- and β-chains are products of V(D)J recombination, 
a somatic rearrangement of the germline TCR loci occurring in 
T cells (97). This process leads to generation of a diverse TCR rep-
ertoire [>1015 distinct αβ-receptors or clonotypes (98)] that ena-
bles T-cell recognition of numerous foreign or mutant antigens. 
The TCRα- and β-chains possess three hypervariable regions, 
referred to as complementarity-determining regions (CDR) 1, 2, 
and 3. CDR3 is highly polymorphic and is directly responsible 
for recognition of antigenic peptides. Immunoscope/spectratype 
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TABLe 2 | Mutant tumor antigens recognized by CD8 or CD4 T cells.

Gene/protein Tumor type Human leukocyte antigen (HLA) Peptide Position Reference

Class i CD8 T-cell epitope

LPGAT1 Bladder tumor B44 AEPINIQTW 262–270 (56)
CASP-8 Head and neck SCC B35 FPSDSWCYF 476–484 (57)
Beta-catenin Melanoma A24 SYLDSGIHF 29–37 (58)
CDK4 Melanoma A2 ACDPHSGHFV 23–32 (59)

CDKN2A Melanoma A11 AVCPWTWLRG 125–133 (p14ARF-ORF3) (60)
HLA-A11d Melanoma

CLPP Melanoma A2 ILDKVLVHL 240–248 (61)

GPNMB Melanoma A3 TLDWLLQTPK 179–188 (62)
RBAF600 Melanoma B7 RPHVPESAF 329–337
SIRT2 Melanoma A3 KIFSEVTLK 192–200
SNRPD1 Melanoma B38 SHETVIIEL 11–19
SNRP116 Melanoma A3 KILDAVVAQK 668–677

MART2 Melanoma A1 FLEGNEVGKTY 446–455 (63)

MUM-1f Melanoma B44 EEKLIVVLF 30–38 (64)

MUM-2 Melanoma B44 SELFRSGLDSY 123–133 (65)
Cw6 FRSGLDSYV 126–134

MUM-3 Melanoma A68 EAFIQPITR 322–330 (66)
Myosin class I Melanoma A3 KINKNPKYK 911–919 (67)
N-ras Melanoma A1 ILDTAGREEY 55–64 (68)
OS-9 Melanoma B44 KELEGILLL 438–446 (69)
Elongation factor 2 Lung SCC A68 ETVSEQSNV 581–589 (70)
NFYC Lung SCC B52 QQITKTEV 275–282 (71)
Alpha-actinin-4 NSCLC A2 FIASNGVKLV 118–127 (72)
Malic enzyme NSCLC A2 FLDEFMEGV 224–232 (20)
HLA-A2 RCC (73)
Hsp70-2 RCC A2 SLFEGIDIYT 286–295 (74)

Class ii CD4 T-cell epitope

COA-1 CRC DR4 TLYQDDTLTLQAAGE 447–46 (75)
DR13

ARTC1 Melanoma DR1 YSVYFNLPADTIYTNH (76)
CDC27 Melanoma DR4 FSWAMDLDPKGAE 760–771 (77)
FN1 Melanoma DR2 MIFEKHGFRRTTPP 2050–2063 (78)

LDLR-FUT fusion protein Melanoma DR1 WRRAPAPGA 315–323 (79)
PVTWRRAPA 312–320

neo-PAP Melanoma DR7 RVIKNSIRLTLE 724–734 (80)
PTPRK Melanoma DR10 PYYFAAELPPRNLPEP 667–682 (81)
Triosephosphate isomerase Melanoma DR1 GELIGILNAAKVPAD 23–37 (82)

SCC, squamous cell carcinoma; RCC, renal cell carcinoma; CRC, colorectal carcinoma; NSCLC, non-small-cell lung carcinoma.
From: https://www.cancerresearch.org/scientists/events-and-resources/peptide-database (slightly modified).
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technology was first used to probe the T-cell repertoire by analyz-
ing the diversity of TCRVβ (99, 100) and, more recently, TCRVα 
(101, 102) chains without isolating peptide-reactive T  cells 
and cloning TCR genes. It is based on the use of V and J gene-
segment-specific primers for reverse transcription-polymerase 
chain reaction amplification of CDR3 of a bulk T-cell population 
from diverse biological materials such as blood and tumor tissues 
(103). Analyzing CDR3 polymorphisms and sequence length 
diversity served to follow up T-cell clonality in tumor-infiltrating 
lymphocytes (TIL) to investigate T-cell functions and the pattern 
of TCR utilization. It highlighted restriction of the CDR3 length 
of TCRβ- and TCRα-chains in T cells infiltrating solid tumors 
and hematological malignancies, including melanoma, renal cell 

carcinoma (RCC), neuroblastoma, NSCLC, and Sezary syndrome 
(19, 101, 104–109). TCRβ-chain gene usage also showed that 
antigen-specific T-cell clones with high functional avidity/tumor 
reactivity expanded only at the tumor site, but not in peripheral 
blood (108). Identification of TAA has led to improvement in 
procedures for detecting and monitoring specific antitumor 
T-cell responses. In this regard, combining a quantitative immu-
noscope approach with MHC–peptide multimer-based T-cell 
sorting led to more sensitive ex vivo follow-up, by quantitation of 
human CD8+ T-cell responses and monitoring of T-cell subsets 
throughout immunotherapy clinical trials (110).

Tremendous progress in characterizing the size and dynam-
ics of the T-cell repertoire has emerged from recent advances in 
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TABLe 3 | Validated mutant antigens identified by WES and recognized by CD8 T cells.

Gene/protein Tumor Human leukocyte antigen Peptide Position Reference

SETDB1 Cervival cancer B40 VESEDIAEL 17–25 (53)
METTL17 Cervival cancer A32 RTKVVQTLW 277–285
ALDH1A1 Cervival cancer B35 IPIDGIFFT 66–74

CDKN2A Melanoma A2 KMIGNHLWV 153–161 (55)
TKT Melanoma A2 AMFWSVPTV 435–443
TMEM48 Melanoma A2 CLNEYHLFL 161–169
AKAP13 Melanoma A2 KLMNIQQKL 278–286
OR8B3 Melanoma A2 QLSCISTYV 186–194
SEC24A Melanoma A2 FLYNLLTRV 465–473
EXOC8 Melanoma A2 IILVAVPHV 649–658
MRPS5 Melanoma A2 HLYASLSRA 58–66
PABPC1 Melanoma A2 MLGEQLFPL 516–524

KIF2C Melanoma A2 RLFPGLTIKI 10–19 (52)
POLA2 Melanoma Cw7 TRSSGSHFVF 413–422

CCT6A Melanoma B27 LRTKVYAEL 156–164 (54)
TRRAP Melanoma A2 LLYQELLPL 774–782
DNMT1 Melanoma A24 IYKAPCENW 835–843
PABPC3 Melanoma A24 YYPPSQIAQL 416–425
MAGE-A10 Melanoma A24 LYNGMEHLI 255–263
FMN2 Melanoma A3 HSVSSAFKK 843–851
WASL Melanoma B7 YPPPPPALL 343–351

MAGEA6 Melanoma A1 KVDPIGHVY 168–176 (83)
B15 LMKVDPIGHVY 166–176
Cw5 KVDPIGHVYF 168–177

PDS5A Melanoma Cw3 FVVPYMIYLL 1000–1009

MED13 Melanoma A1 VSVQIISCQY 1685–1694
A30 VQIISCQY 1687–1694
B15

FLNA Melanoma B7 CVRVSGQGL 2049–2057
KIB1B Melanoma B7 APARLERRHSA 1009–1018

KFI1BP Melanoma A24 AYHSIEWAI 243–251
B38 YHSIEWAI 244–251

Cw12 NAYHSIEWAI 242–251

NARFL Melanoma A3 KSQREFVRR 62–70 (84)
PPFIA4 Melanoma B39 MRMNQGVCC 706–714
CDC37L1 Melanoma A2 FLSDHLYLV 181–189
MLL3 Melanoma B7 KPSDTPRPVM 1026–1035
FLNA Melanoma A2 HIAKSLFEV 364–372

B44 AGQHIAKSLF 361–370
DOPEY2 Melanoma B7 KPFCVLISL 362–370
TTBK2 Melanoma B7 RPHHDQRSL 1174–1182
KIF26B Melanoma A11 SSYTGFANK 254–263
SPOP Melanoma A2 FLLDEAIGL 141–149
CDK4 Melanoma A2 ALDPHSGHFV 23–32
RETSAT Melanoma A68 HSCVMASLR 545–553

B37 HDLGRLHSC 539–547
CLINT1 Melanoma B57 VSKILPSTW 469–477
COX7A2 Melanoma A11 GVADVLLYR 80–88

FAM3C Melanoma B44 TESPFEQHI 192–200 (48)
CSMD1 Melanoma GLEREGFTF

PPP1R3B Melanoma A1 YTDFHCQYV 172–180 (85)
CDK12 Melanoma A11 CILGKLFTK 924–932
CSNK1A1 Melanoma A2 GLFGDIYLA 26–34
GAS7 Melanoma A2 SLADEAEVYL 141–150
MATN Melanoma A11 KTLTSVFQK 226–234
HAUS3 Melanoma A2 ILNAMIAKIJ 154–162

MTFR2 Non-small-cell lung carcinoma (NSCLC) FAFQEYDSF 321–326 (50)
CHTF18 NSCLC LLDIVAPK 765–772
MYADM NSCLC SPMIVGSPW 22–30

HERC1 NSCLC A11 ASNASSAAK 3274–3282 (49)
HSDL1 Ovarian cancer Cw14 CYMEAVAL 20–27 (86)
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DNA and RNA sequencing (RNAseq) technologies (111, 112). 
High-throughput TCR sequencing (TCR-seq) involves NGS for 
generating DNA sequences covering TCR CDR3 and permits 
quantification of T-cell diversity at very high resolution (113). 
Another method for profiling the TCR repertoire relies on a TCR-
specific short read assembly strategy based on 5′ amplification 
of cDNA ends (RACE), so as to obtain TCRβ CDR3 transcript 
sequences and massively parallel Illumina sequencing of TCRβ 
CDR3 amplification products (114). This strategy avoids poten-
tial bias associated with the use of multiple primer sets required 
to amplify CDR3 regions from all TCRBV sequences and takes 
advantage of the conserved sequences of TCRBC1 and TCRBC2 
genes (115, 116). High-throughput DNA-based strategy for iden-
tifying antigen-specific TCR sequences was also developed by 
the capture and sequencing of genomic DNA fragments encod-
ing TCR genes (117). More recently, an optimized approach to 
characterizing tissue-resident T-cell (TRM) populations emerged 
from extraction of TCR CDR3 sequence information directly 
from RNAseq data sets of thousands of solid tumors and control 
tissues (118). This method circumvents the need for PCR ampli-
fication and provides TCR information in the context of global 
gene expression profiles.

Sequence-based immunoprofiling is a useful tool for monitor-
ing the dynamics of the T-cell repertoire under physiological and 
pathological conditions, and in response to therapeutic interven-
tions. In this respect, characterization of the TCR repertoire in 
TIL permits isolation of tumor-specific T-cell clones for use in 
cancer immunotherapy. TCR-seq can also be used to evaluate 
T-cell diversity and identify tumor-reactive T-cell clonotypes, 
along with potentially immunogenic neoantigen-reactive 
T  cells (119). For instance, deep cDNA sequencing of TCR-α 
and β-chains enabled quantitative monitoring of the T-cell 
repertoire in lung cancer patients treated with cancer peptide 
vaccines (120). Another interesting parameter for follow-up by 
deep TCR-seq is the heterogeneity of T-cell density and clonality 
across tumor regions. Indeed, it has been shown that high intra-
tumor heterogeneity of TCR is positively correlated with that of 
predicted neoantigens and has been associated with increased 
risk of disease progression (121). In contrast, maintenance of 
high-frequency TCR clonotypes alongside CTLA-4 blockade 
therapy was associated with improved overall survival in prostate 
cancer and melanoma (122). Moreover, high TCR clonality was 
associated with an increased response by melanoma patients to 
the programmed cell death (PD)-1 blockade, suggesting that 
TCR repertoire analysis could be used as a predictive marker in 
cancer immunotherapy (123). Indeed, elevated TCR clonality and 
significant T-cell clone expansion were observed in melanoma 
patients responding to anti-PD1 treatment (124). Overall, T-cell 
clonality and TCR repertoire diversity appear to be biomarkers 
of antitumor adaptive immunity and might also be predictive 
markers of responses to cancer immunotherapy.

T-CeLL-BASeD CANCeR 
iMMUNOTHeRAPieS

An understanding of regulation of the molecular interaction 
between T  cells and tumor cells, together with refined T-cell 

engineering technologies and the discovery of TSA, gave rise to 
novel cancer immunotherapies with unprecedented clinical effi-
cacy. These therapies are aimed at (re)activating and expanding 
tumor-specific CTL, with the goal of destroying primary cancer 
cells and metastases. The most effective current cancer immuno-
therapies include ICI, such as anti-PD-1 and anti-CTLA-4, ACT 
of ex vivo-expanded tumor-reactive T cells, either native (CTL 
clones or TIL) or engineered to express particular TCR or chi-
meric antigen receptors (CAR), and TSA-based cancer vaccines 
(peptide- or RNA-based) (84, 125–132). Moreover, increasing 
evidence of a link between CD8 and CD4 T-cell recognition of 
mutant neoepitopes and clinical responses to cancer immuno-
therapy strategies has been reported (34, 48–53, 55); for review, 
see Ref. (47).

ACT immunotherapy
The possibility of expanding subsets of mature T cells in vitro led 
to development of ACT immunotherapy. The aim is to transfer a 
T-cell population enriched in potentially highly tumor-reactive 
effector cells (130, 131, 133, 134). In this context, re-infusion 
of ex vivo-expanded TIL displaying increased specificity toward 
cancer cells was developed as a means of strengthening patient 
spontaneous T-cell responses and overcoming tolerance to the 
tumor. Steven Rosenberg’s team has been one of the pioneers in 
the development of ACT, mainly using selected tumor-reactive 
T  cells and TIL. Thus, clonal repopulation of T  cells directed 
against overexpressed self-derived differentiation antigens, in 
combination with chemotherapy and high doses of IL-2, led to 
tumor regression in patients with metastatic melanoma (135, 136).  
Similarly, treatment of patients with uveal melanoma by adop-
tive transfer of autologous TIL, administered together with IL-2, 
resulted in objective tumor regression (137). Clinical responses 
were associated with the presence of tumor-resident CD8+ 
T  lymphocytes that target tumor-specific mutant neoantigens 
and express the PD-1 checkpoint receptor (51, 52, 83, 138, 139).  
Moreover, neoantigen-reactive TCR have been identified 
from the most frequent clonotypes among TIL, opening up 
new avenues for developing a personalized TCR-gene therapy 
approach that targets individual sets of antigens presented by 
tumor cells without the need for determining their identity 
(140). Accordingly, neoantigen-reactive TCR have been identi-
fied, with the aim of treating patients with autologous T  cells 
genetically modified to express such TCR (141). Nevertheless, 
analyses of neoantigen-specific T-cell responses in melanoma 
patients treated by ACT demonstrated that the T-cell-recognized 
neoantigens can be selectively lost over time emphasizing the 
importance of targeting broad TCR recognized neoantigens to 
avoid tumor resistance (142).

While ACT of tumor-specific T  cells holds promise for 
melanoma treatment, significant challenges remain in clinical 
translation to other solid tumors. This can be explained by the 
observation that some tumors, referred to as “immune-desert 
tumors” or “cold tumors,” are rarely infiltrated by T cells, and TIL 
often display an exhausted state acquired in the tumor microenvi-
ronment. Indeed, TIL are characterized by high expression levels 
of one or several inhibitory receptors such as PD-1, CTLA-4, 
Tim-3, LAG-3, and TIGIT, and often display altered production 
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of cytokines leading to weak antitumor reactivity (143, 144); for 
review, see Ref. (145). Moreover, the limited life span of TIL and 
difficulties linked to their production, including isolation from 
fresh patient tumor specimens and selection based on tumor-
specificity, constrain their clinical routine use.

To overcome limitations of TIL-based ACT, and due to the 
availability of TAA-specific TCR or antibodies, genetically engi-
neered T  cells have been developed with either tumor-specific 
TCR or CAR (146–149). Therefore, desired specificity was 
achieved by genetically modifying T  cells to express a TAA-
specific TCR (150–153). Candidates are selected either from 
the native TCR repertoire or after mutagenesis of their antigen 
recognition domain, the CDR3 domain, to increase the affinity 
of T cells (154). Thus, T cells engineered to express TAA-specific 
TCR (recognizing Melan-A/MART1-, gp100-, NY-ESO-, or 
p53-derived peptides) resulted in objective regression of meta-
static melanoma lesions in some patients (153, 155, 156). As an 
alternative, engineered T-cell strategy utilizes CAR comprising 
the antigen-binding domain of an antibody, fused with one or 
more immunostimulatory domains, to activate T cells once the 
recognition domain has bound to a target cell. Because such 
T  cells are able to recognize tumor antigen-expressing cells in 
a MHC-independent manner, a single CAR can be used on all 
patients whose tumor expresses the target antigen (i.e., CD19, 
CD20). The therapeutic potential of CAR-expressing T  cells, 
especially in patients with hematological malignancies such as 
B-cell lymphoma expressing CD19 or CD20, has been demon-
strated in several clinical trials (157–163). This holds promise for 
further use in hematological tumors and for treatment of solid 
tumors unresponsive to other immunotherapies.

immune Checkpoint Blockade 
immunotherapy
Targeting immune checkpoints with blocking monoclonal 
antibodies (mAb) such as anti-CTLA-4 and anti-PD-1 or anti-
PD-L1 has provided clinical benefits for patients with advanced 
metastatic melanoma, NSCLC, RCC, and several other cancers 
(164, 165). While the CTLA-4 blockade reduces the activation 
threshold required for T-cell priming (166), the PD1/PD-L1 
blockade in certain T-cell subpopulations (167) at least partly 
reverses immune alterations such as exhaustion (168). This 
allows synergy for combined treatments (169) and opens up 
new perspectives for combining these checkpoint blockers (i.e., 
anti-CTLA-4, -PD-1, or -PD-L1) with mAb toward additional 
inhibitory molecules, such as BTLA, TIM-3, or LAG-3. In this 
regard, synergistic antitumor effects were obtained in several 
preclinical models (170–172).

Accumulating evidence indicates that preexisting antitumor 
CD8+ T  cells predict the efficacy of ICI therapy (124, 173). 
Moreover, effective CTLA-4 and PD-1 blockade immunotherapy 
appears to be associated with the presence of T cells directed 
toward mutant cancer neoepitopes (48–50), and with the likeli-
hood of MHC presentation of these neoantigens and subsequent 
recognition by specific T  cells (174). Mutant neoantigens are 
highly immunogenic; they are not expressed by normal tissues 
and thus bypass thymic tolerance (175). Unfortunately, clinical  
trials demonstrated that only a fraction of cancer patients 

respond to such immunotherapy. Resistance to anti-PD-1 of 
tumors with a high mutational load was associated with defects 
in pathways involved in IFNγ-receptor signaling and antigen 
presentation by MHC-I molecules, concomitant with a truncat-
ing mutation in the gene encoding β2m (176, 177). Moreover, 
patients identified as non-responders to anti-CTLA-4 mAb had 
tumors with genomic defects in IFN-γ pathway genes (178). 
These findings demonstrate the importance of the IFN-γ signal-
ing pathway and CD8 T-cell recognition of mutant neoantigens 
in response to checkpoint blockade immunotherapy.

Therapeutic Cancer vaccines
The discovery of TAA has led to development of therapeutic cancer 
vaccines, based on either synthetic peptides, “naked” DNA, DC, 
or recombinant viruses, that attempt to strengthen the antitumor 
immune response, and particularly tumor antigen-specific CTL 
response (179, 180). Peptide vaccines have many advantages, 
including inexpensive, convenient acquisition of clinical-grade 
peptides, easy administration, higher specificity, and potency 
due to their higher compatibility with targeted proteins, the 
ability to penetrate the cell membrane and improved safety with 
few side effects (181, 182). Mechanisms underlying priming of 
anticancer immune responses by peptide-based vaccines, and 
hence their efficacy, is dependent, at least in part, on the size 
of the peptides. While short peptides (8–11 aa) bind directly to 
HLA-I molecules and mount MHC-I-restricted antigen-specific 
CD8+ T-cell immunity (183–185), long synthetic peptides 
(25–50 aa) must be taken up, processed, and presented by APC 
to elicit a T-cell response. Vaccination with long peptides usually 
results in broader immunity than with short peptides, along with 
induction of both CD8+ cytotoxic and CD4+ helper T cells when 
conjugated with efficient adjuvants (186, 187). Indeed, CD4+ 
T-cell help is required for generation of potent CTL and long-
lived memory CD8+ T cells (186).

First-generation cancer vaccines based on non-mutant TAA, 
also termed shared antigens because they are expressed by many 
patients’ tumors, such as MART-1, gp100, tyrosinase, TRP-2, 
NY-ESO-1, MAGE-A3, and Her2/neu or telomerase proteins, 
were shown to be immunogenic and capable of inducing clinical 
responses in only a minority of patients with late-stage cancer 
(180, 188, 189). However, results showing that CD4+ T  cells 
directed toward NY-ESO-1 cancer-germline TAA and lympho-
cytes genetically engineered with a NY-ESO-1-reactive TCR 
display antitumor activity (40, 190) support the notion that T-cell 
responses to a subset of non-mutant antigens contribute to the 
effects of current cancer immunotherapies. The limited success 
of these active immunotherapy approaches might be due to the 
inability of effector T cells to overcome tolerance to self-antigens, 
expression of T-cell inhibitory receptors such as CTLA-4 and 
PD-1, and suboptimal activation of tumor-specific T cells in an 
immunosuppressive tumor microenvironment (191).

The current challenge in developing more efficient second-
generation cancer vaccines is based on mutant epitopes that 
derive from tumor neoantigens (192, 193). Non-mutant tumor 
neoepitopes that emerge on the target cell surface upon altera-
tion of TAP expression, such as the self-epitope derived from the 
human ppCT preprohormone (94, 95), are interesting targets 
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FiGURe 1 | Main approaches for T-cell-based cancer immunotherapy: identification of immunogenic tumor antigens using WES/RNAseq and predictive programs 
(left) or CTL and genetic approach for the development of effective therapeutic cancer vaccines. Adoptive transfer of selected tumor-infiltrating lymphocytes (TIL) or 
autologous T cells engineered to express tumor-reactive T-cell receptor (TCR) (middle). These approaches can be combined with immune checkpoint inhibitors 
(right) to reverse T-cell exhaustion and optimize antitumor T-cell response.

for peptide-based vaccination against immune-escaped tumors 
expressing low levels of pMHC-I complexes (194, 195). Recent 
technological advances in identifying mutation-derived tumor 
antigens have enabled development of patient-specific thera-
peutic vaccines, including peptides, proteins, DC, tumor cells, 
and viral vectors, that target individual cancer mutations (196). 
Over the past few years, examples of TSA-based personalized 
cancer immunotherapies have begun to emerge. For example, 
a durable clinical response to cancer vaccines with autologous 
melanoma-pulsed DC was obtained and correlated with the pres-
ence of effector memory T cells responding to mutant antigens 
(54). Moreover, DC-based vaccination directed at melanoma-
neoepitope candidates resulted in an increase in clonal diversity of 
antitumor T-cell immunity and promoted a diverse neoantigen-
specific TCR repertoire (55). Immunogenic personal neoantigen 
vaccines, based either on RNA or synthesized long peptides, have 
recently been developed for patients with melanoma. In this 
regard, personalized RNA-based mutanome vaccines, alone or in 
combination with anti-PD-1, induced effective T-cell responses 
against multiple vaccine neoepitopes and resulted in sustained 

progression-free survival (84). In another clinical trial, long pep-
tide cancer vaccines that target predicted personal tumor neo-
antigens, administered alone or in combination with anti-PD-1, 
resulted in clinical benefits and induced polyfunctional CD4+ 
and CD8+ T cells, with expansion of the repertoire of neoantigen-
specific T cells (132). Thus, a combination of neoepitope-based 
vaccines and ICI is promising for overcoming the anergic state of 
vaccine-induced T cells. These strategies open up new avenues 
for further development of personalized active immunotherapy, 
either alone or in combination with other therapies, for patients 
with different types of cancer (Figure  1). Personalized cancer 
immunotherapies offer promise of low toxicity and high specific-
ity, and the opportunity to treat human malignancies resistant to 
current therapies.

CONCLUDiNG ReMARKS

The success of cancer immunotherapy relies on the induction of 
immune effector mechanisms associated with generation of high-
avidity tumor-specific CTL. To further improve their antitumor 
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effectiveness, and for more robust long-term disease control, a 
deeper understanding of host-tumor interactions and tumor 
immune escape strategies is required. Overcoming immune 
tolerance/suppression pathways within the tumor microenvi-
ronment, which may hinder the potency of immunotherapeutic 
approaches, is a major challenge in the field of tumor immunology 
and immunotherapy. In this context, optimizing the therapeutic 
potential of the immune system relies on a combination of different 
approaches, mainly cancer vaccines with ICI and/or ACT, which 
synergistically enhance antitumor T-cell responses. Selection of 
the right adjuvant or neoadjuvant, such as TLR agonists, is neces-
sary to improve the immunogenicity of peptide-based vaccines, 
by targeting antigens to competent APC (and, in particular, DC, 
capable of cross-presentation and delivering of stimuli to activate 
both specific CD4+ and CD8+ T  cells). Moreover, alternative 
routes of peptide administration for improved target delivery 
would help to induce strong long-lasting antitumor T-cell 
responses and thus improve clinical outcome. Therapeutic cancer 
vaccines combining both TAP-dependent and TAP-independent 
epitopes might also boost tumor-specific CD8 T-cell immunity, 
prevent immune escape mechanisms developed by malignant 

cells, and thereby potentiate current cancer immunotherapies. 
Remarkably, targeting of non-self tumor-specific neoantigens, 
generated by somatic mutations, has gained increasing interest 
over the past few years. Rising accessibility to NGS technologies, 
improved in silico prediction of truly immunogenic mutant pep-
tides and easy peptide manufacturing are promising approaches 
to identifying patient-specific neoepitopes and evaluating their 
potential use in both prognosis and treatment. The utility of 
highly immunogenic neoantigens for personalizing therapeutic 
cancer vaccines will open up new perspectives for the refinement 
of current cancer immunotherapies.
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