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The yearly, cyclic impact of viruses like influenza on human health and the economy 
is due to the high rates of mutation of traditional antibody targets, which negate any 
preexisting humoral immunity. However, the seasonality of influenza infections can 
equally be attributed to an absent or defective memory CD8 T cell response since the 
epitopes recognized by these cells are derived from essential virus proteins that mutate 
infrequently. Experiments in mouse models show that protection from heterologous 
influenza infection is temporally limited and conferred by a population of tissue-resident 
memory (TRM) cells residing in the lung and lung airways. TRM are elicited by a diverse 
set of pathogens penetrating mucosal barriers and broadly identified by extravascular 
staining and expression of the activation and adhesion molecules CD69 and CD103. 
Interestingly, lung TRM fail to express these molecules, which could limit tissue retention, 
resulting in airway expulsion or death with concomitant loss of heterologous protection. 
Here, we make the case that respiratory infections uniquely evoke a form of natural 
immunosuppression whereby specific cytokines and cell–cell interactions negatively 
impact memory cell programming and differentiation. Respiratory memory is not only 
short-lived but most of the memory cells in the lung parenchyma may not be bona fide 
TRM. Given the quantity of microbes humans inhale over a lifetime, limiting cellular resi-
dence could be a mechanism employed by the respiratory tract to preserve organismal 
vitality. Therefore, successful efforts to improve respiratory immunity must carefully and 
selectively breach these inherent tissue barriers.

Keywords: respiratory immunity, influenza infection, cD8+ t cells, cD8 memory, heterologous immunity, tissue-
resident memory cells

iNtrODUctiON

Respiratory infections continue to be one of the leading causes of morbidity and mortality worldwide 
(1). Approximately four million annual outpatient visits are associated with viral respiratory infec-
tions, including influenza and respiratory syncytial virus (RSV) (2, 3). While a RSV vaccine remains 
elusive, available influenza vaccines induce specific antiviral neutralizing antibodies that recognize 
the external antigens hemagglutinin and neuraminidase and are protective against a homologous 
infection. However, host immune pressure promotes mutations of these antigens between seasons 
rendering the elicited antibodies and those derived from a natural infection ineffective at providing 
long-term cross-protection against mismatched or heterologous viral strains (3).
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Activated CD8 T cells lyse infected lung epithelial cells and 
produce antiviral cytokines, ultimately eliminating viral reser-
voirs (4). In the case of influenza infection, CD8 T cells recognize 
epitopes derived from internal viral proteins that are conserved 
across 80–100% of circulating influenza strains (4–8), indicat-
ing that elicitation of CD8 T cell immunity could offer a broad 
range of protection against heterologous influenza infection. 
This protection would rely on the development of memory CD8 
T cells (Tmem) capable of responding rapidly upon challenge (9). 
However, evidence from murine (6, 10–12) and human (13, 14) 
studies suggest that long-lived protective Tmem does not form in 
response to influenza infection. While human studies are lack-
ing, murine models indicate that respiratory anti-influenza Tmem 
numbers wane coordinate with loss of heterosubtypic immunity 
to influenza infection (10). This observation, paired with the 
knowledge that humans are susceptible to seasonal infections 
following both natural infection and vaccination with the live, 
attenuated vaccine (3) shows that respiratory Tmem are not stable 
which we believe is partly due to the incomplete generation of a 
specific population of Tmem in the lung.

trM: tHe OtHer MeMOrY ceLL

Infection with various pathogens elicits a heterogeneous Tmem 
pool that was previously thought to consist of predominately 
two distinct populations: central memory cells (TCM) located 
primarily in lymph nodes and effector memory cells (TEM) which 
circulate through lymphoid and non-lymphoid tissues (15). The 
preferential localization of TCM is due to expression of CD62L and 
CCR7 (15), whereas TEM express low levels of these molecules. 
Tmem develop under a transcriptional program regulated by 
Eomes (16) and require IL-7 signaling for their survival through 
T cell contraction (17). However, IL-15 and IL-2 signaling bias 
Tmem toward a TCM or TEM lineage, respectively (18). In many 
cases, TEM provide initial pathogen control at portals of entry, 
while TCM are positioned to broadly patrol lymph nodes (19). 
Indeed, TCM provide protection against systemic lymphocytic 
choriomeningitis virus infection (20), while TEM protect against 
respiratory Sendai virus challenge (21). However, often this is not 
a true division of labor and, even in the case of non-lymphoid 
infections, reactivated TCM will also contribute to the generation 
of new effector cells, albeit with delayed kinetics.

Subsequent studies using parabiotic mice demonstrated the 
existence of stationary, non-migratory populations of Tmem within 
the brain and small intestine, and to a lesser extent, other tis-
sues like the lung and liver (22). These cells are now commonly 
referred to as tissue-resident memory cells (TRM). TRM have a core 
transcriptional profile that distinguishes them from their TCM and 
TEM counterparts (23), including expression of transcription fac-
tor Hobit (24). How TRM cells developmentally diverge from other 
Tmem is unclear; however, it is likely to involve early programming 
followed by acquisition of tissue-specific factors that promote 
survival and tissue retention (23, 25). In most cases, CD8+ 
TRM have been identified by expression CD69 and CD103 (αE 
integrin) which are upregulated on TRM in both humans (26, 27) 
and mice (28, 29). The ligand of CD103, E-cadherin, is expressed 
exclusively by epithelial cells and CD69 expression limits tissue 

egress (30, 31), suggesting these markers are responsible for 
locking TRM within tissues. In fact, TRM fail to develop in the 
intestines of CD103−/− mice, and absence of CD69 and CD103 
limits TRM formation in the skin (23), indicating that upregulation 
of CD103 and CD69 are crucial steps for the establishment of 
TRM. Expression of CD103 and CD69 is regulated by TGF-β (32), 
which is highly expressed in mucosal sites such as the gut (33) 
where stable populations of TRM cells have been observed (34). In 
most cases, TRM are maintained through IL-7- and IL-15-mediated 
homeostatic proliferation (35, 36). TRM are confirmed to exist in 
the skin (28, 37), brain (38), liver (39), and female reproductive 
tract (40, 41) where they are stably maintained. TRM can persist 
for up to 120 days in the brain following vesicular stomatitis virus 
(VSV) infection (38), and skin-resident TRM are the most durable, 
up to a lifetime in mice following cutaneous herpes simplex virus 
infection (42).

While a secondary, recall response can be delayed by several 
days for the activation of Tmem and recruitment of new effectors 
to the infection site, TRM respond immediately to pathogen re-
exposure (12). Upon antigen re-encounter, TRM produce IFN-γ 
(9) to recruit circulating TEM and other immune cells from the 
blood (43). In addition, TRM can directly kill target cells ex vivo 
(44), suggesting a cytotoxic potential. TRM have been shown to 
mediate long-term protection in vivo to infections in the intestine 
(34), female reproductive tract (40, 41), brain (45), and skin  
(28, 37). Regarding the latter, the smallpox vaccine, administered 
by skin scarification, generated Tmem which survived for decades 
(46). While the specific role of TRM in the success of this vac-
cine is unclear, mice vaccinated via scarification of recombinant 
vaccinia virus (VacV) generate skin-resident TRM that mediate 
protection against subsequent VacV infection (47). However, 
not every infection generates stable Tmem pools. While TRM cells 
populate the lung and lung airways after influenza infection (12), 
protection between influenza seasons following natural infection 
or vaccination with the live-attenuated vaccine is lost (3), suggest-
ing TRM responses may be uniquely regulated in the lung.

trM iN tHe LUNG

TRM cells exist within the lung in two distinct compartments: 
the lung airways and the lung parenchyma. Influenza-specific 
airway-resident TRM are CD11aloCXCR3hi (48, 49) and can be 
isolated by bronchoalveolar lavage. It is estimated that anti-
influenza TRM in the lung airways have a half-life of only 14 days, 
and for some period of time are continually replenished from the 
circulating TEM pool (48). Interestingly, airway TRM have a low 
cytolytic capacity and fail to proliferate upon antigen re-encounter  
but rapidly produce antiviral cytokines such as IFN-γ (44). 
TRM embedded in the lung parenchyma are CD11ahiCXCR3lo, 
highly cytolytic and undergo rapid proliferation after antigen 
re-exposure (44). We have known for some time that regional 
Tmem are responsible for limited heterologous immunity after 
respiratory infection (10). A careful study of the kinetics of Tmem 
decay after Sendai and influenza virus infections demonstrated 
a rapid decline in Tmem numbers in the lung and lung airways by 
90 days postinfection. Importantly, this loss of influenza-specific 
Tmem in the lung coincided with loss of heterosubtypic immunity 
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tabLe 1 | Common methods used for the identification of TRM cells in peripheral 
sites.

technique strengths Weaknesses

Intravascular 
staining 
(Intravascular 
staining followed 
by flow cytometry)

•	 Identifies cells 
circulating within 
the bloodstream, 
eliminating 
contamination of 
parenchymal TRM 
by TEM within the 
intervening vessels, 
and eliminating 
the need for tissue 
perfusion (65)

•	Methodology 
highlights cellular 
location, which 
defines TRM (52, 
54, 58)

•	Labor intensive (requires careful 
timing of Ab injection and animal 
sacrifice) (65)

•	Extensive tissue digestion 
protocols can result in inefficient 
cell isolation that can skew TRM 
representation

•	Differential kinetics of antibody 
vascular extravasation or blood 
flow rates within specific tissue 
can affect antibody penetrance 
(66, 67)

•	 Identifies localization at a single 
point in time; cannot eliminate 
transient migration through 
tissue

CD69/CD103 •	Simple method 
of detection by 
flow cytometry 
on isolated tissue 
lymphocytes  
ex vivo (29)

•	Extensive tissue digestion 
protocols (see above)

•	Not exclusively expressed on 
cells in tissue parenchyma (59)

•	CD69 expression is enriched  
in conditions of antigen 
persistence (68)

•	Requires perfusion to eliminate 
tissue-associated cells in 
vasculature (69)

•	Cells are not uniformly CD69/
CD103+ in all tissues (59)

Confocal 
microscopy

•	Clearly identifies 
cells directly 
embedded in 
parenchyma or 
epithelium while 
excluding those in 
small vessels  
(57, 58)

•	Can reveal TRM 
tissue niche (58)

•	Can identify which 
cells  TRM  are 
interacting with (59)

•	Cryosectioning can damage or 
distort tissue architecture (70)

•	 Information is only a snapshot 
and limited tissue depth (70)

Parabiosis •	 Identifies the 
proportion of 
circulating Tmem in a 
given tissue (using 
congenic markers 
of partner) in the 
steady state (22)

•	Requires surgical procedure  
and extensive animal moni-
toring (71)

•	Unclear how much inflammation 
due to surgery changes Tmem 
cell migration/redistribution of 
subtypes (71)

•	Cannot distinguish between host 
TRM and TEM without pairing with 
other technique (22, 72)

FTY720 treatment •	Eliminates the ability 
of circulating Tmem 
to traffic into tissues 
and supplement the 
TRM pool (enriches 
for TRM) (12, 28)

•	Does not eliminate the 
contribution of circulating 
memory cells (TEM) in the blood 
before lymph node sequestration 
(73)

A summary of some of the commonly used immunological techniques that have 
been used to study TRM cells in various peripheral sites, as well as the strengths and 
weaknesses of said techniques. With the exception of confocal microscopy, these 
techniques do not consider lung compartmentalization, which requires additional 
processing of BAL and subsequently lung tissue to identify the different TRM pools.
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to influenza infection (10). The attrition of influenza-specific 
cells is restricted to the lung, as splenic memory cell numbers do 
not decline, indicating this is likely loss of the TEM or TRM pools. 
Subsequent experiments demonstrated that airway CD103+ cells 
are responsible for protection against a secondary, heterologous 
virus challenge. However, this pool declines rapidly after infec-
tion and is undetectable within 7 months postinfection (12), in 
part due to the inhospitable environment of the lung airways.

TRM in the airways reside at the frontline, adjacent to influenza-
susceptible epithelial cells. However, lung parenchymal TRM and 
circulating TEM are also available within the lung tissue and can 
serve as a secondary line of defense. Recent evidence indicates 
that over time, TRM cells in the lung airways wane and are replaced 
by circulating TEM cells; however, these TEM also decline and lose 
the ability to convert to TRM (50). This, coupled with a loss of TRM 
in the lung parenchyma, results in a gradual decline in the overall 
TRM population in the lung. Decline in the lung parenchymal TRM 
pool could be due to increased cell death, limited proliferation, 
or emigration. Unlike TRM in other sites (28, 34, 38), most lung 
Tmem do not undergo homeostatic proliferation (50, 51). However, 
a small pool is replenished from proliferating Tmem that have 
recently emigrated from secondary lymphoid tissues (50). In 
addition, there is no evidence that TRM cells in the airways egress 
from the lung or re-enter circulation (48). Therefore, we propose 
that Tmem embedded in the lung tissue are either eventually lost to 
the airways or do not represent a bona fide, protective TRM pool. 
Our opinion that lung parenchymal TRM do not exist is based 
on two observations. The first is that few Tmem truly penetrate 
into the tissue and the second is that those Tmem that do, are not 
CD103+CD69+.

Many techniques can identify TRM (Table 1) and each has pros 
and cons. We believe that the most effective methodology is the 
combination of two of these approaches: intravascular staining 
and CD103/69 phenotyping. Intravascular staining distinguishes 
between cells circulating through the blood and those embed-
ded within a tissue (52). Approximately 99% of the TRM within 
the epithelial layer of the small intestine are protected from the 
intravascular staining (Figure  1) (52, 53), validating similar 
results observed in parabiotic mice (22). In contrast, the majority 
of the memory cells within the lung parenchyma 35 days after 
respiratory infection with either influenza, VSV, or Listeria mono-
cytogenes are part of the circulating TEM pool, with only 10–20% 
of the cells in the lung parenchyma truly within the tissue (52) 
(Figure 1). These data do contrast with other respiratory infec-
tions that are skewed toward the upper respiratory tract (54) or 
are chronic (55), both cases generating CD103+CD69+ TRM. With 
regard to the latter study, it is possible that persistent antigen and 
inflammation is required for the successful development of TRM 
within this site. In addition to antigen access, antigen competition 
can regulate TRM populations at the clonal level (56). Moreover, 
many studies identify lung TRM via CD103 and CD69 expression 
on isolated lymphocytes (57, 58), independent of intravascular 
staining. However, expression of these markers does not always 
correlate with tissue residency. For example, some TRM cells in the 
lamina propria of the gut (59), the liver (39), and the brain (60) 
are CD103−, and human splenic Tmem can be CD69+ (26). In fact, 
less than 30% of the IV protected TRM cells isolated from the lung 
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FiGUre 1 | Lung TRM cells express low levels of CD69 and CD103 after respiratory infection with various pathogens. Age- and sex-matched C57/BL6 mice were 
infected intranasally with a 50-μl inoculum of PBS alone (naïve) or containing sublethal doses of either influenza (103 pfu of strain HKx31 and 10 pfu of PR8), VSV 
(104 pfu, Indiana strain), or Listeria monocytogenes expressing the recombinant ovalbumin (ova) (LM-ova) (104 cfu). One group of mice was additionally intravenously 
(i.v.) infected with 104 pfu VSV. Animals were sacrificed 35 days later and TRM assessed by intravascular staining. Briefly, mice were injected i.v. with 3 μg FITC 
labeled αCD45 antibody 3 min before sacrifice, lungs or small intestine were harvested, and lymphocytes isolated as previously described (22). (a) Representative 
i.v. staining of lymphocytes isolated from the lungs or intraepithelial lymphocytes (IEL) of naïve mice or following the indicated infections. All samples were first gated 
on CD8+CD44+ memory phenotype cells and gates in (a) were set by FMO controls within each experiment. For the influenza and VSV-infected animals, an 
additional MHC-class I tetramer gate was applied to identify antigen-specific CD8 T cells [as in Ref. (61)]. Numbers in the right box represent the frequency of the 
gated cells that stained with the i.v. injected antibody (αCD45-FITC+) and are in the vasculature (IV+). (b) Representative CD103 and CD69 staining of IV− [resident 
cells, left box in (a)] cells from the various infections.

4

Reagin and Klonowski Suppression of Respiratory CD8 T Cell Immunity

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 17

parenchyma express CD69 and CD103 (Figure 1) compared to 
TRM isolated from other mucosal sites, where expression ranges 
from approximately 50–99% (59). Therefore, Tmem located in the 
lung parenchyma after respiratory infection lack one of the key 
attributes associated with bona fide TRM, expression of CD69 
and CD103. CD103− TRM in the brain are maintained for a few 
months (60) which may be due to modified tissue localization and 
enhanced access to IL-15. However, lung parenchymal TRM are 
maintained independent of IL-15 (61), at least in the short-term, 
so gained proximity to IL-15 may not matter. However, acquisi-
tion of other survival signals dependent on CD103 positioning 
may be altered, leading to either cell death or assimilation into the 
TEM pool. Coupled with loss of airway-associated TRM, this situa-
tion leaves circulating TEM as the only viable responders. Whether 
the TEM temporally supplementing the TRM pool are CX3CR1hi and 
classified as the recently described “peripheral” memory cells 
(TpM) (62, 63) is unknown. Nonetheless, as TEM induced from 
respiratory infection decline over time (64), hosts will then be 
susceptible to infection. Therefore, an inferior CD69+CD103+ 
TRM response underpins loss of heterosubtypic immunity in the 
lung and raises the question of why long-lived, stable TRM does not 
form in the lung following respiratory infection.

tHe resPiratOrY eNvirONMeNt 
sUbverts tHe DeveLOPMeNt OF trM

As the lung is exposed to both infectious agents and innocuous 
environmental antigens, immune responses must be tightly 

controlled to prevent immunopathology (25). Similar regulation 
is also required in the liver and brain, additional tolerogenic sites. 
In part, this regulation is accomplished via tissue segregation. 
Indeed, liver TRM are exclusively segregated from tissue stroma, 
retained within the sinusoids (74), whereas brain TRM are pref-
erentially localized in the meninges and perivascular areas (60), 
sequestered from the parenchyma. The lung is no different, with 
the development of BAL TRM and parenchymal TRM. However, 
unlike TRM in the brain and liver, BAL TRM are directly exposed 
to the external environment and easily lost, whereas the lung 
parenchymal TRM are imbedded in the parenchyma and require 
an additional level of regulation to prevent immunopathology.

One potential mechanism is through altered mammalian 
target of rapamycin (mTOR) signaling within the respiratory 
tract. mTOR is responsible for regulating cellular metabolism, 
proliferation, and differentiation (75), including memory cell 
development (76). High levels of mTOR activation reduces the 
total number of antigen-specific cells expressing CD127, required 
for the development of memory precursor cells (77), and the 
subsequent TCM pool (76). While reducing mTOR signaling with 
rapamycin reverses the effects on TCM (76), TRM formation and 
retention within the intestinal mucosa was also increased via 
enhanced expression of gut-specific homing molecules (78). To 
date, no study has linked reduced mTOR signaling to enhance 
lung homing and/or respiratory TRM formation. However, evi-
dence from viral respiratory infection models support a role for 
mTOR in TRM formation. Rapamycin treatment during influenza 
infection increases the total number of antigen-specific CD8 Tmem 
circulating in the blood (79) similar to studies in the gut (78). In 
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addition, activated CD8 T cells isolated from infants infected with 
RSV and treated with rapamycin during in vitro re-stimulation 
express higher levels of CD127 compared to those cells stimulated 
without rapamycin. Rapamycin treatment also enhanced the effec-
tor response of RSV-specific cells by increasing their proliferation 
and production of granzyme B (80). While increased infiltration 
of RSV-specific effector cells into the lung may be important for 
viral clearance, this can also result in damaging pathology within 
the lung tissue itself. This indicates that perhaps careful regulation 
of mTOR signaling during respiratory infection is important for 
limiting potential immunopathology (80) and Tmem development; 
however, further studies are needed to directly implicate mTOR 
as a player in lung TRM formation.

The lung environment is inherently immunosuppressive. In 
the steady state, a large reservoir of Tregs populate this tissue and 
contribute to significant IL-10 post-influenza infection (81). 
Moreover, bronchial and alveolar epithelial cells are known 
to express moderate levels of the programmed death-1 (PD-1) 
ligands PD-L1 and PD-L2, both of which are significantly upreg-
ulated upon RSV (82) and influenza infection (83). In addition, 
antigen-specific CD8 T cells infiltrating the lung following RSV 
and influenza infection have an increased expression of PD-1 
(83, 84). Both IL-10 and PD-1 signaling can modulate CD8 T cell 
activation both individually (85, 86) and cooperatively (87) by 
tuning TCR signaling. IL-10 suppresses IL-12 signaling which, 
like PD-1 signaling, activates mTOR. However, PD-1 signaling 
is not exclusively through mTOR and can affect transcriptional 
networks and other cell cycle regulators which can impact the 
fate and function of CD8+ T cells (86). Memory phenotype cells 
isolated from PD-1−/− versus wild-type mice are preferentially 
TEM (88). Reciprocal adoptive transfer experiments demonstrated 
this bias was inherent to the T cell. As PD-1 blockade during RSV 
infection results in enhanced inflammation and lung injury, PD-1/
PD-L1 expression in the respiratory tract may serve to limit the 
expanding CD8+ T cell pool, thereby restricting developing TRM. 
Thus, while enhanced PD-1 expression within the respiratory 
tract may be important for regulating inflammation, this may cre-
ate an environment that is inhospitable to the formation of TRM.

It is also possible that respiratory infections alter TRM pro-
gramming via inhibition of CD103 and CD69 expression, which 
negatively affects the formation and/or retention of TRM cells in 
the respiratory tract. Constitutive expression of TGF-β in mucosal 
sites such as the gut (33) is crucial for the development of long-
lived TRM through induction of CD103 expression (89). Epithelial 
cells also provide survival signals such as IL-15 (90), thus high 
CD103 expression may not only facilitate TRM retention but aid 
in their development or survival via tissue positioning. However, 
high levels of TGF-β in the respiratory tract can be detrimental, 
leading to the development of cystic fibrosis within the lung (91). 
Although TGF-β expression is induced by influenza infection  
(92, 93), it may only be transiently expressed to limit 

immunopathology, albeit at the expense of TRM formation. In fact, 
the TRM in peripheral sites can cause semi-permanent scarring 
in tissues that worsens after TRM re-activation and production of 
IFN-γ in situ (94). Since high levels of IFN-γ production (95), in 
addition to scarring and fibrosis in the lung, can cause respiratory 
failure (96), the retention of TRM long term may be inherently 
limited to maintain host fitness. If this is the case, promoting 
TRM formation within the respiratory tract could have severe 
consequences for host respiratory health. Therefore, by reduc-
ing TGF-β, and coordinately CD103 expression, lung memory 
precursor cells would perhaps be ill positioned to receive homeo-
static signals responsible for the development, survival, and/or 
retention of TRM and could be either be lost or assimilated into 
the TEM pool.

While airway-resident TRM cells confer protection against sec-
ondary influenza infection, they rapidly wane, leaving only paren-
chyma resident TRM and circulating TEM to maintain protection 
against subsequent infection. However, TEM also wane over time 
(64) and the formation of bona fide TRM in the lung parenchyma 
is limited (Figure 1). These incomplete memories leave the host 
susceptible to recurring influenza infection. We believe the lung 
evokes a form of natural immunosuppression whereby inhibitory 
signals in the site protect the host from debilitating tissue damage 
while simultaneously suppressing the formation of bona fide TRM 
within the lung tissue. While the exact mechanisms that underlie 
altered TRM formation within the respiratory tract are still not 
fully understood, future efforts to improve the maintenance and 
stability of this population must bear caution due to potentially 
negative, long-term effects on the host. Moreover, in developing 
vaccines against respiratory pathogens, it will be important to 
identify strategies that will prevent re-infection with respiratory 
viruses without compromising host respiratory health.
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