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Tunneling nanotubes (TNT) are dynamic connections between cells, which represent 
a novel route for cell-to-cell communication. A growing body of evidence points TNT 
towards a role for intercellular exchanges of signals, molecules, organelles, and patho-
gens, involving them in a diverse array of functions. TNT form among several cell types, 
including neuronal cells, epithelial cells, and almost all immune cells. In myeloid cells 
(e.g., macrophages, dendritic cells, and osteoclasts), intercellular communication via 
TNT contributes to their differentiation and immune functions. Importantly, TNT enable 
myeloid cells to communicate with a targeted neighboring or distant cell, as well as 
with other cell types, therefore creating a complex variety of cellular exchanges. TNT 
also contribute to pathogen spread as they serve as “corridors” from a cell to another. 
Herein, we addressed the complexity of the definition and in  vitro characterization of 
TNT in innate immune cells, the different processes involved in their formation, and their 
relevance in vivo. We also assess our current understanding of how TNT participate in 
immune surveillance and the spread of pathogens, with a particular interest for HIV-1. 
Overall, despite recent progress in this growing research field, we highlight that further 
investigation is needed to better unveil the role of TNT in both physiological and patho-
logical conditions.
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inTRODUCTiOn

Tunneling nanotubes (TNT) represent a novel type of intercellular communication machinery, 
which differs from the secretion of signaling molecules and the signal transmission through gap or 
synaptic junctions between adjacent cells. Along with exosomes, TNT mediate long-range commu-
nication, independent of soluble factors. They are membranous structures displaying a remarkable 
capacity to communicate with selected neighbor or distant cells. There are recent reviews covering 
the broad biological role of TNT, which are able to form in multiple cell types (1–3). Here, our focus 
is exclusively on TNT formed by myeloid cells, including macrophages, osteoclasts, and dendritic 
cells (DC). Based on the nascent literature on TNT in these cells, we will discuss the definition of 
TNT, their mechanisms of formation, and their role in physiological and pathological contexts. We 
will also address the need of further investigation of these structures to better understand their 
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functions and improve their potential as therapeutic targets in 
pathological conditions.

DeFiniTiOn AnD FUnCTiOn OF TnT

The main obstacle in reviewing the emerging TNT field is the 
different names given to these structures: TNT, cellular and 
membrane nanotubes, filopodia bridges, conduits or tubes, and 
nanotubules. Also, the huge number of publications on carbon 
nanotubes impedes the track of developments on TNT. Unifying 
terminology for nanotubes would thus be beneficial. In this mini-
review, the term TNT will be used as done previously (2, 4). TNT 
are membranous channels connecting two or more cells over 
short to long distances. Actually, these structures can extend up to 
200 µm in length in macrophages (5). To define TNT, we adopted 
the three phenotypic criteria proposed in a recent elegant review: 
(i) they connect at least two cells, (ii) they contain F-actin, and 
(iii) they do not touch the substrate (2). This definition allows 
the discrimination of TNT with any other F-actin-rich structures, 
such as filopodia. Regarding their functional properties, TNT 
transfer cytoplasmic molecules from one cell to another such as 
calcium, proteins or miRNA, mitochondria, several vesicles (e.g., 
lysosomes), pathogens, and cell-surface molecules; this ability 
constitutes the main functional criterion for TNT definition (6). 
The end of the structure can form a junctional border with the 
targeted cell (close-ended TNT) or the cytoplasm of the two con-
nected cells can be mixed (open-ended TNT). On the one hand, 
the transfer of large molecules such as the lipophilic dye DiO is 
used to identify open-ended TNT (7). On the other hand, close-
ended TNT form a junction at their end which are visualized by 
scanning electron microscopy (8). To avoid the past arguments on 
the need of cytoplasmic interactions for TNT, we shall consider in 
this review both close-ended and open-ended TNT (Figure 1A). 
As close-ended TNT mediate signal transfer through distant 
gap junctions (8, 9), they meet the functional criterion to be 
considered as TNT. Also, close-ended TNT could represent an 
intermediary status in the process of open-ended TNT formation. 
Finally, the group of Davis demonstrated that one particularity 
of macrophages is their ability to form different classes of TNT: 
thin ones (<0.7 μm in diameter), containing only F-actin; and 
thick ones (>0.7 μm), containing F-actin and microtubules (7). 
These two types of TNT could have different functions, as large 
material (e.g., lysosomes, mitochondria) can only travel between 
macrophages via thick TNT on microtubules (7).

DiSCOveRY OF TnT

The first description of functional TNT in vitro was made in rat 
kidney cells (PC12 cells) and human cell lines (10), followed 
immediately by the identification of similar structures in human 
monocytes and macrophages (11). It is now clear that TNT can 
form in several cell types, including cancer cells and most leuko-
cytes. However, to our knowledge, TNT were not described in 
granulocytes. In DC, TNT appeared to be similar to those made 
by monocytes-derived macrophages (6, 12). However, unlike DC 
exposed to anti-inflammatory conditions, only those activated  
by pro-inflammatory conditions form complex network of TNT 

able to transfer soluble molecules and pathogens (13). Likewise, 
macrophages undergo different activation programs within 
the broad spectrum of pro- (M1) and anti-inflammatory (M2) 
polarization. Yet, their activation state has not been linked to 
the formation of TNT. The only available data concern the early 
HIV-1 infection of macrophages, driving them toward M1 polari-
zation (14) and inducing a significant increase in TNT formation 
(5, 15–18).

While the majority of studies in TNT biology has been 
performed in one cell type (homotypic TNT) at a time, TNT 
formation between different cell types (heterotypic TNT) is not 
rare. In fact, TNT frequently form between macrophages or 
DC with another cell type, enabling the exchange of lysosomes, 
mitochondria, or viral proteins (16, 19–21).

The reason why TNT were discovered quite recently could be 
attributed to their fragility. Indeed, they are poorly resistant to the 
existing shearing forces in culture media, as well as light exposure 
and classical fixation methods. Thus, an appropriate way of per-
forming live imaging is necessary to study TNT. When working 
on fixed cells, gentle fixation (e.g., glutaraldehyde-based fixation) 
should help preserve these highly delicate structures (22, 23).

FORMATiOn OF TnT

Mechanisms of Formation
Cell examination by time-lapse microscopy suggested two 
mechanisms of TNT formation could exist. The first one pro-
poses that two cells initially in contact separate from each other, 
remaining connected through a thin thread of membrane, which 
will be elongated upon cell separation (Figure  1A, right). The 
second puts forward that a cell would first bulge filopodia and 
extend them until reaching a neighboring cell, then converting 
towards TNT after making contact (24, 25) (Figure  1A, left). 
While the former is the prevailing mechanism in lymphoid cells, 
the latter one is observed in DC as TNT were reported to develop 
mainly from conversion of their filopodia (13, 19). In the case 
of macrophages, while they can use both mechanisms (6), the 
murine macrophage cell line (RAW 264.7 cells) mainly forms 
TNT from actin-driven protrusions, also called TNT-precursors 
(26). Of note, these two processes are not necessarily exclusive 
and could both occur between a given pair of cells. In either case, 
the requirement of F-actin is not questioned since treatment 
with latrunculin or cytochalasin D is often used to abolish TNT 
formation (2, 27, 28).

Regarding the opening of the conduit, and the potential tran-
sition between close-ended and open-ended TNT (Figure 1A), 
there is no proposed mechanism available. It is likely that the 
formation of open-ended TNT involves a step similar to what 
occurs during virus-to-cell membrane fusion or cell-to-cell 
fusion (29, 30), eventually leading to the generation of multinu-
cleated giant cells (MGC) (Figure 1A).

Molecular Actors
Few data are available to describe TNT at the molecular level. 
M-Sec, also known as tumor necrosis factor-α-induced protein, is 
one of the best characterized protein involved in TNT formation 
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FigURe 1 | Models of tunneling nanotube (TNT) formation and putative role in the generation of multinucleated giant cells (MGC). (A) TNT can form according to 
two mechanisms: the “protrusion elongation” mechanism where the cell extends filopodia-like protrusion toward a specific target cell (left), and the “cell 
dislodgement” mechanism for which two cells initially in contact separate from each other, stuck by a thread of membrane that gives rise to a TNT (right). Each of 
these mechanisms can lead to either close-ended or open-ended TNT, the last one allowing cytoplasmic continuity between interconnected cells. The dynamics of 
close-ended and open-ended TNT formation is still not understood. In addition, TNT could either disconnect cells and thus abrogate their communication or could 
lead to MGC. (B) Confocal image of day 13 HIV-1-infected human monocyte-derived macrophages and MGC interconnected through a TNT. Arrowheads show a 
TNT. HIV-1 Gag (red), F-actin (green), DAPI (blue). Scale bar, 50 µm.
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in macrophages. Its depletion in Raw264.7 cells reduces the 
formation of de novo TNT and their associated function (trans-
fer of calcium flux) (22). Using the same macrophage cell line, 
the group of D. Cox recently showed that actin polymerization 
factors including the Rho GTPases family Rac1 and Cdc42, and 
their downstream effectors WAVE and WASP, participate in 
TNT formation (26). In addition, functional TNT are induced 
by the expression of the leukocyte specific transcript 1 (LST1) 
protein in HeLa and HEK cell lines. LST1 recruits the actin 
cross-linking protein filamin and the small GTPase RalA to the 

plasma membrane where it promotes RalA interaction with the 
exocyst complex, M-Sec, and myosin; these interactions trigger 
TNT formation (22, 23). Whether the mechanisms that operate 
in cell lines derived often from tumor origin apply to primary 
cells remains to be confirmed.

IN VIVO ReLevAnCe OF TnT

A remaining question is to determine to what extent the in vitro 
data available in the literature are relevant in  vivo. One of the 
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problems is to apply in vivo the criteria of bona fide TNT (see 
above), in particular the requirement not to touch the substrate, 
which seems unlikely in 3D environments. In addition, testing 
the functionality of TNT in the context of tissues is challenging. 
Therefore, the structures observed in  vivo should be carefully 
indicated as “TNT-like structures.” Key evidence for TNT-like 
structures in vivo comes from the immunology field providing 
the first images of thick TNT connecting DC in inflamed mouse 
corneas (31). To our knowledge, macrophage TNT have not been 
observed in  vivo yet. The identification of specific molecular 
markers for TNT would be a great tool to confirm the existence 
of these structures in  vivo. M-Sec, which is involved in TNT 
formation, cannot be considered as a specific marker since this 
ubiquitous protein is expressed all over the cytoplasm (5, 18, 28, 
32, 33). Thus, one of the priority to progress in the TNT field is 
to characterize markers allowing unambiguous identification of 
cell-to-cell tubular connections as TNT.

ROLe OF TnT in PHYSiOLOgiCAL 
COnTeXTS

One of the most studied functions of TNT is the propagation 
of calcium flux. Calcium signaling through TNT helps regulate 
cell metabolism and communication between neurons (34). 
Interestingly, DC present the ability to establish calcium fluxes 
via TNT transmitted within seconds to other DC as far as 500 µm 
away from the donor cell (12). When TNT are disturbed by M-Sec 
knockdown, this calcium flux is inhibited (12, 22). DC have also 
the particularity to form TNT networks allowing the intercellular 
exchange of antigens (13), including in the context of MHC mol-
ecules as described between Hela cells (19, 27). Therefore, TNT 
could contribute to a higher efficiency in the antigen presentation 
process to activate adaptive immunity (19).

Another physiological role for TNT concerns the differen-
tiation of osteoclasts (5, 18, 28, 32, 33). Osteoclasts are MGC 
derived from a myeloid precursor that present the unique 
ability to degrade the bone matrix, and thus to regulate bone 
homeostasis. Inhibition of TNT either by latrunculin B or by 
M-Sec depletion significantly suppresses osteoclastogenesis, and 
the M-Sec expression level increases during osteoclastogenesis 
(28, 35). Dendritic cell-specific transmembrane protein, a recep-
tor involved in cell-to-cell fusion, has been shown to be trans-
ferred via TNT. The authors proposed that this process could 
participate in cell fusion among osteoclast precursors (28, 35). 
Moreover, nuclei are found inside large TNT-like structures (36), 
inferring that they participate in cell-cell fusion to generate OC. 
Elucidating the role of TNT in differentiation of MGC such as 
placental trophoblast, myotubes, and osteoclasts could be a new 
research area.

ROLe OF TnT in PATHOLOgiCAL 
COnTeXTS

Tunneling nanotubes not only contribute to cell-to-cell commu-
nication in physiological conditions but also in pathological pro-
cesses. For example, the transfer of lysosomes from macrophages 

to fibroblasts, and of mitochondria from mesenchymal stromal 
cells to macrophages, are mediated by TNT and have important 
consequences in cystinosis and acute respiratory distress syn-
drome, respectively (20, 21).

Without the shadow of doubt, the most studied consequence 
of TNT in diseases is the transfer of pathogens, including prions, 
bacteria, and viruses [for review, see Ref. (1)]. One of the well-
known example concerns the role of TNT in neurological dis-
eases, especially when caused by prions (34). Actually, in addition 
to the TNT-dependent transfer of the infectious form of the prion 
protein (PrPSc) between neuronal cells, TNT support PrPSc trans-
fer from DC to the neurons in which PrPSc is further synthetized 
and transferred to the rest of the central nervous system (37). 
Regarding bacteria and viruses, some publications propose that 
they “surf ” along TNT to spread from one cell to another (7, 13, 
38–41). For example, in macrophages, live experiments show that 
Mycobacterium bovis bacillus Calmette–Guerin can travel along 
the surface of thin TNT, toward another macrophage, which will 
ingest it (7).

Viruses, including HIV-1, are well known to hijack the 
cytoskeleton in order to enter and travel inside their host cell, as 
well as towards bystander neighbor cells (5, 33, 39, 41, 42). For 
example, HIV-1 can actively induce the generation of filopodia 
in DC to propel virus particles towards neighboring cells. As 
one of the mechanism of TNT formation starts with membrane 
extension, filopodia formed upon HIV-1 infection could lead to 
TNT formation (2), especially in DC that develop networks of 
TNT from elongation of their dendrites (13, 19). Importantly, 
the formation of TNT by DC favors trans-infection of targeted 
CD4+ T lymphocytes at a relatively long distance, similar to what 
happens between two distant CD4+ T lymphocytes (8).

In macrophages, HIV-1 induces TNT formation and potentially 
uses them to spread (18). Whether thin or thick TNT are formed 
is unknown. Assuming that thick TNT are induced, HIV-1 could 
travel inside these structures by using a microtubule-dependent 
movement, in addition to the described “surfing” of HIV-1 at the 
surface of TNT. Despite the fact that Gag and Nef proteins and 
HIV-1-containing vesicles have been detected inside TNT, there 
are no convincing experiments in living cells available to prove 
that HIV-1 travels inside TNT and infects the targeted cell (5, 
15, 17, 18). Pushing live imaging to super-resolution microscopy 
techniques would be of great help to study how HIV-1 traffics 
using TNT.

In light of the importance of macrophages in HIV-1 pathogen-
esis (43–45), it is crucial to bridge the several gaps that blur our 
understanding of the role of TNT in macrophages during HIV-1 
infection. First, it is important to determine whether HIV-1-
induced TNT in macrophages are close- or open-ended to better 
understand how HIV-1 traffics via TNT. Second, whether TNT 
from a HIV-infected cell could target non-infected cells remains 
to be elucidated. It would be an efficient way for the virus to spread 
around without being detected. Finally, the molecular regulation 
of HIV-1-induced TNT in macrophages has only started to be 
elucidated. The HIV-1 Nef protein could play a central role in 
TNT formation by interacting with members of the exocyst 
complex (16, 18, 46, 47). Moreover, Nef modulates F-actin and 
cell migration (48), two effects which could participate in TNT 
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generation. Finally, a hallmark of HIV-1 infection is the formation 
of MGC, a process that can be driven by TNT in order to persist 
during late infection stages, when most infected macrophages are 
MGC (Figure  1B) (32, 33). Interestingly, both HIV-1-induced 
TNT and MGC are reduced when macrophages are infected with 
nef-deleted viruses (18, 32, 33).

Importantly, while TNT spread the virus among HIV-1 target 
cells (T  lymphocytes, macrophages, and DC), TNT also affects 
the nature of infection by circumventing the need for classical 
receptor-mediated virus entry or transfer viral components to 
cells that are not susceptible to infection. As a matter of fact, 
the transfer of Nef via TNT between infected macrophages and 
B cells induces drastic B cell abnormalities at the systemic and 
mucosal level (16).

COnCLUSiOn

The TNT field requires the unification of the terminology and 
definition of TNT, as well as the development of new tools 
adapted for the detection and monitoring of these particular 
structures. The main challenge so far is to discover molecular 
markers to specifically identify TNT, especially in vivo. To this 
end, an automated siRNA-based screen could be used in in vitro 
conditions for which TNT formation is controlled, as performed 
for the virological synapse (49). Another issue is the fragility of 
TNT which complicates their manipulation. Thus, the use of 
specific experimental conditions or devices, such as microfluidic 
systems (50), is needed. Moreover, it would be helpful to study the 
opening of close-ended TNT in terms of molecular components 
and dynamics. Likewise, it is imperative to determine whether 
TNT formation and regulation can be influenced by extracellular 
stimulti and/or tissue microenvironment in pertinent in  vivo 
physiological and pathological contexts. For example, during 
HIV-1 infection, TNT represent a new way for viral spread. 

However, the literature remains scarce, rising far more questions 
than answers. Interestingly, HIV-1 and other microbes can serve 
as efficient tools to better understand TNT structure and function. 
Furthermore, TNT-based studies in the HIV-1 field are needed 
to better understand viral dissemination and pathogenesis. The 
particularity of TNT to perform “intimate” communication with 
a specific partner is probably key in HIV-1 spread. A tempting 
hypothesis is that infected cells could direct their TNT towards 
uninfected cells. This way, the virus could spread without being 
detected by the surveilling immune system. Finally, new insights 
into the mechanisms of TNT formation and regulation would be 
of high relevance to design novel therapeutics for several diseases, 
including viral infections.
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