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Parasitic helminths are extremely resilient in their ability to maintain chronic infection 
burdens despite (or maybe because of) their hosts’ immune response. Explaining how 
parasites maintain these lifelong infections, identifying the protective immune mecha-
nisms that regulate helminth infection burdens, and designing prophylactics and thera-
peutics that combat helminth infection, while preserving host health requires a far better 
understanding of how the immune system functions in natural habitats than we have at 
present. It is, therefore, necessary to complement mechanistic laboratory-based studies 
with studies on wild populations and their natural parasite communities. Unfortunately, 
the relative paucity of immunological tools for non-model species has held these types 
of studies back. Thankfully, recent progress in high-throughput ‘omics platforms provide 
powerful and increasingly practical means for immunologists to move beyond traditional 
lab-based model organisms. Yet, assigning both metabolic and immune function to 
genes, transcripts, and proteins in novel species and assessing how they interact with 
other physiological and environmental factors requires identifying quantitative rela-
tionships between their expression and infection. Here, we used supervised machine 
learning to identify gene networks robustly associated with burdens of the gastroin-
testinal nematode Heligmosomoides polygyrus in its natural host, the wild wood mice 
Apodemus sylvaticus. Across 34 mice spanning two wild populations and across two 
different seasons, we found 17,639 transcripts that clustered in 131 weighted gene 
networks. These clusters robustly predicted H. polygyrus burden and included well-
known effector and regulatory immune genes, but also revealed a number of genes 
associated with the maintenance of tissue homeostasis and hematopoiesis that have so 
far received little attention. We then tested the effect of experimentally reducing helminth 
burdens through drug treatment on those putatively protective immune factors. Despite 
the near elimination of H. polygyrus worms, the treatment had surprisingly little effect 
on gene expression. Taken together, these results suggest that hosts balance tissue 
homeostasis and protective immunity, resulting in relatively stable immune and, conse-
quently, parasitological profiles. In the future, applying our approach to larger numbers 
of samples from additional populations will help further increase our ability to detect the 
immune pathways that determine chronic gastrointestinal helminth burdens in the wild.

Keywords: wild immunology, Apodemus sylvaticus, transcriptome, machine learning applied to immunology, 
Heligmosomoides polygyrus, anthelminthics
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inTrODUcTiOn

Chronic helminth infections challenge our understanding of 
how the immune system functions. In natural populations, 
while individuals are continually exposed to helminth parasites, 
there is substantial variability in infection burdens, with some 
consistently showing no active infection (1, 2). This suggests that 
individuals can potentially control infection. In addition, while 
anthelminthics are commonly employed to reduce helminth 
burdens, after drug clearance, infections typically return to 
their initial burdens (3–5), suggesting that the immune system 
does not or cannot easily acquire complete protection against 
helminths. Such observations have lead to the hypothesis that 
hosts must balance the costs of helminth infection with the 
immunopathology and/or protein-energy-related costs associ-
ated with eliminating these parasites (6–8). If this trade-off exists, 
it suggests that the host can regulate the intensity of its immune 
attack on the parasites, and, alternatively, that these parasites can 
avoid and suppress host immune responses (9, 10). While these 
ideas have received substantial theoretical and experimental sup-
port, the mechanisms that underlie chronic helminth infection 
dynamics “in the real world,” and whether or how the balance 
of resistance and susceptibility might change over the lifetime 
of an individual, either naturally or in response to vaccination, 
remain very poorly understood. We suggest that addressing these 
questions is necessary for the development of more effective 
and sustainable treatment and immunization against parasitic 
helminths, which are the leading cause of productivity loss in 
livestock (11–13) and remain a substantial agent of poverty in 
the developing world (14, 15). It is, therefore, paramount to study 
hosts in their natural environment, outside of the controlled 
laboratory, where the data may be messy, but where relationships 
between hosts and their natural parasite communities are the 
result of millions of years of coevolution and more likely to be 
biomedically relevant.

Identifying protective immune mechanisms in inherently 
variable natural populations warrants relatively large sample sizes, 
the possibility to manipulate parasitological, physiological, and 
environmental parameters, and the ability to monitor individuals 
repeatedly over time. The wood mouse Apodemus sylvaticus has 
been extensively studied by disease biologists since the 1960s 
(16, 17) and is now increasingly used for immunological stud-
ies (18, 19). It offers many of the features that originally made 
small rodents attractive experimental models (i.e., affordable, 
easy to maintain and handle, prolific breeding, and short time to 
maturity) and adds features that make it an ecologically and epi-
demiologically sound model for mammalian, including human, 
immunology, and parasitology (i.e., high diversity and prevalence 
of parasites, good trapability, large population sizes, genetic relat-
edness to Mus musculus). Indeed, A. sylvaticus harbors a diverse 
and prevalent community of parasite and pathogens that closely 
resembles those found in larger mammals, including humans 
(20–24), and domestic animals (25). Importantly, unlike Mus 
musculus which is naturally infected by very few gastrointestinal 
helminth parasites (26, 27), A. sylvaticus is the natural host of the 
nematode Heligmosomoides polygyrus, which is routinely found 
in >50% of wild wood mice (28) and is closely related to H. bakeri 

(29), a species extensively studied as a model of human gastro-
intestinal helminths that is known for its ability to suppress the 
immune system of its host (30). In this study, we therefore used 
H. polygyrus as a model for chronic endemic helminthiasis, and 
aimed to identify immune networks that regulate infection bur-
den in a natural host–helminth system. Due to the preponderance 
of the laboratory mouse model in immunology, there are few, if 
any, reagents developed and optimized for non-model organisms 
(31). We, therefore, utilized a transcriptomics approach. While 
the genome itself provides invaluable information about immune 
resistance to infection (32–34), messenger RNA expression pro-
files provide a time- and context-sensitive picture of the immune 
system as it responds to antigenic stimuli. Moreover, unlike PCR 
and other candidate gene-driven approaches, transcriptomics 
allow discovery of unexpected correlates of immune protection 
and inclusion of physiological processes in the discovery of 
determinants of resistance to disease that would otherwise be 
overlooked in a purely immunology-focused approach.

In this study, we aimed (i) to identify gene networks that were 
either positively or negatively associated with H. polygyrus infec-
tion burden, (ii) to use those genes to identify immune pathways 
that promoted immunity to H. polygyrus, and (iii) to test whether 
those protective pathways were affected by sex and anthelminthic 
drug treatment. We used a newly published A. sylvaticus genome 
for the assembly and analysis of RNAseq samples generated 
from the spleens of 34 wild-caught wood mice from two distinct 
populations showing natural variation in helminth burdens, and 
then randomly treated a subset with anthelminthics to experi-
mentally reduce their nematode infection burdens. Identifying 
transcripts predictive of infection burdens in a natural system, 
and maximizing the chances of these associations to generalize 
across populations requires detecting potentially weak signals 
among many variables, while simultaneously avoiding spurious 
variation (false positives). We addressed this challenge by reduc-
ing transcripts into co-expression gene networks, and identifying 
therein robust predictors of immunity to H. polygyrus using 
supervised machine learning—a class of statistical models that 
can integrate multiple variables that each carry weak signal into 
a stronger predictor by mapping them to a response variable, 
here H. polygyrus burdens. These types of supervised machine 
learning approaches hold promise for ecological and immuno-
logical studies (35, 36). We then applied a similar supervised 
approach to a narrower set of transcripts explicitly associated 
with immunity to assess how the immune system regulates its 
response to chronic helminth burdens in both male and female 
mice. To ensure that our models were not specific to a single 
population, time point, and sequencing platform, and thereby to 
increase the generalizability of our conclusions, we split samples 
spanning two wood mouse populations repeatedly at random 
into training sets on which predictive models were generated, 
and corresponding test sets on which the predictions of trained 
models were validated against observed values. Finally, given the 
widely reported propensity of anthelminthic-treated individuals 
(humans included) to return to their initial helminth burdens 
within weeks, we assessed whether the correlates of protection 
identified by our supervised learning approach were impacted by 
anthelminthic treatment.
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MaTerials anD MeThODs

ethics statement
All procedures on animals were approved by the University of 
Glasgow ethics committee and the UK Home Office (PPL60/4572) 
and conducted in accordance with the Animals (Scientific 
Procedures) Act 1986.

Wood Mouse Field Treatment  
and sampling
To minimize false discovery and ensure that our findings could 
generalize to other wood mouse populations, we included sam-
ples from two geographically and temporally distinct A. sylvaticus 
populations at two woodland sites: Haddon Wood (N 53.16°,  
W 3.1°, hereafter referred to as HW) in north-west England in 
2011, and Callendar Wood (N 55.99°, W 3.78° hereafter referred 
to as CW) in the Central Lowlands of Scotland in 2015.

Mice were trapped using Sherman live traps (H. B. Sherman 
2  ×  2.5  ×  6.5 inch folding trap, Tallahassee, FL, USA) baited 
with grain, carrot, and bedding material. Two traps were placed 
every 10 m in a 70 m × 70 m (total 128 traps per grid). At first 
capture, each individual was microchipped (AVID microchips, 
Lewes, UK). In CW only, mice were allocated to one of two sex-
balanced groups: anthelminthic drug-treated or control. Age and 
reproductive status, assessed by the body mass, color of the coat, 
position of testes, occlusion of the vagina, and visible signs of 
lactation and pregnancy were also recorded. The drug treatment 
removed gastrointestinal nematodes, which are typically the 
most abundant parasites in wood mice (4). Drugs were given 
as a single oral dose of 2 µl g−1 of body weight of a mixture of 
9.4 mg kg−1 Ivermectin and 100 mg kg−1 Pyrantel (IVM + PYR), 
and controls consisted of oral delivery of 2 µl g−1 of body weight 
of water (H2O). Mice that were recaptured 14 ± 3 days post first 
capture were sacrificed on site. After cervical dislocation and 
exsanguination by cardiac puncture, the spleen of each individual 
was extracted and immediately transferred to a tube containing 
4 ml RNA later, followed by whole removal of the intestine and 
storage in phosphate-buffered saline for subsequent dissection 
and parasite identification.

Parasitology
Heligmosomoides polygyrus are ingested at their third larval (L3) 
stage, penetrate the submucosa of the small intestine within 24 h, 
and migrate to the muscularis externa, where they develop into 
L4-stage larvae. 8–10 days after infection, adult worms begin to 
emerge into the lumen of the intestine and attach to the intestinal 
villi within ~14  days, where they mate and release eggs. We 
measured adult H. polygyrus intestinal burdens of all sacrificed 
mice to assess immune resistance to infection. Worm burdens 
are preferred over fecal egg counts because they have much lower 
variability and likely reflect interactions with the host’s immune 
system during larval development. While it was not possible 
to measure individual level differences in exposure to parasite 
infective L3s in the wild, we selected mice of similar ages within 
both sexes, and assumed lifetime exposure levels were similar 
across all selected mice. Worm burdens were compared between 

sites (CW or HW), sexes and treatment groups using negative 
binomial generalized linear models because of the significant left-
skew coupled with high worm prevalence, over a zero-inflated 
distribution.

rna sequencing, assembly, annotation, 
and Quantification
A transversal segment of each spleen was cut under sterile condi-
tions, weighed, and processed following the RNeasy kit (Qiagen). 
RNA quantity and quality were assessed using a Tapestation 
(Agilent Technologies), and stored at −80 until RNA sequenc-
ing. All RNA samples were evaluated on a Bioanlayzer (Agilent 
Technologies) immediately prior to Poly-A selection of messenger 
RNA. Ten wood mice from Haddon Wood were sequenced on an 
Illumina Solexa 454 with 100 bp paired end reads by Edinburgh 
Genomics (2011). Twenty-four wood mice from Callendar wood 
were sequenced on an Illumina NextSeq 500 with 75 pb paired 
end reads by Glasgow Polyomics (2015). Raw reads generated by 
the sequencers were quality-checked using FastQC v. 0.11.5 (37) 
and sequences of low-quality and sequencer adapters trimmed 
using cutadapt v. 1.14 (38). The resulting trimmed reads were 
then quality-checked using FastQC and MultiQC (39) as above 
(see MultiQC report in Supplementary Data Sheet 1), and aligned 
to a reference transcriptome and quantified using Kallisto v. 0.43.1 
(40). An A. sylvaticus transcriptome generated from a recently 
published genome (assembly ASM130590v1, https://www.ncbi.
nlm.nih.gov/nuccore/LIPJ00000000.1) was used as the reference 
for assembly and read counts.

Transcriptome analysis
Dimensionality Reduction
To select within the full transcriptome only the genes that had a 
potential role in resistance or tolerance to H. polygyrus across the 
full wood mouse transcriptome, we first grouped highly intercon-
nected transcripts that may form distinct biological pathways by 
applying a weighted correlation network analysis (41) with the R 
package WGCNA (42). This entailed constructing gene networks 
(or modules) using a co-expression similarity measure defined as:

 A cor(x , x )ij i j= 0 5 0 5. .+( )β 
where Aij is the pairwise correlation between gene expressions 
(xi, xj), and β is the soft-threshold weight which is set at 6 in our 
analysis based on scale-free topology criterion (41). The WGCNA 
cluster eigengenes, which summarize the expression levels of all 
transcripts within each cluster, were used for further analysis as 
combining such clusters into biologically linked “meta-networks” 
as been shown to help identify biologically meaningful pathways 
(43–45). In addition to identifying the strongest correlates of pro-
tection across the full transcriptome, we sought to describe how 
genes explicitly associated with immunity might be functionally 
associated with H. polygyrus infection burdens. We, therefore, 
selected all genes for which the BLAST annotation contained 
the following immunological terms: “chemokine,” “cytokine,” 
“gata3,” “immunoglobulin,” “interferon,” “interleukin,” “platelet,” 
“relm,” “resistin,” “ror-gamma,” “t-bet,” “TBX21,” “TGF,” “TNF,” 
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or “toll-like” for their reported roles in immunity or regulation of 
responses to parasitic nematodes (9, 46–49).

Supervised Learning
To identify WGCNA clusters or immune genes (“features”) that 
may have a role in regulating H. polygyrus burdens, we trained 
supervised learning models to map them to parasite counts of 
untreated individuals from both CW and HW populations.  
All features were scaled to unit variance to ensure homoscedas-
ticity, and worm counts were log10+1-transformed to improve 
machine learning algorithm performance. To predict H. polygyrus 
burdens, we used a regression analysis with the task of minimiz-
ing mean squared errors (MSE) between parasitic worm burdens 
observed in a test set and burdens predicted by a model trained 
on an independent training subset of the full dataset.

To select which algorithm was most likely to generate the best 
models from our data, we began by comparing the baseline per-
formance of widely used algorithms using their default settings 
on the full dataset using 10-fold cross-validation: Elastic Net; 
k-Nearest Neighbors for Regression; Random Forest regressor; 
and eXtreme Gradient Boosting regressor using either a linear 
(GLM) booster, or a tree booster.

The full dataset was then split 75/25 into a training set and 
the corresponding test set 10 times repeatedly at random with-
out replacement to avoid sampling bias affecting our choice of 
trained model. For each of the random train-test paired subsets, 
the selected algorithm was tuned on the training set using a wide 
range of possible parameter settings on the training subset using 
fivefold cross-validation, and the trained models that achieved 
the lowest MSE between predicted and observed burdens in the 
test set were retained. Summary statistics (mean and SEM) of all 
50 resulting MSE, and of all 50 weights applied to each cluster 
within the trained models were used for ranking the importance 
of each gene transcript or cluster in predicting H. polygyrus 
burdens.

Statistical Analysis
Immune features (WGCNA clusters and transcripts) that contrib-
uted most to the predictive performance of each model were used 
as response variables in generalized linear models to assess the 
effects of host sex (two level factor) and anthelminthic treatment 
(two level factor) on their expression. To reduce type 1 errors 
due to multiple testing, statistical significant was considered at 
p ≤ 0.01.

All data processing, machine learning, statistical analyses, and 
graphs were performed using Python 3.6 packages pandas (50), 
scikit-learn (51), statsmodels (52), and seaborn (53), respectively.

resUlTs

infection by H. polygyrus Was Prevalent 
but infection intensity Varied substantially 
between individuals and Populations
As is typical of parasite burdens where a minority of the animals 
carry most of the infection (54), H. polygyrus infection burdens 
followed a negative binomial distribution in the 61 individuals 

sampled in the two field populations (CW and HW), with 
burdens ranging from 0 to 135 worms (Figure 1A). Of those, 34 
adult mice selected at random with H. polygyrus burdens at post 
mortem ranging 0–86 were retained for further analysis. While 
worm burdens within each population did not to differ signifi-
cantly between sexes (Figure 1B), they were markedly higher 
in CW than in HW (Figure 1C, p < 0.0001, n = 22 untreated 
wood mice). All males and all females from CW included in 
subsequent analyses were infected with H. polygyrus, while 
prevalence was 60% for the females from HW (Figure  1B), 
amounting to a 91% prevalence of H. polygyrus in our untreated 
individuals. Half of the males and females caught in CW were 
treated with anthelminthic drugs to test associations between 
transcript expression (Illumina RNA-seq counts) and gastro-
intestinal helminth burdens. Treatment was equally effective at 
reducing H. polygyrus numbers and prevalence in both sexes 
but failed to remove the parasites completely (Figure 1C, 60× 
reduction in burden p < 0.0001; prevalence X2 = 0.0007, n = 24 
in CW only). Taken together, these results confirm that this 
parasite is common in A. sylvaticus, suggest that H. polygyrus 
varies substantially in intensity between and within populations, 
and that anthelminthic treatment, while effective, did not com-
pletely eliminate gastrointestinal helminths from the treated 
individuals.

Transcriptome-Wide correlates  
of resistance and susceptibility  
to H. polygyrus Were highly  
Predictive of Worm Burden
To identify transcriptome-wide gene expression profiles that 
might explain the observed variation in worm burdens and help 
identify immune mechanisms that regulate H. polygyrus burdens 
in wild wood mice, we began by clustering transcripts into co-
expression networks to reduce the number of variables for fur-
ther analysis. WGCNA reduced the 17,639 transcripts contained 
in the full transcriptome to 131 clusters. We used the eigengene  
(or first principle component) of each cluster to capture the 
majority of variation of all the genes contained within that 
cluster. Despite differences in infection burdens reported 
above, we found no clustering of transcription profiles by 
sampling origin, sex, or treatment (Figure S2 in Supplementary 
Material), indicating that our sampling procedure, use of dif-
ferent sequencing platforms, host sex, and drug treatment did 
not cause transcriptome-wide biases between individuals. All 
34 transcriptomes were, thus, treated as belonging to the same 
statistical population. To identify the clusters associated with 
chronic H. polygyrus burdens, we used a supervised learning 
approach with clusters entered as explanatory variables and 
log10+1-transformed H. polygyrus counts as the response vari-
able. Only mice that were not treated with anthelminthics were 
considered. A comparison of machine learning algorithms using 
fivefold cross-validation suggested two classes of algorithms 
were best suited for generating models mapping gene expres-
sion clusters to H. polygyrus burdens, gradient boosting with a 
linear booster (55) and Elastic Nets (Figure S3 in Supplementary 
Material). Elastic Nets identified several positively and negatively 
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FigUre 1 | Heligmosomoides polygyrus prevalence and burdens in sampled Apodemus sylvaticus. (a) Distribution of H. polygyrus intestinal burdens in 61  
A. sylvaticus sampled in HW and CW (histogram) and among those the 34 individuals randomly selected for the transcriptome analysis (vertical black lines).  
(B) H. polygyrus burdens of untreated male (M) and female (F) mice from CW and HW. (c) H. polygyrus burdens of treated (T) and untreated controls (C) from CW 
only. In (B,c) H. polygyrus prevalences in each category are given as percentages, bars represent mean log-transformed worm counts and error bars show the SEM.
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correlated clusters with robust statistical support. Elastic nets are 
particularly useful when the number of predictors is larger than 
the number of observations, as they tend to group together highly 
correlated features, a desirable behavior when selecting gene 
expression variables (56). Conversely, the XGBoost algorithm 
selected few clusters with clear positive of negative associations 
with worm burdens and appeared too sensitive to outliers, sug-
gesting that it was likely to overfit (Figure S4 in Supplementary 
Material)—we, therefore, retained only Elastic Nets for further 
analysis. We then trained Elastic Nets as described in the sec-
tion “Materials and Methods” on 10 randomly selected training 
subsets of untreated only mice from both CW and HW. The 
resulting models predicted log10+1-transformed H. polygyrus 
burdens in the corresponding test sets with a MSE of 0.24 ± 0.01.  
To identify clusters that were most informative to the predic-
tion models, we ranked them using the Elastic Net coefficients, 
of which both positively- and negatively associated transcript 

expression networks were identified (Figure 2A). Within the 10 
top-ranking clusters, we only retained for further analysis the 
five clusters that correlated significantly with worm burden at 
p ≤ 0.01 (Figure 2B). The KEGG pathways associated with the 
gene transcripts that correlated positively with parasite burdens 
included farnesylated proteins-converting enzyme 1, ubiquitin 
protein ligase synthesis and terpenoid backbone synthesis, ATP-
dependant RNA helicase activity, and the NOD-like receptor 
signaling pathway (see Table S1 in Supplementary Material for 
details of all clusters positively associated with worm burdens). 
Pathways negatively correlated with parasite burdens included 
apoptosis, phosphatidylinositol 3-kinase regulatory subunit 
binding, glucosidase activity, C2H2 zinc finger domain binding, 
disordered domain specific binding, protein tyrosine kinase 
activity, and ATP-binding cassette transporters (see Table S2 
in Supplementary Material for details of all clusters negatively 
associated with worm burdens). Host sex did not significantly 
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FigUre 2 | Top gene networks predictive of chronic Heligmosomoides polygyrus worm burdens in wild wood mice. (a) Average ranking of WGCNA clusters based 
on Elastic Net coefficients of 50 models trained on 22 untreated wood mice from HW and CW (see Materials and Methods for description details). (B) Regression 
plots of the top five positive and negative clusters based on their coefficients against log-transformed H. polygyrus burdens, for which p ≤ 0.01. Each point 
represents a wood mouse, the solid line is the regression line and the shaded areas represent the corresponding 95% bootstrapped confidence intervals. KEGG 
pathways (human and mouse) associated with: Cluster 1: ubiquitin protein ligase synthesis and terpenoid backbone synthesis; Cluster 7: ATP-dependant RNA 
helicase activity, NOD-like receptor signaling pathway; Cluster 24: phosphatidylinositol 3-kinase regulatory subunit binding, glucosidase activity, apoptosis; Cluster 
25: C2H2 zinc finger domain binding, disordered domain specific binding; Cluster 23: protein tyrosine kinase activity, ATP-binding cassette transporters.
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affect the expression of either sets of genes (Figure S5 in 
Supplementary Material).

immune gene Transcription correlates  
of resistance and susceptibility  
to H. polygyrus
To specifically identify, within the transcriptome, only immune 
genes associated with the regulation of H. polygyrus burdens, 
we applied our supervised learning approach to transcripts 
selected on the basis of their BLAST annotations containing 
explicit reference to immune function (see Materials and 
Methods for details). This retained a list of 222 unique genes 
out of the 12,437 present in the full transcriptome. Elastic nets 
mapping those immune transcripts to log10+1-transformed  
H. polygyrus burdens predicted H. polygyrus burdens of mice in 
the test datasets with a MSE of 0.33 ± 0.02 (Figure 3A). Among 
the transcripts that contributed most to the prediction, eight 
were significantly (p  ≤  0.01) correlated with parasite burden 
(Figure  3B), 2 positively—which included TGF-β-activated 

kinase 1 and MAP3K7-binding protein 2 (TAB 2), and dedica-
tor of cytokinesis protein 7 (DOCK7), and 4 negatively—which 
included interleukin-5 receptor alpha, interleukin-17 receptor 
alpha, atypical chemokine receptor 3 (ACKR3), and platelet 
endothelial aggregation receptor 1.

effect of sex and Treatment on immune 
Pathways correlated with Parasite 
Burdens
Sex effects are widely reported to affect gastrointestinal 
parasite burdens (57–60). Although there was little sex bias 
in H. polygyrus burdens in our study population (Figure  1B; 
Figure S1B in Supplementary Material), we did investigate 
whether the expression of protective pathways identified above 
differed between sexes. In addition, we predicted that experi-
mental reduction of parasite burdens through anthelminthic 
treatment, which had resulted in a dramatic reduction in  
H. polygyrus worm burdens (Figure  1C), would profoundly 
affect the expression of immune genes associated with responses 
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FigUre 3 | Top immune predictors of chronic Heligmosomoides polygyrus worm burdens in wild wood mice. (a) Average ranking of immune gene transcripts 
based on Elastic Net coefficients of 50 models trained on 22 untreated wood mice from HW and CW (see Materials and Methods for details on immune gene 
selection procedure and model training). (B) Regression plots of the top five positive and negative clusters based on their coefficients against log-transformed  
H. polygyrus burdens, for which p ≤ 0.01. In regression plots, each point represents a wood mouse, the solid line is the regression line and the shaded areas 
represent the corresponding 95% bootstrapped confidence intervals.
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to these parasites. Contrary to our expectations, neither sex 
nor drug treatment resulted in major differences in expres-
sion of gene networks (Figure S2 in Supplementary Material), 
nor specifically in the expression of genes that correlated with  
H. polygyrus burdens in untreated individuals (Figure 4). Because 
our choice of Elastic Nets favored linear relationships and may, 
thus, have failed to identify non-linear relationships between 
gene expression and worm counts, we repeated the analyses 
above using gradient boosted trees. Consistent with expectations 
(Figure S3 in Supplementary Material), XGBoost achieved very 
similar predictive performances to the Elastic Nets (mean MSE 
[range] = 0.34 [0.11–3.3], Figure S6 in Supplementary Material), 
and of the top features, two out of the four that were significantly 
correlated with parasite burden were in agreement with those 
identified by the Elastic Nets (DOCK7 and IL17RA, Figure S6B 
in Supplementary Material). The two other genes identified by 
XGBoost were suppressor of cytokine signaling 2 (SOCS2) and 
interferon-stimulated 20 kDa exonuclease-like 2 (I20L2), which 
both showed greater variance in gene expression at intermedi-
ate parasite burdens. SOCS2 and I20L2 were expressed at only 
marginally different levels between treated and untreated ani-
mals (p = 0.04 and p = 0.05, respectively), and between sexes 
(p = 0.15 and p = 0.03, respectively) (Figure S7 in Supplementary 
Material).

DiscUssiOn

The distribution of parasite infection burdens within a population 
is typically highly dispersed, with a small proportion of the hosts 
harboring the heaviest infections (61). Here, the prevalence of  
H. polygyrus was high in both populations studied, and remained 
detectable even after drug treatment. This suggests, assuming 
similar exposure to infection at a given age, that most individuals 
limited their parasite burdens but did not eliminate infection 
completely, consistent with reports on chronic helminth infections 
across diverse host species (61–63). Furthermore, drug treatment 
usually needs to be administered regularly to control helminth 
infections, as otherwise worms recrudesce within weeks (3, 5, 64).  
We sought to better understand how the immune system, under 
natural exposure and chronic helminth infection, regulates its 
response to infection, what immune traits allow some hosts to 
maintain low infection burdens, and how anthelminthic treat-
ment and the subsequent reduction in parasite burdens impact 
those protective immune traits.

Addressing these questions required choosing a species 
that naturally harbors a diverse community of parasites at high 
prevalence and densities to maximize our chance of detecting the 
effects of their removal on the host. This ruled out M. musculus, 
which despite being a powerful model for immunology, is a 

http://www.frontiersin.org/Immunology/
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FigUre 4 | Effects of host sex and drug treatment on protective immune gene expression. No statistically significant effects of host sex and drug treatment were 
detected among the best predictors of Heligmosomoides polygyrus burdens identified in untreated mice only. Each plot represents transcript counts scaled to unit 
variance but not centered. Horizontal bars represent the median, boxes represent the interquartile range, whiskers the range, and diamonds transcript counts that 
lay beyond 1.5× of the interquartile range.
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relatively poor model for parasitology owing to the uncharac-
teristically low helminth infections naturally present in that 
species (26, 27). Wood mice, however, resemble species of 
greater societal importance in the diversity and prevalence of 
the parasite communities (21, 65). Here, we chose to focus on 
the gastrointestinal nematode H. polygyrus due to its prevalence 
in wood mice, and to its extensive use as a laboratory model 
(24, 66, 67), thus providing a powerful way to compare lab-based 
and field-based immune responses to this parasite. In our study 
populations, H. polygyrus was present in 91% of the wood mice 
we caught.

The immune system of A. sylvaticus is poorly known, thus 
we chose to take a transcriptomic approach to discover specific 
host–parasite interactions. In addition, having the full transcrip-
tome also allowed us to use a candidate gene approach based 
on BLAST annotations. Moreover, it is likely that a significant 
amount of variation in chronic helminth burdens could be driven 
by processes not typically classified as immunological. We, 
therefore, decided to combine the discovery approach afforded 
by our sequencing of the full transcriptome with an approach 
focused on the genes explicitly associated with the immune 
system. However, RNAseq risks overestimating transcript 
abundance due to splicing variants, or being dominated by the 
more abundantly transcribed genes. While a technical solution 
would be to combine platforms with different read depths and 
lengths, here we used analytical solutions (e.g., FastQC reports 
of overrepresented sequences), and supervised learning to focus 
on transcripts that had statistically significant correlation with 
a biological read-out, here, parasite burdens. In short, we used 
parasite burdens to select the genes and co-expression networks 
for further analysis. By using Elastic Nets to identify correlates of 
parasite burdens, we ensured that redundant transcripts would 
feature together in the ranking of coefficients once models 
were trained. Yet, after removing all exact duplicates from the 
raw transcript counts, our models generated lists of uniquely 
represented genes, suggesting that for any that may have had 
differently expressed isoforms, only one of each correlated 
significantly with parasite burden.

We found that within the transcriptome, the best predictors of 
parasite burdens included both immune and non-immune genes. 
Among non-immune genes that were associated with H. polygyrus,  
were farnesylated proteins-converting enzyme 1 (FACE1), which 
is involved in protein hydrolysis (68), dedicator of cytokinesis 
protein 7 (DOCK7), which is reported to influence lipid regula-
tion (69, 70), and proteases, helicases, and ABC transporters—
genes generally involved in protein and energy metabolism, 
and potentially tissue growth and/or repair. Although nutrition 
plays an important role in resistance to helminth infections (71), 
how these specific pathways relate to immunity or exposure to  
H. polygyrus is currently unclear.

Examining immune genes more specifically confirmed 
known associations between gastrointestinal helminths and 
immune factors, and revealed others that merit further study. 
Among previously reported associations was the negative corre-
lation between parasite burdens and the receptor for IL-5, which 
is the main cytokine involved in the activation of eosinophils, 

part of the group-2 innate lymphoid cell-driven responses to 
helminths in the gut (48). Also consistent with previous reports 
in laboratory models was the negative relationship between 
H. polygyrus and IL-17A. Indeed, this parasite has previously 
been reported to inhibit IL-17 production in the gut mucosa 
(72), and more recently, that this interaction may be mediated 
by a subset of gut-resident eosinophils that suppress IL-17 
(47, 73–75). Furthermore, interactions between H. polygyrus, 
Th17, and regulatory T  cell responses have been reported to 
interact with the gut microbiota and be genotype dependent. 
Indeed, a susceptible mouse strain has elevated IL-17 and 
increased proportions of Lactobacilli whereas in a resistant 
mouse strain, H. polygyrus has no effect on Lactobacillus 
abundance (76). In wild wood mice, these interactions are 
likely to be driven, in part, by seasonal changes in diet (77), 
which is consistent with three-way interactions observed 
between hosts, helminths, and their microbiota in wild seabirds 
(78). We also detected strong positive associations between  
H. polygyrus burdens and TAB 2 expression, which is reported 
to activate IL-1 via JNK and NF-κB (79). This is consist-
ent with their positive correlation with the reactive oxygen 
species-expressing NOD-like receptor signaling pathway (80) 
we identified among WGCNA clusters. This suggests either an 
inflammatory response to H. polygyrus or to the damage it may 
cause in the gut (81), or that immune systems already skewed 
toward inflammation are less able to control parasitic helminths. 
While we did not detect clear signatures of regulatory T cell acti-
vation in the spleen, two genes potentially involved in immune 
regulation correlated strongly with parasite burdens: IL17RA, as 
mentioned above, and ACKR3, a chemokine scavenger (82) that 
is widely expressed in the hematopoietic system, heart, vascular 
endothelial cells, bone, kidney, and brain, and that is reported 
to be upregulated in many cancers (83) and also mimicked by a 
herpesvirus agonist (84, 85).

Interestingly, we did not detect significant associations 
between worm burdens and cytokines or chemokines, but rather 
with that of their receptors. Likewise, we might expect GATA-3 
to correlate with H. polygyrus burdens, since this transcription 
factor is central to ILC2 initiating Th2 responses to helminths in 
the gut (48). This suggests that in the spleen associations between 
infection burdens and RNA expression of cytokine receptor 
genes are more statistically robust, and thus more functionally 
interpretable, than those between infection burdens and cytokine 
messenger RNA.

Having observed no significant difference between male and 
female mice in their parasite burdens, we also did not detect 
significant differences in the expression of any of the top predic-
tors of parasite burdens, and host sex only marginally explain-
ing the variation in the expression of ACKR3. More surprising 
was that a 60-fold reduction in H. polygyrus burdens within 
an individual mouse would have so little effect on the immune 
pathways that predict their chronic burdens. This may be due to 
the target of the anthelminthic drugs we used, ivermectin and 
pyrantel (86). The combination of immune-regulatory predictors 
of chronic infection burdens, the mode of action of commonly 
used anthelminthics, and the ensuing lack of immune response to 
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drug-induced worm death may explain the high reinfection rates 
post drug-removal (3–5).

Finally, while wood mice infected with high worm burdens 
may be more tolerant to infection [i.e., the ability of hosts to 
minimize adverse fitness consequences of increasing parasite 
burdens (87)], our study could not address this question satis-
factorily because we did not collect data to assess fitness-relevant 
effects of infection nor of drug treatment in the wood mice. While 
recent studies suggest a complex relationship between protective 
immunity, resource limitation, and immunopathology (88, 89), 
how organisms balance the benefits of eliminating helminth 
infection and the costs of mounting the anthelminthic immune 
responses to do so is poorly understood. A further limitation of 
this study is its reliance on the transcriptome to assess immune 
responses: in the future, it will be important not only to validate 
our findings in additional wood mouse populations, e.g., using 
quantitative RT-PCR, but also to integrate protein, cellular, and 
metabolomic data alongside transcriptomic data (90) to reduce 
the risk of overlooking important processes that vary in their 
post-transcriptional regulation.

In conclusion, we have generated the first transcriptome for  
A. sylvaticus and identified a number of transcriptional predictors 
of chronic infection chronic infection burdens by H. polygyrus 
that include previously known immune pathways as well as novel 
candidates which merit further investigation. Notably, resolving 
the causal relationships between hosts, parasitic helminths and 
microbiota in the maintenance of immune homeostasis even 
in the face of drug-induced parasite removal, merits further 
attention. By combining two distinct wood mouse populations, 
integrating two different sequencing platforms, and applying 
machine-learning-based cross-validation procedures to map 
transcript expression levels to parasite burdens, we have sought 
to maximize the generalizability and functional relevance of our 
analysis of the wood mouse immune system. In the future, longer 
term studies and the integration of multiple biological levels, 
from genomes to cells, should help further our understanding of 
how the immune system maintains the health of the organism in 
its natural habitat.
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