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A complex network of interactions exists between the immune, the olfactory, and the 
central nervous system (CNS). Inhalation of different fragrances can affect immunological 
reactions in response to an antigen but also may have effects on the CNS and cognitive 
activity. We performed an exploratory study of the immunomodulatory ability of a series 
of compounds representing each of the 10 odor categories or clusters described pre-
viously. We evaluated the impact of each particular odor on the immune response after 
immunization with the model antigen ovalbumin in combination with the TLR3 agonist 
poly I:C. We found that some odors behave as immunostimulatory agents, whereas 
others might be considered as potential immunosuppressant odors. Interestingly, the 
immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the 
fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immuno-
suppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a 
model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the 
odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it 
impaired this same capacity in C57BL/6J mice. The improvement in memory capacity 
in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and 
increased local expression of mRNA coding for IL-1β, TNF-α, and IL-6 cytokines. In 
contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 
numbers and an increase in IFN-γ. These data suggest an association between the 
immunomodulatory capacity of smells and their impact on the cognitive functions of the 
animals. These results highlight the potential of studying odors as therapeutic agents for 
CNS-related diseases.
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inTrODUcTiOn

Humans and animals use the classic five senses to monitor their environment: sight, hearing, touch, 
smell, and taste. Their survival depends largely on the perception of these stimuli. Detecting situations 
through these senses transmits signals to the central nervous system (CNS) affecting the condition of 
the body and in turn promoting physiological changes in other biological systems.
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The perception of external signals through the sense organs 
can significantly affect the immune system. The CNS and immune 
system are connected by bidirectional signaling pathways, so, 
changes in the CNS may affect immune function and vice versa 
(1–3) [and recently reviewed in Ref. (4–6)].

Smell has traditionally been considered a less important sense 
compared with sight or hearing, but recent studies have revealed 
valuable properties inherent to this sense, besides its importance 
for identifying food, family, predators, or dangerous situations. 
Human studies have shown that the perception of different smells 
influences the sympathetic and parasympathetic nervous systems 
and brain neurophysiological activity (7). Smells can also act on 
the neuroendocrine system, stimulating the production of neuro-
transmitters and neuromodulators, thus influencing psychological 
behavior and bodily functions (8). Olfactory system dysfunctions 
have been found in autoimmune diseases such as multiple sclero-
sis and other neurological disorders such as Alzheimer’s disease, 
Parkinson’s disease, schizophrenia, or depression ultimately 
related to alterations of the immune system, suggesting that, 
under certain circumstances, olfactory system abnormalities 
may be associated with the immune system [reviewed in Ref. 
(9)]. Experiments in animals subjected to olfactory bulbectomy 
show very significant effects on the immune system (10–12). It 
has also been reported that inhalation of different fragrances can 
regulate immunological reactions of the skin or may modulate 
the immune system (13, 14) and might have a therapeutic effect 
on diseases related to the immune system including CNS-related 
pathologies. All these findings indicate that the olfactory system 
has an all important connection to the immune system via the 
CNS, which should be explored.

As described by Buck and Axel (Nobel Prize, 2004), mammals 
have about 1,000 genes for odor receptors, 347 of which encode 
functional receptors (15). It is estimated that humans can smell 
more than 10,000 different odors. In contrast to other senses, such 
as sight, where we can define the colors based on the wavelength 
of light, in the case of smell, we lack a complete understanding of 
the organization of the spatial perception of odors (16). In a recent 
study, Castro et al. made a classification of odors into 10 minimum 
categories or clusters integrating a variety of descriptors or odors 
including: floral, woody, resinous, citrus, fruity non-citrus, chemi-
cal, minty or refreshing, sweet, burnt or smoky, sickening, or putrid 
(17). Using this classification to group odors into clusters, we per-
formed an exploratory study of the immunomodulatory ability of 
a series of compounds representing each of the 10 categories. The 
aim of this project was to identify a volatile compound that, through 
stimulation of the olfactory system and the CNS, might have an 
effect on the activation of the immune system and eventually, on 
cognitive functions. We evaluated the impact of each particular 
odor on the immune response after immunization with ovalbumin 
(OVA) in combination with poly I:C adjuvant, a synthetic TLR3 
agonist, which mimics a double-stranded RNA virus infection 
and favors dendritic cell maturation. We identified some odors 
with immunomodulatory properties that might be considered as 
therapeutic tools against different disorders. Interestingly, we also 
found an association between the immunomodulatory capacity of 
one of these odors with the number of CD3 T cells infiltrating the 
hippocampus, the hippocampal cytokine microenvironment, and 

its impact on the cognitive functions of the animals. These results 
might suggest a potential use of odors as therapeutic agents for 
CNS-related diseases.

MaTerials anD MeThODs

Fragrance compounds and Method for 
Delivery
All fragrance compounds were obtained from Aldrich Chemical 
Co., Milwaukee, WI, USA. Liquid and powdered compounds 
were dissolved in distilled water (1:200  v/v or 1:1,000  w/v, 
respectively). A closed system prototype was designed to allow 
the vaporization of fragrance compounds, which through a valve 
system controlled by a timer and a positive pressure equipment, 
allowed the independent inhalation of substances in different 
cages (Figure S1 in Supplementary Material). The central unit 
is the vaporization unit, which includes a ceramic ultrasonic 
vaporizer, immersed in a container with the aqueous solution to 
be vaporized. The vaporizer is located in an airtight container, 
which includes an air inlet to inject clean air and an outlet to 
recover the vaporized substance, which is then introduced into 
the cages housing the animals. A timer controls the operating 
time of the vaporizer. Inhalation of the fragrances was scheduled 
for different time periods (from 1 week to 1 month depending 
on the experiments), with 8 cycles of 15 min of inhalation per 
day. Air entry was aided by an air pump giving a constant flow of 
about 25 m3 of air/min. An outlet placed in the same cage allowed 
constant air exchange. When the vaporizer is inactive, the valve 
system allowed the entrance of clean air to the cages (25 m3 of 
air/min), thus ensuring continuous air renewal inside each cage.

Mice and experimental Design for In Vivo 
experiments
Six-week-old BALB/c or C57BL/6 female mice (Envigo, Barcelona, 
Spain) were used to evaluate the impact of fragrance inhalation. 
This study was carried out in accordance with the institutional 
guidelines (CEEA, University of Navarra) and were approved by 
the institutional ethics committees (Ref R-109-14GN).

OVA Immunization Experiments
Naïve mice (n  =  5) received an intravenous injection of OVA 
protein (1 nmol/mouse) plus poly I:C (50 μg/mouse). Seven days 
after immunization, splenocytes were obtained for immunologi-
cal analysis. IFN-γ producing T cells were counted by ELISPOT 
using a kit from BD-Pharmingen (San Diego, CA, USA) follow-
ing the manufacturer’s instructions. Briefly, plates (Multiscreen 
Filterplates. Millipore, Bedford, MA, USA) were coated with 
anti-IFN-γ AN18 antibody. After overnight incubation, the plates 
were washed with PBS and blocked for 2 h with RPMI containing 
10% fetal bovine serum. Then, 106 splenocytes/well were cultured 
in three replicates in the presence or absence of SIINFEKL pep-
tide (1 µg/ml) [encoding the immunodominant H-2b restricted 
CTL epitope (amino acids 257–264) from chicken OVA], peptide 
ISQAVHAAHAEINEAGR encoding the T helper epitope OVA 
(323–339), or OVA protein (10  µg/ml). In some experiments, 
anti-CD4 or anti-CD8 antibodies obtained from rat anti-mouse 
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hybridomas GK 1.5 and H35.17.2, respectively, were added to 
the culture wells. One day later, plates were washed with PBS 
and incubated with biotinylated anti-IFN-γ R4-6A2 antibody 
and developed with freshly prepared 3-3′diaminobenzidine 
solution. The reaction was stopped with distilled water and spots 
were counted using an automated ELISPOT reader (CTL; Aalen, 
Germany). CTL activity was measured by an in vivo killing assay 
using target cells pulsed with SIINFEKL peptide as previously 
described (18). Briefly, syngeneic splenocytes were pulsed with 
OVA 257–264 peptide (10  µg/ml for 30  min at 37°C), washed 
extensively, and labeled with a high concentration (1.25  M) 
of CFSE. Another fraction of nonpulsed control splenocytes 
was labeled with a low concentration (0.125M) of CFSE. Both 
CFSE high- and CFSE low-labeled cells were mixed at a 1:1 ratio 
(5 × 106 cells of each population) and then injected intravenously 
into the mice. Non-vaccinated mice were also immunized to 
normalize procedures across groups. The CFSE-labeled cells 
remaining in the spleen after 20 h was determined by flow cytom-
etry as described previously. The ratio between IFN-γ-producing 
cells specific for OVA or SIINFEKL as well as the ratio of CTL 
activity specific for SIINFEKL peptide in splenocytes obtained 
from animals exposed to odor versus water vapor (air control) 
was calculated.

RAdLuc Inoculation Experiments
Naive mice (n = 10) were inoculated intravenously with 1 × 109 pfu 
of a recombinant adenovirus expressing Luciferase (RAdLuc) (19). 
At day 4, 11, 18, and 25, animals were anesthetized and injected 
intraperitoneally with 150  mg/kg of d-luciferin. Five minutes 
later, they were placed in a darkroom (PHOTONIMAGER™, 
Biospace Lab) for light acquisition (exposure time 1 min). The 
quantification of the light emission was measured in photons/s/
cm2/sr and quantified with the M3Vision™ Software.

For measurement of T  cell immune responses induced by 
adenovirus inoculation, splenocytes were obtained at day 30 
after RAdLuc injection and stimulation with heat-inactivated 
recombinant adenovirus. T  cell proliferation was tested after 
3 days of culture by measuring [methyl-3H]thymidine incorpora-
tion. Briefly, splenocytes were plated on 2  ×  105  cells/well and 
stimulated with the adenoviral particles (2 × 107 heat-inactivated 
plaque forming units per milliliter of culture) for 3 days. On the 
second day of culture, 0.5 μCi of [methyl-3H] thymidine were 
added to each well and cells were incubated overnight. Cells 
were harvested (Filtermate 196 harvester; Packard Instrument, 
Meriden, CT, USA) and incorporated radioactivity was measured 
using a scintillation counter (Topcount; Packard Instrument) as a 
readout of T cell proliferation.

contextual Fear conditioning
To evaluate the effect of carvone on cognitive function, a previ-
ously described fear-conditioning paradigm with minor modifi-
cations was used (20). Briefly, on day 1 (habituation), mice were 
placed in the training chamber for 3 min. Twenty-four hours later 
(training phase), mice were placed in the training chamber for 
2 min. Subsequently, mice received a footshock (0.3 mA) lasting  
2 and 30 s, later, mice were returned to their home cage. Long-
term memory was evaluated during the test phase 24  h after 

training. In this case, mice were returned to the conditioning 
chamber and allowed to explore the context for 2  min, during 
which freezing behavior was recorded. Lack of movement except 
that required for breathing was defined as freezing. Freezing 
scores were expressed as percentages. The procedure was carried 
out in a StartFear system (Panlab S.L., Barcelona, Spain) that 
permits recording and analysis of the signal generated by the 
animal movement through a high-sensitivity Weight Transducer 
system. The analogical signal is transmitted to the FREEZING 
and STARTLE software modulated through the load cell unit for 
recording purposes and subsequent analysis in terms of activity/
immobility.

isolation and Flow cytometric analysis of 
immune cells infiltrating the hippocampus
After 7 days of exposure to carvone or to air control, mice were 
sacrificed to analyze immune cell infiltration into the hippocam-
pus. After transcardial perfusion, the hippocampus was isolated 
from both brain hemispheres and mechanically dissociated and 
digested with colagenase/DNAse. Myelin and cell debris were 
removed by percoll density gradient centrifugation. The result-
ant cells were then labeled with anti CD45-BV510, Ly6G-PE, 
CD3-APC, CD19-BV421, and Ly-6C-PCPC55 antibodies 
(BD-biosciences). Perfect-Count Microspheres (cytognos) were 
added for absolute cell counts. The composition of the brain 
infiltrate was determined by flow cytometric analysis as described 
previously (21). Briefly, the gating strategy was based on the 
analysis of brain-infiltrating leukocytes defined as CD45high. After 
gating the CD45high population, polymorphonuclear neutrophils 
were identified by Ly-6G expression, while T lymphocytes were 
designated as CD45high CD3+ cells. The remaining CD45high cells 
were then distinguished by CD19 (B lymphocytes) and CD11b 
expression. The CD11b+ fraction was subclassified into Ly-6Chigh 
“inflammatory monocytes” and a Ly-6Clow population that 
encompassed monocytes, dendritic cells (DC), and macrophages.

mrna extraction and Measurement of 
immune gene expression by real-time 
Pcr
Total RNA was extracted from the hippocampi and purified 
using the RNeasy® Lipid Tissue Mini Kit (Qiagen). Purified RNA 
was reverse-transcribed and quantitative RT-PCR analysis was 
performed on an Applied Biosystems Prism 7900 System using 
Power SYBR® Green PCR Master Mix (Applied Biosystems). The 
sequences of primers used in this study are given in Table S1 in 
Supplementary Material. β-actin was used as a reference house-
keeping gene for normalization. Amplifications were carried out 
in three replicates and the relative expression of target genes was 
determined using the formula 2ΔCt (ΔCt indicates the difference 
in the threshold cycle between β-actin and target genes).

statistical analysis
Normality was assessed with the Shapiro–Wilk W test. Statistical 
analyses were performed using parametric (Student’s t-test and 
one-way ANOVA) and non-parametric (Mann–Whitney U and 
Kruskal–Wallis) tests. For all tests, a P-value <0.05 was considered 
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statistically significant. Descriptive data for continuous variables 
are reported as mean  ±  SEM. GraphPad Prism was used for 
statistical analysis.

resUlTs

evaluation of the In Vivo 
immunomodulatory capacity of a Panel of 
Different Odors in c57Bl/6 Mice
Following Castro et  al., we selected a panel of 16 compounds 
representative of the 10 olfactory categories (17) to evaluate their 
impact on the immune response against injection of OVA in 
combination with poly I:C adjuvant. Thus, groups of five C57BL/6 
female mice were immunized i.v. with 1 nmol of OVA mixed with 
poly I:C (50  μg/mice) in saline. After immunization, animals 
were housed in vaporization cages and exposed to the different 
odors for cycles of 15 min of odorization every 3 h during 7 days. 
Thus, animals were exposed to 8 cycles (15 min/cycle) of odorant 
vaporization per day. A control group was exposed to water vapor 
in the same conditions (air control). Seven days after immuniza-
tion, animals were sacrificed and the immune response against 
OVA protein and the cytotoxic T  cell epitope SIINFEKL was 

analyzed by ELISPOT to measure the number of IFN-γ-producing 
cells. The ratio between IFN-γ-producing cells specific for OVA 
or SIINFEKL in splenocytes obtained from animals exposed to 
odor versus water vapor was calculated. The capacity to induce 
SIINFEKL-specific CD8+ T  cells was also measured by in  vivo 
killing assays. The results of these experiments suggest that there 
are odors with immunomodulatory properties (Figure 1). Thus, 
odors such as limonene, menthol, anisole, methyl anthranilate, 
or butyric acid might behave as immunostimulators taking into 
account at least two of the three readouts used in this experiment 
(see heat map in Figure 1). These results appear to agree with 
previous results suggesting an immunostimulatory effect for 
limonene or menthol (22, 23). However, there are also reports 
assigning an immunosuppressive role to butyric acid in in vitro 
assays (24, 25), whereas in our hands, when it is inhaled, it could 
be considered immunostimulatory. On the other hand, furfuryl 
mercaptan, carvone, thymol, or indole might be considered 
potential immunosuppressant odors. Previous studies have 
also suggested an immunosuppressive effect for thymol (26, 27) 
or indole (28) in different settings, thus supporting the results 
shown in our experimental model of immunization.

The different immunomodulatory behavior of the molecules 
tested in C57BL/6 mice cannot be explained on the basis of the 
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structural and pharmacophoric characteristics of the compounds 
(i.e., hydrogen-bond acceptor/donor, aromatic…). Indeed, clus-
tering of the 16 compounds according to their similarity, deter-
mined by calculating FCFP_4 fingerprint using the Clustering 
Molecules component in Pipeline Pilot (Biovia, San Diego, CA) 
identified molecules as highly similar (FCFP_4 > 0.5) although 
they presented different biological profiles (e.g., limonene versus 
carvone and guaiacol versus vanillin; Table S2 and Figure S2 in 
Supplementary Material).

We repeated the experiments with some of the odors of this 
selection and decided to study the effects of carvone in more 
detail, since it consistently behaved as an immunosuppressant 
in the OVA plus poly I:C vaccination experiment (data not 
shown). The effect of time of exposure to carvone was also 
tested in a simple assay using two different schedules: cycles 
of 15 min of odorization every 3 or 12 h during 7 days. Thus, 
C57BL/6 mice immunized with OVA + poly I:C were exposed 
to the two different odorization schedules. Seven days after 
immunization, we evaluated the immune response against OVA 
or SIINFEKL peptide by ELISPOT (Figures 2A,B, respectively; 
Figure S3 in Supplementary Material). We found that both 

schedules of carvone exposure induced immunosuppression 
against the antigen, although exposure to carvone every 3  h 
was significantly more immunosuppressive than exposure every 
12 h. Thus, we decided to use this schedule for the rest of the 
experiments.

effect of inhalation of carvone in an 
experimental Model of Viral infection in 
c57Bl/6 Mice
In order to study the immunosuppressive properties of carvone 
inhalation, we used an experimental model of viral infection. In 
this experiment, we infected female C57BL/6 mice with a recom-
binant adenovirus expressing luciferase (RAdLuc) through the 
tail vein to favor intrahepatic viral infection (29, 30). Following 
injection of the virus, mice were housed in isolated cages and 
exposed to carvone or water vapor (air control) as described in 
Section “Materials and Methods.” We measured the luciferase 
expression at different time points to evaluate the kinetics of viral 
clearance for each experimental group. In this model, luciferase 
expression decreases progressively from day 5 to day 25. At 
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the end of the experiment, we measured T cell proliferation of 
splenocytes in response to viral particles, as a readout of antiviral 
T cell immune response. In agreement with the results shown in 
Figure 1, we found that mice exposed to carvone inhalation had a 
lower T cell proliferation capacity in response to stimulation with 
adenoviral particles as compared with that found in the control 
group (Figure 2C). Interestingly, carvone inhalation significantly 
delayed the decay in luciferase expression (Figures  2D,E,F; 
Figure S4 in Supplementary Material), a result consistent with the 
impairment of the activation of an antiviral immune response. 
This delay was statistically significant from day 10 to the end of 
the experiment. We also analyzed the effect of carvone inhalation 
during 3  weeks on the proportion of splenic CD3, CD4, CD8, 
CD19, CD11b, NK, NKT, and CD4+Foxp3+ cells but no significant 
changes were observed as compared with control group (Figure 
S5 in Supplementary Material).

effect of inhalation of carvone on Memory 
capacity of c5/Bl/6 Mice
The olfactory system can have an impact on the CNS and on cog-
nitive abilities. For this reason, we also studied the effect of expo-
sure to carvone on memory capacity, using a fear-conditioning 
test or Freezing Test after 25 days of exposure to the odor. Using 
this method, we observed that mice exposed to carvone had a 
percentage of freezing values lower than those observed in mice 
exposed to water vapor (Air control), suggesting an impairment 
in their cognitive capacity (Figure 3).

effect of the inhalation of carvone on 
BalB/c Mice
Experimental evidence suggests that mouse strains respond 
differently to odor stimulation (31). BALB/c mice had greater 

olfactory sensitivity than 129/S1 or C57BL/6 mice (32). There are 
also a large number of studies reporting differences in immune 
responses depending on the mouse strain. C57BL/6 mice are 
polarized to a Th1 immune response and BALB/c mice develop 
preferentially a Th2-type cytokine polarization (33–35). Since 
both C57BL/6 (H-2b) and BALB/c (H-2d) mice are commonly 
used for studies of immunoregulation in various disease models, 
we evaluated the effect of carvone on the immune response elic-
ited after immunization with OVA plus poly I:C adjuvant in this 
second mouse strain. Surprisingly, in contrast to what occurred 
in C57BL/6 mice, carvone inhalation enhanced the immune 
response against the immunogen [measured by ELISPOT to 
determine the number of IFN-γ-producing cells specific for OVA 
protein or for the Th epitope ISQ (recognized by H-2b and H-2d 
T  cells)] (Figures  4A,B, respectively). This result is consistent 
with a previous study showing that administration of carvone had 
immunostimulatory effects on BALB/c mice increasing antibody 
production (36).

When we studied the effect of inhalation of carvone or water 
vapor (air control) on the kinetics of RAdLacZ viral elimination 
in BALB/c mice, we found a slightly faster viral elimination in 
mice exposed to carvone (Figure 4C). This difference was statisti-
cally significant at day 12 after virus inoculation (Figure 4D). We 
also found that T cell immune response (T cell proliferation) and 
antibody production against adenoviral particles (Figures 4E,F, 
respectively) was higher in the group of mice exposed to carvone, 
all of which suggests that carvone is indeed functioning as an 
immunostimulatory odor in BALB/c as opposed to its immuno-
suppressive capacity found in C57BL/6.

Interestingly, when we performed the fear-conditioning test 
to evaluate the memory capacity of BALB/c mice, we found 
a significantly better behavior in mice exposed to carvone 
(Figure 4G).

effect of the inhalation of carvone on 
leukocyte infiltration in the hippocampus 
of c57Bl/6 and BalB/c Mice
We evaluated whether exposure to carvone odor might affect the 
accumulation of immune cells in the hippocampus, leading to 
an effect on the local neuroinflammatory response and cognitive 
function. C57BL/6 or BALB/c mice were vaccinated with OVA 
plus poly I:C and exposed to carvone or to air control for 7 days. 
Using the splenocytes from these mice, we first confirmed the 
immunomodulatory activity of carvone in both strains of mice 
by measuring the proliferative capacity of splenocytes in response 
to OVA and the synthetic peptide from OVA 323–339, which is 
recognized as a T helper epitope by C57BL/6 and BALB/c mice. 
As expected, carvone was immunostimulatory in BALB/c and 
immunosuppressive in C57BL/6 (Figure 5A). Addition of anti-
CD8 and especially, anti-CD4 antibodies abrogated T cell prolif-
eration, suggesting that both T cell subpopulations are modulated 
by carvone inhalation.

In parallel, after transcardial perfusion to remove circulating 
leukocytes, hippocampi from the different groups of mice were 
isolated, dissected, and mechanically dissociated. After enzymatic 
dissection, infiltrating leukocytes were isolated and characterized 
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as described in Section “Materials and Methods.” Interestingly, 
we found that in C57BL/6 mice, where carvone was acting as 
an immunosuppressant and where mice presented impaired 
cognitive function, the number of infiltrating CD3 T  cells was 
significantly lower than in mice exposed to air control (P < 0.05). 
However, in BALB/c mice where carvone behaved as an immu-
nostimulant and improved cognitive function, a tendency toward 
higher numbers of CD3 T  cells infiltrating the hippocampus 
was observed (P  =  0.754) (Figure  5B). No significant changes 
were observed in the total numbers of polymorphonuclear leu-
kocytes (CD45high Ly6G+), B cells (CD19+), monocytes, cDC, or 
macrophages (CD11b Ly6Chigh or CD11b Ly6Clow, respectively) 
(Figure S5 in Supplementary Material).

The processes of learning and memory can be affected by 
cytokines produced by immune cells (37, 38). We also isolated 
the mRNA from hippocampal tissue to analyze by RT-qPCR the 
hippocampal cytokine milieu. The cytokines IL-1β, IL-6, TNFα 
IFN-γ, IL-10, IL4, or BDNF, which have recently been shown to 
particpate in the induction of synaptic plasticity and changes in 
hippocampal-dependent learning and memory tasks [reviewed 
in Ref. (6)] were evaluated.

In our experimental conditions, we found that carvone 
induced a statistically significant increase in IL-1β, IL-6, and 

TNF-α in BALB/c mice. However, in C57BL/6 mice exposed to 
carvone, we found a reduction in IL-1β and an increase in IFN-γ 
(Figure  5C). No significant changes in BDNF were observed 
between either strains. IL10 and IL-4 were almost undetectable 
in both strains and thus were not further included in the study 
(data not shown). In Table S3 in Supplementary Material, we 
summarize all the main findings observed in both the C57BL/6 
and BALB/c strains of mice.

DiscUssiOn

Over the past years, it has become evident that the immune 
system plays a central role in learning, memory and neural 
plasticity, brain functioning, and behavioral processes [reviewed 
in Ref. (4)]. Under physiological conditions, immune mediators 
are induced by environmental/psychological stimuli and can 
participate on the regulation of the neural circuits remodeling, 
promoting learning, and memory consolidation [reviewed in Ref. 
(39)]. These beneficial effects of the immune system seem to be 
mediated by complex interactions among microglia and astro-
cytes (brain cells with immune functions), peripheral immune 
cells (mainly T cells and macrophages), neurons, and neural pre-
cursor cells [reviewed in Ref. (6)]. Neurotransmitters, hormones, 
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inflammatory cytokines, as well as other mediators may also 
play a role in this remodeling. Infections, injuries, or severe or 
chronic stressful conditions can activate the immune system 
promoting the production of high levels of pro-inflammatory 
cytokines and other mediators that can influence behavior (5, 40, 
41) and produce direct detrimental effects on memory, neural 
plasticity, and neurogenesis (42, 43) and consequently might have 
an important role in CNS diseases. Thus, inflammation has been 
associated with sickness behavior and infiltration of peripheral 
immune cells into the CNS with pathological results. However, 
several studies have pointed to neuroimmune interactions as 
being primarily beneficial, in that they promote homeostasis of 
the nervous system (4, 5, 41, 44–47). Accordingly, any intrinsic 
or environmental factors that might have an effect on the immune 
system may also have an impact on CNS behavior.

In this scenario of interacting networks, we have investigated 
the potential role that the olfactory system may have in the 
immune system and on the CNS. Indeed, several reports have 
documented immunomodulatory and neurological effects for 
several odorants. We have performed an exploratory study with 
16 different compounds and found diverse effects on the activa-
tion of the immune system, with some compounds having an 
immunostimulatory activity whereas others behaved as immu-
nosuppressants in C57BL/6 mice. One of the compounds identi-
fied as an immunosuppressant in C57BL/6 mice was carvone. 
Using this odor, we analyzed in mice the interaction between 
the three systems (olfactory, immune, and CNS) by measuring 
simple readouts such as the activation of an immune response 
against an antigen, induction of immune-mediated viral clear-
ance, and the learning capacity of mice in an assay of contextual 
fear conditioning. Interestingly, carvone inhalation reduced the 
immunogenicity of OVA and delayed the capacity of C57BL/6 
mice to clear viral infection. This immunosuppressive effect was 
also associated with a lower memory capacity (fear condition test). 
Curiously, carvone behaved as an immunostimulatory essence in 
BALB/c, enhancing the immunogenicity of OVA, favoring viral 
elimination and importantly, improving memory. When we 
analyzed the immune cells infiltrated into the hippocampus of 
the animals from both strains, we found that in C57BL/6 mice, 
where carvone was immunosuppressive and impaired cognitive 
function, the number of infiltrating CD3 T cells was significantly 
lower than in mice exposed to air control. However, in BALB/c, 
where carvone behaved as an immunostimulant and improved 
cognitive function, we found a tendency toward higher numbers 
of CD3 T cells infiltrating the hippocampus. It has been recently 
proposed that T lymphocytes may play a role in several neurode-
generative diseases such as Alzheimer’s disease and amyotrophic 
lateral sclerosis. Indeed, Alzheimer’s disease-susceptible mice 
progress to disease more rapidly in the absence of an adaptive 
immune system (48), suggesting that T cells may be protecting 
the diseased brain. Similarly, it has been reported that mice 
deficient in T  lymphocytes exhibit cognitive impairment, and 
that passive transfer of mature T cells improves their cognitive 
function (49). These data lend support to our results in that when 
the odorant carvone induced a higher infiltration of CD3 T cell 
into the hippocampus, mice had better learning and memory 
behaviors.

The processes of learning and memory can be affected by 
cytokines produced by immune cells (37, 38). Thus, IL-1β, IL-6, 
TNF-α IFN-γ, IL-10, IL4, or BDNF have been described to play 
a role in the induction of synaptic plasticity and in changes in 
hippocampal-dependent learning and memory tasks [reviewed 
in Ref. (6)]. In our experimental conditions, we found that 
carvone induced a statistically significant increase in IL-1β, 
IL-6, and TNF-α in BALB/c mice. However, in C57BL/6 exposed 
to carvone, we found a reduction of IL-1β and an increase in 
IFN-γ.

Modulation of memory processes caused by these cytokines is 
a complex phenomenon having both facilitating and damaging 
effects depending on the specific proinflammatory cytokine or 
its levels in the brain (6, 50). There are recent reports showing 
that an excessive production of inflammatory Th1 cytokines 
such as IFN-γ have a deleterious effect on the brain (51). In 
other studies, IFNγ levels have been found to be increased in the 
brains and blood of individuals diagnosed with autism as well 
as in a mouse model of autism (52, 53). In contrast, it has been 
reported that proinflammatory cytokines such as IL-1β, IL-6, 
and TNF-α are involved in the processes of learning and memory 
(37, 38). Our data might be in line with those reports suggesting 
that lymphocytes and proinflammatory cytokines can modulate 
learning and memory through their effects on synaptic plastic-
ity (54). However, how carvone odorant induces these immune 
changes in the hippocampal microenvironment and why these 
changes are different depending on the mouse strain remain to 
be elucidated.

Several reports have documented differences in sensitivity to 
odor stimulation depending on the mouse strain (31, 32) that 
may affect the cognitive functions and the response of the animals 
to an olfactory stimulation. These differences depending on the 
mouse strain background have been reported in other scenarios. 
C57BL/6 mice have been shown to respond with a TH1-type 
bias to pathogens, whereas other backgrounds of mice, such 
as DBA/2, BALB/c and A/J mice, tend toward a predominant 
TH2 response (33–35, 55). These differences are also observed 
for the M-1 and M-2 macrophage responses. Whereas TH1 cells 
are associated with intracellular pathogens clearance, TH2 cells 
are important against parasitic infections. TH1 or TH2 bias may 
affect outcomes after pathogen infections (56, 57). C57BL/6 
mice, with TH1-biased responses, are in general more resistant 
to these organisms than other strains of mice. As a result of 
mutations and polymorphisms, inbred laboratory mouse strains 
are highly divergent in their immune response patterns. They 
present important differences in both the innate and the adap-
tive immune systems and may respond differently to the same 
stimulation (58).

Obviously, these differences on the immune status are 
expected to also occur in humans, where genetic variability, 
mutations, and polymorphisms are greater than in conventional 
animal models. These divergences can even be accentuated in 
humans if we take into account psychosocial and environmental 
factors that are not controlled as in animal experiments. This 
fact may limit our study and the desire to identify a particular 
odor for its potential use to stimulate a specific immunological 
or cognitive response. However, these experiments could shed 
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some light on the understanding of the complex interaction 
between smell, the immune system, and the brain. Indeed, our 
results could be interpreted as being in agreement with recent 
reports suggesting that throughout lifetime, immune system 
supports cognitive function. It has been shown that disruption 
of the immune system leads to impairments in congnition and 
neurogenesis (44, 47) suggesting that an appropriate immuno-
mostimulation by active immunization could protect against 
stressful episodes, providing a therapeutic/preventive vaccine 
against CNS-related diseases (59). It is tempting to speculate that 
a certain level of immunostimulation might favor brain plastic-
ity enhancing adaptation, learning, and other functions of the 
CNS. In this scenario, aromatherapy, which has been widely but 
controversially employed for relief of pain, relaxation, anxiety 
reduction, reduction of postsurgical discomfort, or palliation 
of autoimmune diseases among others might also have a role to 
improve our mental fitness. However, further studies are required 
to assess this speculation more rigorously.

The mechanism of action by which odors can modulate the 
immune system and the CNS remains to be elucidated. Odorants 
could enter into the brain through the nasal epithelium bypass-
ing the blood–brain barrier, thus gaining access to the CNS (60), 
and exerting direct pharmacological effects through olfactory 
receptors expressed in neurons (61). Alternatively, odors such as 
carvone could be transported to the CNS, through the cerebrospi-
nal fluid (CSF) via the so-called glymphatic system, which could 
facilitate the spread of the odorant to multiple regions of the CNS 
(62–64). Another possible mechanism is that the odorant, after 
inhalation into the lungs, may enter the bloodstream and/or the 
lymphatic system and exert effects directly on the components 
of the immune system. There are also other variables that should 
be considered: odorant concentration, odorant mixtures, time of 
exposure, habituation, or other aspects such as spatial clustering 
of glomerular responses (16). Future studies should explore all 
these possibilities to help in the development of new therapeutic 
modalities targeting these systems.
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