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Autoimmunity represents a broad category of diseases that involve a variety of organ 
targets and distinct autoantigens. For patients with autoimmune diseases who fail to 
respond to approved disease-modifying treatments, autologous hematopoietic stem 
cell transplantation (AHSCT) after high-dose immunosuppressive therapy provides an 
alternative strategy. Although more than 100 studies have been published on AHSCT 
efficacy in autoimmunity, the mechanisms that confer long-term disease remission as 
opposed to continued deterioration or disease reactivation remain to be determined. In 
a phase II clinical trial, high-dose immunosuppressive therapy combined with autologous 
CD34+ hematopoietic stem cell transplant in treatment-resistant, relapsing-remitting mul-
tiple sclerosis (RRMS) resulted in 69.2% of participants achieving long-term remission 
through 60 months follow-up. Flow cytometry data from the 24 transplanted participants 
in the high-dose immunosuppression and autologous stem cell transplantation for poor 
prognosis multiple sclerosis (HALT-MS) trial are presented to illustrate immune recon-
stitution out to 36 months in patients with aggressive RRMS treated with AHSCT and 
to highlight experimental challenges inherent in identifying biomarkers for relapse and 
long-term remission through 60 months follow-up. AHSCT induced changes in numbers 
of CD4 T cells and in the composition of CD4 and CD8 T cells that persisted through 
36  months in participants who maintained disease remission through 60  months. 
However, changes in T cell phenotypes studied were unable to clearly discriminate dura-
ble remission from disease reactivation after AHSCT, possibly due to the small sample 
size, limited phenotypes evaluated in this real-time assay, and other limitations of the 
HALT-MS study population. Strategies and future opportunities for identifying biomarkers 
of clinical outcome to AHSCT in autoimmunity are also discussed.
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iNtrODUctiON

Autologous hematopoietic stem cell transplantation (AHSCT) 
therapy utilizes immunoablation and immune reconstitution 
from hematopoietic progenitors. For more than two decades, 
AHSCT has been studied as a therapeutic approach for severe 
autoimmunity, including multiple sclerosis (MS), systemic scle-
rosis (SSc), systemic lupus erythematosus (SLE), Crohn’s disease, 
type 1 diabetes (T1D), and rheumatoid arthritis (RA) (1). The 
rationale for AHSCT for treating aggressive autoimmunity is 
that immunoablative therapy diminishes the pool of self-reactive 
immune cells and allows engrafted stem cells to generate a new, 
potentially self-tolerant, immune repertoire (2). Mechanistic 
studies have revealed qualitative changes in the reconstituted 
immune system after AHSCT that favor immunoregulation over 
pro-inflammatory signatures (2, 3). The tolerogenic properties of 
the reconstituted immune system likely result from coordinated 
interactions of various immune competent cells with regulatory 
potential. This dynamic and collective process of immune repro-
gramming is thought to underlie AHSCT’s mode of action.

Although more than 100 studies have been published, the 
mechanisms that confer long-term disease remission with AHSCT 
in autoimmunity, as opposed to limited short-term benefit and 
early disease recurrence, are not well understood. Restoration of 
regulatory immune networks may contribute to durable treatment; 
however, functional assessments of the reconstituted immune  
system compared to pretherapy profiles are needed to understand 
how AHSCT limits or controls autoreactive lymphocytes during 
and after repopulation. Currently, it is unclear whether relapse 
after AHSCT is driven by residual autoreactive memory cells that 
escaped depletion and are resistant to regulatory mechanisms 
in the renewed immune system or to re-emergence of a de novo 
autoreactive population, possibly reflecting a genetic predispo-
sition to disease. In this perspective, we present data from the 
high-dose immunosuppression and autologous stem cell trans-
plantation for poor prognosis multiple sclerosis (HALT-MS) trial 
to illustrate past and present approaches to address this question 
and discuss experimental challenges and strategies for identifying 
the biomarkers of clinical response to AHSCT in autoimmunity.

iMMUNe tOLerANce NetWOrK (itN) 
HALt-Ms triAL eXPerieNce

High-dose immunosuppression and autologous stem cell trans-
plantation for poor prognosis MS was a phase II clinical trial 
conducted by the ITN that investigated the efficacy of AHSCT 
in treatment-resistant patients with relapsing-remitting multiple 
sclerosis (RRMS) (4). Twenty-four participants underwent 
AHSCT and were evaluated through 60 months posttransplant 
for event-free survival, defined as survival without death or 
disease activity. Progression-free survival, clinical relapse-free 
survival, and magnetic resonance imaging (MRI) activity-free 
survival were 91.3, 86.9, and 86.3%, respectively, indicating that 
AHSCT without maintenance disease-modifying therapy was 
effective for inducing durable remissions of active RRMS for 
at least 5 years (4). The primary mechanistic objectives for the 

HALT-MS trial were to determine the impact of AHSCT on the 
diversity of T  cell receptor (TCR) repertoires in reconstituted 
peripheral blood and intrathecal compartments and to assess the 
treatment effect on pro-inflammatory versus regulatory T  cell 
phenotypes in peripheral blood.

Here, we present flow cytometry data from HALT-MS to 
demonstrate the characteristics of immune reconstitution in 
RRMS patients through 36 months post-AHSCT and to high-
light potential confounders that interfere with identification 
of biomarkers for relapse and long-term remission. Of the 24 
transplanted participants in HALT-MS, 3 experienced clinical 
relapse, 2 showed disease progression by increased Expanded 
Disability Status Scale, and 2 had increased MRI through 
60 months follow-up. Results are displayed as mean values for 
the long-term remission group (n = 15–17) with individual lines 
for the seven participants who experienced disease reactivation 
at different times through 60 months follow-up to help illustrate 
the obstacles these variances impose on our biomarker efforts. 
We hypothesized that favorable changes in the balance of 
pro-inflammatory and regulatory/naive/hyporesponsive T  cell 
phenotypes in reconstituted peripheral blood would be associ-
ated with long-term remission after AHSCT. Paired statistical 
comparisons pretherapy to posttherapy were restricted to the 
long-term remission group because of the sample size and 
heterogeneity of the group that experienced disease reactivation 
during the 60 months post-AHSCT follow-up.

Most differences in circulating lymphocytes occurred early  
after AHSCT at 1–2  months. Absolute numbers of CD8 and 
CD4 T  cells and B  cells diminished, while CD56hi precur-
sor NK  cells expanded after AHSCT (Figure  1). Numbers 
of CD8 T  cells and B  cells returned between 2 and 6  months 
post-AHSCT (Figures  1A,C), whereas CD4 T  cells and CD4/
CD8 ratios remained significantly decreased at 36  months post-
AHSCT compared to pretherapy (Figures  1B,D). Numbers 
of CD56dim cytotoxic NK  cells declined at 6  months post-
AHSCT and remained reduced from pretherapy at 36 months. 
Early during reconstitution, CD4 and CD8 T  cells reflected a 
bias toward memory phenotypes with reduced proportions of 
CD27+CD45RO− naive cells (Figures  2A,B). Following their 
early increase, CD27+CD45RO+ central memory cells decreased 
and stayed significantly lower than pretherapy proportions at 
36  months (Figures  2C,D). CD27−CD45RO+ effector memory 
cells transiently increased early post-AHSCT (Figure  2E,F). 
CD31+CD45RA+CD45RO− CD4 recent thymic emigrants (RTEs) 
increased after their initial decline and remained significantly 
elevated at 36 months post-AHSCT, indicative of thymic renewal 
(Figure 2G). CD27−CD45RO− long-term memory CD8 T cells 
transiently diminished and reached pretherapy proportions 
at 36  months post-AHSCT (Figure  2H). A relative expansion 
of potentially senescent (5) CD28−CD56−CD57+ CD8 T  cells 
(Figure 2I) was observed after AHSCT at the expense of cytotoxic 
CD28−CD56+CD57+ CD8 T cells (Figure 2J). These results are 
consistent with previous immunophenotyping studies in patients 
with MS and other autoimmune diseases treated with AHSCT 
(6–11).

Potential T  cell biomarkers of response to AHSCT have 
been reported in MS and T1D (6, 7), including the expansion 
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FigUre 1 | Impact of autologous hematopoietic stem cell transplantation (AHSCT) on numbers of circulating lymphocyte populations through 36 months follow-up. 
Absolute cell numbers per microliter of whole blood were analyzed for (A) CD8 T cells, (B) CD4 T cells, (c) CD19 B cells, (e) CD56dim NK cells, and (F) CD56hi 
NK cells. (D) CD4/CD8 ratios were calculated from absolute cell numbers (A,B). Flow data were plotted after log transformation for normalization of these variables. 
Data shown are mean values for the group that maintained remission through 60 months post-AHSCT. The black line represents the Loess Regression fitted curve 
with a span = 0.7, and its 95% confidence band colored in gray. Paired t-test was used to examine persistent changes at 36 months from pretherapy numbers 
within the group that maintained remission through 60 months post-AHSCT (n = 15). CD4 T cells, CD4/CD8 T cell ratio, and CD56dim NK cells were reduced from 
pretherapy numbers at 36 months post-AHSCT. Individual lines for the seven participants who experienced disease reactivation prior to 60 months post-AHSCT are 
plotted using different symbols to indicate the type of disease activity and different colored lines to indicate the time to first multiple sclerosis (MS) disease activity. 
For additional details including flow cytometry data without log-transformation, see https://www.itntrialshare.org/HALTMS_fimmu_fig1.url.
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FigUre 2 | Continued
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of regulatory CD4 (Foxp3+CD127lo) and CD8 (CD28−CD57+ 
or PD-1+) T cells. However, T cell phenotypes that clearly dis-
criminate disease reactivation from long-term remission post-
AHSCT have not been identified in the immunophenotyping 

studies presented here or previously published for HALT-MS 
(10). Overall reconstitution patterns appeared similar for partici-
pants who did and did not achieve remission through 60 months 
post-AHSCT. While a few dramatic deviations from the mean 
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FigUre 2 | Impact of autologous hematopoietic stem cell transplantation (AHSCT) on the composition of circulating CD4 and CD8 T cells through 36 months 
follow-up. Percentages of CD27+CD45RO− naive CD4 (A) and CD8 (B) T cells, CD27+CD45RO+ central memory CD4 (c) and CD8 (D) T cells, CD27−CD45RO+ 
effector memory CD4 (e) and CD8 (F) T cells, (g) CD31+CD45RA+CD45RO− CD4 recent thymic emigrants (RTEs), (H) CD27−CD45RO− long-term memory CD8 
T cells, (i) CD56−CD57+CD28− CD8 T cells, and (J) CD56+CD57+CD28− CD8 T cells. Flow data were plotted after log transformation for normalization of these 
variables. Data shown are mean values for the group that maintained remission through 60 months post-AHSCT. The black line represents the Loess Regression 
fitted curve with a span = 0.7, and its 95% confidence band colored in gray. Paired t-test was used to examine sustained changes at 36 months from pretherapy 
numbers within the group that maintained remission through 60 months post-AHSCT (n = 15). AHSCT induced persistent changes in relative proportions of central 
memory and RTE phenotypes in reconstituted CD4 T cells. In reconstituted CD8 T cells, sustained alterations in proportions of central memory, CD56−CD57+CD28− 
(senescent) and CD56+CD57+CD28− (cytotoxic) phenotypes were observed. Individual lines for the seven participants who experienced disease reactivation before 
60 months post-AHSCT are plotted using different symbols to indicate the type of disease activity and different colored lines to indicate the time to first multiple 
sclerosis (MS) disease activity. For additional details including flow cytometry data without log-transformation, see https://www.itntrialshare.org/HALTMS_fimmu_
fig2.url.

5

Harris et al. Biomarkers of Clinical Response to AHSCT in Autoimmunity

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 100

of the long-term remission group were observed for individuals 
who did not maintain remission, no consistent changes in cell 
subtypes studied characterized all or any of the three categories of 
disease reactivation. These changes could reflect true biology or 
could be spurious findings unrelated to disease activity or adverse 
events. Two of the seven participants were in remission at the time 
of this analysis and relapsed by MRI activity later on; therefore, 
it is possible that relevant biomarkers had not yet re-emerged. 
Interpretation is limited by the sample size and various times 
to disease reactivation, particularly since specimens were not 
collected temporal to disease activity before rescue medication 

was given. Expansion of regulatory CD4 T cells (Foxp3+CD25hi, 
CD25hiCD127lo) has been reported in AHSCT trials in MS, SSc, 
SLE, and T1D (6, 7, 12–14); however, an equivalent phenotype 
was not analyzed when this “real-time” flow analysis was initiated 
at the start of the HALT-MS trial. This highlights one of the major 
limitations of real-time assays for biomarker research; they are 
often outdated by the end of the trial. Highly sophisticated immu-
nophenotyping studies are in progress to assess reconstitution of 
T and B cell phenotypes relevant to MS and autoimmunity post-
AHSCT; however, our response to biomarker efforts will still be 
confounded by the small sample size and suboptimal collection 
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schedule of participants who experienced disease reactivation 
after AHSCT during the 60  months follow-up in HALT-MS. 
These challenges and others are discussed below.

cHALLeNges OF BiOMArKer 
DiscOverY FOr cLiNicAL resPONse 
tO AHsct

clinical trial Design and Disease 
Heterogeneity
Nearly all studies evaluating AHSCT in autoimmunity have been 
open-label, single-arm, observational phase I/II trials (1, 2). 
Although highly efficacious, the nature of these trials imposes 
challenges on biomarker research. These include small numbers 
of transplanted participants, fewer subjects in potentially unbal-
anced and subjective binary outcome groups, and the lack of 
appropriate controls. Heterogeneity within a given autoimmune 
disease can manifest as a spectra of disease severity, duration, 
clinical manifestations, and tissue targets. Biological diversity 
and treatment history of a study population can also influence 
participant responses at each step of the transplantation pro-
cedure, including stem cell mobilization, conditioning efficacy, 
stem cell engraftment, and immune reconstitution. The timing 
and type of prior immunotherapy can alter the immunological 
profile pretherapy with implications on biomarkers that predict 
or correlate with response to AHSCT. Inconsistencies between 
transplantation protocols can influence the range, degree, and 
kinetics of immune cell depletion and reconstitution. For example, 
autoimmune activity may persist if depletion of autoreactive lym-
phocytes is incomplete or re-establish with the graft, depending 
on the conditioning regimen and grafted stem cells (i.e., CD34+ 
selected or not) (15). Some of these interindividual variables can 
and should be mitigated during protocol development with care-
ful planning of inclusion/exclusion criteria for the study.

specimen collection
Since the primary objective of AHSCT is to achieve durable 
remission of autoimmunity without immunosuppressive agents, 
a long-term follow-up period is required for the assessment of 
clinical and scientific goals. This provides researchers the oppor-
tunity to monitor the dynamic process of immune reconstitution 
for biomarker discovery. It also magnifies potential variances 
between biomarker studies as standardized schedules for speci-
men collection post-AHSCT were lacking. Guidelines for immune 
monitoring and biostorage of AHSCT-treated autoimmune 
patient specimens have been published to provide a consistent 
framework for future biomarker research (16). Specimens should 
be collected at two time points pretherapy, at regular intervals 
post-AHSCT, and proximal to the first disease-related event 
prior to disease-modifying treatment. The latter is essential for 
identifying changes in biomarkers associated with durable versus 
short-term remission to AHSCT.

Serial samples of whole blood, peripheral blood mononu-
clear cells (PBMCs), plasma, serum, saliva, and urine specimens 
can be readily obtained in sufficient volumes for biomarker 
studies of AHSCT in autoimmunity. In contrast, sequential 

sampling of disease-relevant tissues may not be possible or 
may be limited due to ethical constraints and the practicalities 
of trial conduct. Preanalytical variations can be introduced 
by sample types, timing, technique, and collection devise; 
handling and storage conditions, including stabilizing agents, 
temperature, duration, and freeze–thaw cycles; and documenta-
tion of specimen data (17). Since few patients are transplanted 
at each site in multicenter trials, these variables can adversely 
affect overall findings and reproducibility of biomarker studies. 
Therefore, standard and optimized protocols must be followed 
for each step of specimen collection. Centralized processing and 
testing of high-quality, banked specimens at designated, well-
qualified laboratories is strongly recommended. Cryopreserved 
specimens are particularly useful because they permit focused 
design and execution of biomarker studies at the end of the 
trial, when all end points have been identified. Banked speci-
mens allow simultaneous testing of all visits from a participant 
using state-of-the-art technologies in a single laboratory. This 
helps minimize interassay deviations, avoids testing immune 
parameters and technologies that may become obsolete during 
the trial, and eliminates interlaboratory variability. All of which 
can confound detection of changes in biomarkers that are rare 
such as autoreactive and regulatory lymphocytes. Although 
banked specimens are preferred for mechanistic studies, it is 
beneficial to perform a reliable full blood count analysis on 
fresh specimens when feasible to enumerate major leukocyte 
populations for interpreting immunological changes induced by 
AHSCT in banked specimens.

experimental Design
Mechanistic studies of AHSCT in autoimmunity have focused 
on disease-specific autoimmune parameters in the context of 
general immune reconstitution using immunophenotyping and 
transcriptional analyses. Despite rapidly evolving technologies 
and variation between cohorts, this global approach has revealed 
similar patterns of immune reconstitution and qualitative 
changes in PBMC in different autoimmune diseases (3, 18–20). 
This supports the hypothesis that AHSCT reprograms the self-
destructive immune system toward a tolerant state; however, 
more sophisticated functional studies and analytical approaches 
are required for discovery and validation of biomarkers of 
response to AHSCT.

Different types of autoimmunity are associated with distinct 
immunological signatures; therefore, biomarker(s) of response 
to AHSCT may be disease specific and require different assays. 
The prevailing view is that both B cells and T cells are important 
in SSc, SLE, and MS, whereas the role of B cells in T1D is not 
clear (2). Previous studies indicated that myelin-specific CD4 
T cell responses are initially limited in MS patients after AHSCT, 
but return to pretherapy levels after immune reconstitution  
(21, 22). It is not evident whether these autoreactive CD4 T cells re-
emerged through incomplete immune ablation or were generated 
de novo and if they are even relevant to disease. Reliable ex vivo 
assays for phenotyping and sorting disease-relevant central nerv-
ous system (CNS) antigen-reactive T cells for molecular assays 
pretherapy to posttherapy are highly desirable because they could 
determine whether functional differences of reconstituted T cells 
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are associated with clinical response. However, validated assays 
for MS clinical trials that do not require in vitro manipulation 
are still in development, in part because CNS antigen-reactive 
T cells are rare in blood of MS patients, and disease-relevant CNS 
antigens need to be clarified. This approach could be used in other 
diseases where the autoantigen is known, and ex vivo tetramer 
reagents are available, such as in T1D (7).

In the absence of a validated assay for assessing autoreactive 
T cells in HALT-MS, we used TCR repertoire analysis of CD4 and 
CD8 T cells in blood and the cellular fraction of cerebrospinal 
fluid (CSF) to better understand how AHSCT shapes adaptive 
immunity in the reconstituted immune system. CSF is the com-
partment in closest proximity to the CNS parenchyma that might 
reflect immune pathology in MS. The impact of AHSCT on TCR 
repertoire diversity was investigated during the HALT-MS trial, 
and distinct effects on circulating CD4 and CD8 T cells were iden-
tified. The majority of CD4 TCR clones arose de novo, and there 
was expansion of pre-existing CD8 clones through 12  months 
post-AHSCT (23). Reconstitution of a new and diverse TCR 
repertoire in blood has been reported in other trials of AHSCT 
in autoimmunity; however, it is difficult to compare with our 
findings because of a number of technical differences (11, 24, 25). 
Additional TCRβ sequencing analyses are in progress to evaluate 
the impact of AHSCT on the pre-existing TCR repertoire in CSF 
and to determine whether AHSCT changes the pattern of clonal 
sharing between CSF and blood in HALT-MS.

Analytical Approach and Biomarker 
validation
Overwhelming amounts of mechanistic data can now easily 
be generated and integrated with relevant clinical data for 
hypothesis-based and unbiased biomarker discovery approaches. 
This presents a major challenge for determining the right data 
sets to include and the appropriate statistical models needed 
to address key scientific questions (26). Different data sets and 
analytical approaches are necessary for addressing the two pri-
mary aims shared by all mechanistic studies of AHSCT, which 
include identification of biomarkers that predict, and those 
that correlate with, response outcomes. Biomarkers that predict 
outcome can be used to stratify patient populations for improved 
efficacy of AHSCT. However biomarkers refractory to, or induced 
by, AHSCT that correlate with poor outcome may help identify 
therapeutic targets for more durable remission with sequential 
administration of approved agents. For example, a small study 
by Capobianco et  al. indicated that natalizumab after AHSCT 
could be an effective strategy for RRMS patients who continue to 
deteriorate after AHSCT therapy (27).

Before putative biomarkers that correlate with clinical 
response can help guide clinical practice, they must be validated 
and shown to be clinically meaningful. This is the biggest chal-
lenge for biomarker efforts because well-matched cohorts may 
not be available due to inconsistencies in trial designs and speci-
men collection (17) or in response to safety concerns like high 
morbidity in the T1D trial of AHSCT (28). Validation cohorts 
should involve prospective, controlled, randomized trials with 
standardized specimen collection, reliable assays, bioinformatics, 
and data sharing.

OPPOrtUNities FOr BiOMArKers OF 
resPONse tO AHsct

High-dose immunosuppression and autologous stem cell trans-
plantation for poor prognosis MS demonstrated that it is possible 
to achieve durable remission in patients with treatment-resistant 
RRMS using AHSCT therapy (4). We speculate that a combina-
tion of persistent changes in T cell numbers and composition 
that support increased thymic output, TCR repertoire renewal, 
and immune senescence and/or regulation over central memory 
or cytotoxicity contribute to long-term remission in HALT-MS. 
Still, functional and transcriptional studies of autoreactive, pro-
inflammatory, and tolerogenic T and B  cell subsets collected 
at optimal time points from sufficient numbers of participants 
in long-term remission and disease reactivation groups are 
needed to show that AHSCT induces qualitative changes in 
favor of immune tolerance that persist in patients achieving 
durable remission. In addition, TCR/B cell receptor sequencing 
in CSF and blood are necessary to identify clonotypes associated 
with disease reactivation and to determine whether renewal/
diversification of the reconstituted adaptive immune system 
contributes to long-term remission post-AHSCT. HALT-MS 
can provide clues about some of these important questions; 
however, validation of putative response biomarkers will require 
larger patient numbers, independent cohorts, and appropriate 
controls.

The success of the HALT-MS trial has provided the foun-
dation for a clinical trial in the development by the National 
Institutes of Health and the ITN that will compare AHSCT 
with best available approved therapy in the treatment of RRMS. 
This trial presents a unique opportunity to follow-up on TCR 
repertoire and immunophenotyping studies from HALT-MS in 
a larger, controlled study. The primary mechanistic objective 
of the follow-up trial is to understand the mechanisms that 
distinguish AHSCT from the high-efficacy approved agents in 
the control arm. Quality specimens from peripheral blood and 
CSF will be interrogated using state-of-the-art technologies 
that become available and validated for analysis of primary 
end point outcomes to corroborate proposed and discover new, 
biomarkers of response to AHSCT compared to high-efficacy 
disease-modifying therapies. This knowledge will confirm the 
treatment rationale and help refine future protocols, so patients 
with aggressive RRMS can achieve durable remission in the 
absence of ongoing immunosuppression.

In summary, HALT-MS uncovered a number of challenges 
for identifying biomarkers of clinical response to AHSCT, many 
of which can be avoided in future trials through thoughtful trial 
design, specimen collection, experimental planning, bioinformat-
ics, and data sharing. To achieve this, the ITN brings together a 
multidisciplinary team of clinicians, regulatory officials, research 
scientists, and biostatisticians through partnerships between aca-
demia, government, industry, and other research consortia. Data 
sharing is available through ITN TrialShare,1 an online resource 
that allows users open access to our clinical trial and mechanistic 

1 www.itntrialshare.org.
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